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ABSTRACT: 

 

 

Laser scanning systems have been developed to capture very high-resolution 3D point clouds and consequently acquire the object 

geometry. This object measuring technique has a high capacity for being utilized in a wide variety of applications such as indoor and 

outdoor modelling. The Terrestrial Laser Scanning (TLS) is used as an important data capturing measurement system to provide high 

quality point cloud from industrial or built-up environments. However, the static nature of the TLS and complexity of the industrial 

sites necessitate employing a complementary data capturing system e.g. cameras to fill the gaps in the TLS point cloud caused by 

occlusions which is very common in complex industrial areas. Moreover, employing images provide better radiometric and edge 

information. This motivated a joint project to develop a system for automatic and robust co-registration of TLS data and images directly, 

especially for complex objects. In this paper, the proposed methods for various components of this project including gap detection from 

point cloud, calculation of initial image capturing configuration, user interface and support system for the image capturing procedures, 

and co-registration between TLS point cloud and photogrammetric point cloud are presented. The primarily results on a complex 

industrial environment are promising.    

 

 

1. INTRODUCTION 

Recently, the rapid development of laser scanning (LS) 

technology makes it possible to obtain a wide range of 3D spatial 

data directly in a short time. These active sensors allow to capture 

the object geometry accurately. Besides, they are almost 

independent of lighting conditions. LS offers new possibilities 

for many applications such as Building Information Modelling 

(BIM), documentation of cultural heritage, infrastructure 

inspection, and additive manufacturing in construction (Aryan et 

al., 2021; Mattia Previtali et al., 2020; M. Maboudi et al., 2020). 

 

The point clouds can be captured with static, mobile LS (MLS) 

or the combination of them in the sensor and point cloud levels, 

both indoor and outdoor. The static LS or Terrestrial Laser 

Scanner (TLS) captures the surrounding object geometry from 

one viewpoint in the so-called panorama mode, while using MLS 

measurements are carried out when the platform is moving. Static 

LS systems capture point cloud with higher-density and with less 

noise than MLSs and consequently more detailed information 

from the object (Mehdi Maboudi et al., 2018). Therefore, TLS is 

commonly utilized for small areas containing detailed 

information, for instance, cultural heritages or construction sites. 

MLSs can scan a large area or a network of transport corridors in 

a short time but currently with lower quality. 

 

TLS is a line-of-sight instrument with specific angular resolution. 

Accordingly, it typically cannot provide a full scene coverage by 

only one scan in complicated scenes. Therefore, the captured 

dataset may contain gaps, and/or in some areas with low density. 

To overcome these deficiencies, there are two main approaches: 

1) the trivial solution is to collect the partially overlapping point 

clouds from different locations through multiple scans, 2) 

covering the incomplete area of interest (AOI) using other 

sensors such as very high-resolution cameras (Meierhold et al., 

2010; Moussa, 2014). The object can be captured by hand-held 

digital cameras from different orientations and positions with a 

higher resolution while the position and practical field of view of 

TLS are restricted and even using multiple scans may not 

guarantee full coverage of the scene. Moreover, details in camera 

images are better identifiable than TLS data in a sub-pixel 

accuracy level. On the other hand, for the large or hard to access 

objects (buildings, planes or ships) using merely the digital 

camera is technically difficult in practice. The images can be used 

as complementary dataset together with TLS data where either a 

more detailed information is required or in occluded areas.   

 

To combine TLS data and images, the co-registration should be 

performed in which TLS coordinate system is considered as the 

reference coordinate system. A fully automatic and robust co-

registration of TLS and photogrammetric based point cloud has 

been still active and interesting research topic. This motivated a 

collaboration of the Institute of Geodesy and Photogrammetry of 

Technical University of Braunschweig (Brunswick) and the 

Society for the Promotion of Applied Computer Science in Berlin 

in a project called LaScaBi to develop an application for 

registering hybrid data sets including TLS point clouds and 

image -based point clouds, efficiently, and accurately. The main 

innovation of our approach is the end-to-end-combination of 

partly existing methods, from initial TLS-data capturing to 

camera view planning, user guidance, data co-registration. In this 

paper, the preliminary results of this project are presented and 

discussed. Different research and development components of 

the project are briefly overviewed in the following sections. In 

Section 2, the related works for each project component are 

reviewed. Section 3 explains the main steps of the research and 

development components including AOI detection, synthetic 

image generation from TLS point clouds, co-registration of TLS 

and hand-held camera images, and user guidance and support 

system. In section 4, we show the primarily results for each 

project component and discuss them. Finally, the closing 

discussion and conclusion are presented in section 5. 
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2. RELATED WORKS 

Our project constitutes different components such as gap 

detection, user guidance for capturing datasets, and fully 

automatic co-registration of TLS and camera imagery. State-of-

the-art research papers for each component of the system are 

briefly explained in this section. Generally, the methods of the 

gap detection in the previous research papers are categorized into 

two main groups depending on the processing of point cloud in a 

direct or indirect manner using the ray-tracing algorithm. The 

direct methods are applied to the unorganized point clouds, 

finding the geometrical relation between neighbouring points by 

generating either the voxels in a volumetric representation or the 

triangulation mesh surface (Guo et al., 2018; Kazhdan et al., 

2006) 

 

In the ray-tracing based methods, the sensor positions and raw 

data (range and angles instead of the point cloud) is required. In 

these methods, the visibility of the point cloud from any 

viewpoints are investigated. The visibility of the point clouds can 

be mathematically checked using the intersection of line of sight 

of the rays with the voxel or surface triangles or analysing the 

triangulated surface normal (B. Alsadik et al., 2014). The Voxel 

based approaches are usable for the visibility detection and 

consequently gap detection in computer graphics applications, 

since they present the points as voxels which are efficient in term 

of computer memory. The voxel-based approaches are based on 

two different techniques including voxel-ray intersection, voxel 

distance buffering. Adan and Huber, (2011) applied ray-tracing 

and occlusion labelling in the point clouds using support vector 

machine classifier to detect opening areas from the gaps. Previtali 

et al., (2014) also used segmentation of planes and ray-tracing 

based method to detect the openings and occluded areas for 

indoor modelling. For the gap detection in TLS point clouds of 

the outdoor environment, Alsadik et al., (2014) proposed a 

method based on volumetric space representation and ray-tracing 

followed by a classification into gap or opening area.  

 

Using AOI detection, the user can be guided for taking the image 

block in the appropriate camera positions. The image block is 

later employed to generate dense point cloud using Structure 

from Motion (SfM). Subsequently, the photogrammetric point 

cloud is combined with TLS point cloud to fill the gaps and to 

provide more information in the AOI. Therefore, the 

determination of suitable positions of the cameras assists the user 

to capture image block with enough overlap and proper 

configuration. Alsadik et al., (2013) designed an optimum 

camera network from the video frames of which a rough point 

cloud is generated. Furthermore, the visibility of the object is 

considered as an important factor for designing the network in 

such a way that one point of object should be visible from at least 

three images. Schindler and Förstner, (2012) developed and 

designed a software for real time guidance of unexperienced user 

to reconstruct 3D scene. Captured images are immediately 

integrated into the bundle adjustment and help the user to find the 

next best camera position. Wenzel et al., (2013) determined the 

camera position and image scale based on the accuracy 

requirement.   

 

The registration between digital camera imagery and laser 

scanning are performed using different features such as points, 

corner, blobs, line, and plane. (Urban & Weinmann, 2015) used 

Scale Invariant Feature Transform (SIFT), Speeded Up Robust 

Features (SURF), Oriented Fast and Rotated BRIEF (ORB), 

Binary Robust Independent Elementary Feature (BRIEF), and 

AKAZE detectors and descriptors for feature matching between 

two panoramic intensity images generated from reflectivity 

values of the TLS point cloud. They also suggested the 

combination of feature detector and descriptor for obtaining 

higher accuracy and better performance in the feature matching. 

Hussnian et al., (2016) suggested a method for feature matching 

between aerial images and mobile laser scanning using the 

modified Harris corner detector and Learned Arrangement of 

Three Patch Codes (LATCH) descriptor. Their proposed method 

finds the correct correspondences if two images have the similar 

scale and rotation. The feature matching between intensity image 

generated from TLS and camera image is investigated by Forkuo 

and King (2004). Meierhold et al., (2010) used SIFT detector and 

descriptor for matching between an intensity image obtained 

from central perspective projection of TLS point clouds and 

camera images. Moussa (2014) used Affine SIFT (ASIFT) for 

feature matching between RGB images obtained from TLS and 

camera images with wide viewing angles. Most of the mentioned 

feature detector and descriptors work well if two images have the 

similarity in geometry and intensity properties, otherwise the 

results are not promising.  

 

Moussa, (2014) estimated the exterior camera orientation relative 

to the TLS point cloud by solving Perspective-n-Point (PnP) 

problem which is based on space resection. Urban and Weimann, 

(2015) suggested the robust method for registering the point 

clouds obtained from two scan positions. In this method, 3D to 

3D sparse point clouds obtained from 2D corresponding 

keypoints of the panoramic images are registered indirectly using 

3D to 2D co-registration. One of the non-reference sparse point 

clouds are back projected into the virtual image. Then, the PnP 

algorithm combined with RANSAC the so-called Efficient PnP 

(EPnP) is used to estimate the transformation matrix between 2D 

and 3D feature correspondences. This coarse registration is 

followed by the iterative closest points (ICP) to perform fine 

registration and to increase the accuracy of the transformation. 

Meierhold et al., (2010) extracted 3D coordinates of 

corresponding keypoints from TLS. The space resection is 

applied to estimate the exterior parameters of the four images and 

interior parameters of the camera using 2D and 3D corresponding 

keypoints.  

 

The focuses of our work are ray tracing and voxel intersection-

based gap detection, the adequate camera positions 

determination, and the keypoint-based point cloud registration. 

The image matching between the reflectance image of TLS point 

cloud and images of digital camera is sensitive to the illumination 

and changing of viewing directions. The potentiality of Brisk 

feature detector and descriptor in image matching between 

intensity image obtained from TLS point cloud and camera 

images is investigated, which has not been performed in the 

previous works to the best of our knowledge. In our own 

approach we employ a combination of Affine transform and 

Brisk detector and descriptor (ABrisk), which will be explained 

in detail in section 3.4. Inspiring the suggested methods of (Urban 

and Weimann, 2015) and (Meierhold et al., 2010), we proposed 

a 3D to 3D co-registration method to estimate the transformation 

between TLS and image block-based point clouds.  

 

3. RESEARCH AND DEVELOPMENT COMPONENTS 

3.1 AOI Detection 

We define AOI as gaps or some other regions where the user 

needs more information from those parts. These regions might be 

for example an object or a gauge for the heating pipe in the 

industrial environment. The position of the TLS and the 

corresponding sampling density of the measurements may cause 

some imperfections such as gaps in the point clouds. These 
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imperfections are recognized by processing the TLS point clouds 

in the primarily step. In indoor and outdoor reconstruction, the 

gaps of point clouds are mostly due to either windows/doors or 

existence of the other objects closer to the scanner, respectively. 

According to the TLS data capturing principle, we employ a gap 

detection method based on ray tracing and voxel ray intersection. 

The main steps in the presented approach are the 3D voxel 

representation of point clouds, ray tracing, detecting visible and 

occluded voxels, and voxel labelling. 

 

3.1.1 Voxelization of 3D Point Cloud 

 

The first step of the proposed gap detection algorithm is the 

volumetric representation of the point cloud based on the voxels. 

The goal of the 3D voxel representation of a space is to define an 

environment with imposed topology. A reduced and discrete 3D 

space is created through voxelization in which each voxel could 

be labelled as empty or occupied. 

 

3.1.2 Ray Tracing 

 

The ray is emitted from a sensor to the objects which is defined 

by line parameters in spherical coordinate system with 

𝑅 = (𝜌, 𝜑, 𝜃) which 𝜌 is maximum range in the 3D point cloud 

and 𝜑 ∈ [𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥] is the vertical angle and 𝜃 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥] 
is the horizontal angle of the laser beam , which are changed with 

an angle interval. The domain of changing of 𝜑 and 𝜃 are defined 

according to the AOI of which the gap area to be detected. Points 

on a ray are sampled using Bresenham algorithm (Bresenham, 

2010) with a precision determining the interval between the 

sequential points on the line. The voxels containing the line 

points are selected as candidate voxels for the next step and 

labeled as either visible or occluded.  

 

3.1.3 Detecting and Labelling Visible and Occluded Voxels 

 

The closest candidate voxel to the sensor position that contains 

some points is labeled as a visible voxel. We proposed a new 

method to avoid labeling neighboring voxels of a visible voxel as 

occluded voxels. It is assumed that a vertical plane passes 

through the center of the visible voxel. Afterwards, the distance 

of other centers of candidate voxels except for the center of 

visible voxel to this plane are compared with a threshold 

determined based on the diagonal of the voxel to consider them 

as visible or not. The farthest candidate voxels which are not in 

the list of visible voxels are chosen. The rest of the candidate 

voxels on the ray including occupied and non-occupied are 

labeled as the occluded voxels. For each new generated ray, the 

algorithm searches for the visible and occluded voxels. 

 

3.2 Calculation of Camera Positions for User Guidance 

After AOI detection, the preliminary camera positions 

configuration should be designed to guide the unprofessional user 

for capturing the images. A typical network is designed, which is 

a sequence of normal images. The designed camera positions are 

affected by many parameters, such as camera properties (e.g. 

focal length), distance to the AOI, the distance between stations, 

the position and size of AOI, and the available data capturing 

zone around the AOI. The image acquisition is commonly 

planned according to the precision and resolution requirements 

(Wenzel et al., 2013). In the stereo normal imaging, the relation 

between depth and other configuration parameters can be 

approximated as: 

−𝑍 =
𝑓𝐵

𝑑𝑝
    ⇒    𝑑 =  −

𝑓𝐵

𝑍𝑝
 (1) 

where 𝑍 is the depth or distance from the object, 𝐵 is the baseline, 

𝑓 is the focal length, 𝑝 and 𝑑 are the pixel pitch and disparity. 

The depth precision (𝜎𝑍) is calculated based on the propagation 

of the variance in depth in respect to the variance in image.  

 

𝜎𝑍 =  
𝑝𝑍2

𝑓𝐵
𝜎𝑑 (2) 

where 𝜎𝑍 is the depth precision and 𝜎𝑑 is the precision of 

disparity.   

 

According to (2), the depth precision mainly depends on two 

components: 𝑝𝑍/𝑓 which represents Ground sample distance 

GSD and 𝑍/𝐵 which affects the intersection angle of the rays. 

The later component is related to occlusions. It means that the 

point of the object is visible if the absolute difference between 

the angle between optical axis of the camera and surface normal 

in a point is less than a threshold (e.g. < 90°) (Wenzel et al., 2013; 

Alsadik et al., 2013). 
 

According to the required GSD and depth precision, the distance 

from an object and the baseline are to be determined. An 

appropriate completeness including high image similarity as 

well as high performance of the matching procedure is achieved 

based on small baseline and large distance. However, the weak 

geometrical condition leads to poor depth precision. In contrast, 

a large baseline, and close distance achieve a higher precision. Its 

drawback is related to corresponding lower image similarity. 

Therefore, a trade-off between the baseline and distance from the 

object should be considered to satisfy the required depth 

precision and matching performance. Our suggested approach is 

firstly to consider a fixed focal length of the camera, in order to 

guarantee a stable estimation of interior camera parameters. The 

maximum possible distance from an object is calculated 

considering the specified GSD (e.g. =1mm). In close-range 

photogrammetry, the overlap between two neighbouring images 

is considered high >85% in frontal and 65% side directions. The 

baseline is calculated based on overlapping part and footprint. 
 

The depth precision is calculated using (2) and compared with 

the required depth precision (𝑑𝑒𝑝𝑡ℎ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛). If it is not 

satisfied, the distance from the object will be reduced. After that, 

the baselines are calculated for each strip of the image. We repeat 

these steps till we can get a 𝜎𝑍 ≤ 𝑑𝑒𝑝𝑡ℎ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. For convergent 

image configuration, we consider circular configuration 

especially for cylindrical objects such as monuments. In this 

design, the intersection angle of two conjugant rays which 

depends on 𝑍/𝐵 is an important parameter. It can be considered 

between 5° and 10° resulting in the appropriate overlap between 

the images and noise reduction in the dense point cloud (Wenzel 

et al., 2013), according to depth precision which has been already 

explained.   

 

3.3 Calculation of Synthetic Images from TLS point cloud 

Synthetic image can be generated using two approaches based on 

imaging of polar scanner coordinates called reflectance 

panoramic image and central perspective representation 

(Meierhold et al., 2010). In the former approach, each 3D point 

is assigned to one pixel based on the scan resolution. The 

maximum and minimum horizontal and vertical angles of TLS 

determine the width and height of the image, respectively. The 

later approach projects the TLS data to a virtual image plane 

based on the collinearity equation. This method is more 

applicable than former one since it is possible to generate the 

virtual images with perspective geometry. Using the approximate 

interior orientation parameters of the camera which is going to be 
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used for data capturing, a block of distortion free synthetic 

images could be generated.   

 

To generate synthetic image from the 3D point cloud of the TLS, 

position and orientation of the camera are required to be retrieved 

in the specific alignment of TLS. The TLS rotates around its 

vertical axis with a horizontal angle (AZ) to measure 3D point 

cloud (Al-Manasir & Fraser, 2006; Omidalizarandi et al., 2019). 

To align TLS coordinate system to the virtual camera coordinate 

system, the TLS measurements are rotated around the Z-axis of 

the TLS by using a 3 × 3 rotation matrix (𝑅3(𝐴𝑍)). Fig. 1 shows 

the relation between two coordinate systems from top view.  

 

 
Figure 1. Relation between TLS coordinate system and virtual 

camera coordinate system. 

 

In addition, the Z-axis of the digital camera (i.e. its viewing 

direction) is in direction of Y-axis of TLS. Therefore, a rotation 

of 90° around X-axis needs to be imposed to bring TLS 

coordinate system to camera coordinate system.  

 

The exterior orientation parameters of the virtual camera, with 

respect to the TLS coordinate system is determined based on the 

detected AOI. The transformation between two Cartesian 

coordinate system is described as follows: 

 

[

𝑟
𝑠
𝑞

] = 𝑅𝜅𝜑𝜔 × [𝑅3(𝐴𝑍) [
𝑋
𝑌
𝑍

] − [

𝑋𝑜

𝑌𝑜

𝑍𝑜

]] (3) 

 

where (𝑟, 𝑠, 𝑞)  are the 3D point coordinates in the camera 

coordinate system, (𝑋, 𝑌, 𝑍) are the 3D point cloud coordinates 

in the object space (i.e. TLS coordinate system), (𝑋𝑜, 𝑌𝑜 , 𝑍𝑜) are 

the translations vector between TLS and digital camera, (𝜅, 𝜑, 𝜔) 

are the rotation angles between TLS and digital camera, and 𝐴𝑍 

is horizontal angle measurement of the TLS. Transforming the 

virtual camera coordinate system (𝑟, 𝑠, 𝑞) to the image 

coordinate system (𝑥, 𝑦) is performed as follows:  

 

[
𝑥
𝑦] =

1

𝑞
([

𝑓 0 𝑥𝑝

0 𝑓 𝑦𝑝

0 0 1

] × [

𝑟
𝑠
𝑞

]) (4) 

 

where 𝑓 is focal length and 𝑥𝑝, 𝑦𝑝 are the principle point shifts 

(𝑥𝑝 = 𝑤/2  and 𝑦𝑝 = ℎ/2 are defined on the basis of interior 

orientation of the hand-held camera. To convert (𝑥, 𝑦) from 

metric to pixel (𝑢, 𝑣) coordinates, each metric coordinate is 

divided by pixel size. Since the density of the TLS data could be 

coarser than the resolution of the camera, the pixel size of the 

virtual image is defined as a factor of the camera’s pixel pitch. 

To enhance the synthetic image visually, normalization and 

gamma correction are applied on the reflectivity values from TLS 

data. 

  

 

 

3.4 Co-registration of TLS Data and Hand-held Camera 

Images 

3.4.1 Feature Detection, Description and Matching 

 

In this paper, Affine Binary Robust Invariant Scalable Keypoints 

(ABrisk) feature detector and descriptor is used for feature 

matching. ABrisk generates a set of images with different view 

of direction from the original one by varying the two camera axis 

orientation parameters (Yu & Morel, 2011). Then it applies Brisk 

to all generated images. ABrisk as complementary algorithm of 

Brisk covers all six parameter which are needed for affine 

invariant matching. It simulates three parameters of scale, the 

camera’s longitude and latitude angles, and normalizes the other 

three parameters of translation and rotation.  

 

Brisk is a feature point detection and description algorithm with 

scale, rotation invariance, developed by (Leutenegger et al., 

2011). The keypoint detection methodology of Brisk is inspired 

by AGAST algorithm (Mair et al., 2010) to extract the keypoints. 

The algorithm searches for the maxima not only in the image 

plane but also in scale space using FAST score, which can 

achieve the scale invariance properties (Leutenegger et al., 2011). 

Brisk descriptor is represented by a binary bit string. This 

descriptor employs fixed neighbourhood sampling pattern to 

describe the feature points. Firstly, a pattern is used for sampling 

the neighbourhood of keypoint. Four concentric circles 

containing 40×40 pixels are centred around the keypoint. 

𝑁 (𝑁 = 60) points with uniform distribution and equally spaced 

are sampled from the four concentric circles. The smoothed 

intensity values of the pixels of pair points on the pattern are used 

to estimate the local gradients. Accordingly, the overall 

characteristic pattern direction of keypoint is estimated. To build 

a scale and rotation invariance, the sampling pattern is then 

rotated around the keypoints based on the rotation angle 

calculated from previous step. To supply the illumination 

invariance properties, the results of brightness tests employed on 

the pair points of rotated sampling pattern are concatenated to 

generate the descriptor as a binary string. The length of bit string 

depending on the sampling pattern and the distance thresholds 

might be changed from 64 to 512 bits.  

  

The feature matching strategy uses nearest neighbor distance 

ratio to find the corresponding keypoints in the two images. In 

this matching scheme, the distances of a keypoint descriptor are 

compared in the first image to the nearest neighbor and to the 

second nearest neighbor in the second image  (Weinmann et al., 

2011). The ratio of these distances must be less than a given 

threshold 𝑡 ∈ (0,1). As the ABrisk describes the keypoints in a 

binary string, the Hamming distance is utilized to calculate the 

distance between the descriptors of the keypoints. Hamming 

distance calculation is implemented based on a bitwise XOR 

operation. The two bits with equal values result in “0”, otherwise 

it is “1” in the final bit string. Therefore, the large “1” numbers 

shows the dissimilarity of the two descriptors (Liu et al., 2018).  

 

Images captured from a scene using different cameras with 

different viewpoints are related by epipolar geometry. The 

fundamental matrix representing interior and exterior orientation 

parameters of two camera is determined under the epipolar 

constraint which maps a point in one image to the line (epiline) 

in another image. To find the correct matches and their 

fundamental matrix, PROSAC algorithm (Chum & Matas, 2005) 

is used in this paper. PROSAC algorithm is an improved 

algorithm based on RANSAC. The sampling process is on the 

progressively larger sets of top-ranked correspondences while 

RANSAC considers all correspondences equally and draws the 
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random samples uniformly from the full set. Under this 

assumption, PROSAC can predict the correct correspondences 

based on the similarity rather than random guessing (Chum & 

Matas, 2005).  

 

3.4.2 Feature based 2D to 3D Registration 

 

Feature based 2D to 3D registration intends to find the camera 

calibration parameters in TLS coordinate system which is 

considered as the reference. The updated coordinate system of an 

image block results in point cloud obtained from dense matching 

in TLS system. To this end, the 3D coordinate of the correct 

correspondences between the synthetic image and at least three 

camera images can be considered as Ground Control Points 

(GCPs) in the process of dense image matching using SfM. Due 

to radiometric and geometrical differences between the synthetic 

image and the camera image, finding the correct matches 

between the synthetic image and a block of camera images might 

be difficult. Therefore, an indirect transformation is suggested for 

finding the transformation between image and TLS coordinate 

systems. In this step, a sparse 3D point cloud is generated from 

SfM. The corresponding 3D coordinates of the 2D keypoints of 

the camera image which has maximum correct correspondences 

with synthetic image is identified from the sparse 3D points. 

Finally, the transformation between the image block and TLS 

including rotation, translation, and scale is solved by calculating 

the similarity transformation matrix of 3D coordinate of the 

corresponding keypoints between synthetic image and camera 

image. The coarse registration can be followed by ICP to do a 

fine registration and find the transformation parameters more 

precisely.  

 

3.5 User Interface and Support System Software Design for 

Demonstrator Application 

To join all the separate working packages with their functions 

and algorithms an application has to be designed for the LaScaBi 

project. The purpose is to give the user the ability to get an 

overview of the scanned data, interact with them and use the 

developed functions on selected data sets. Figure 2 shows the 

software design to achieve this goal. 

 

 
Figure 2. Design of demonstrator application. 

To group the functions of the separate working packages of this 

project, four modules was defined. The first one is the Graphic 

User Interface (GUI) module which includes the embedded 3D-

View, where the loaded data are displayed, and an interface for 

all other modules to add elements to the GUI. The Tools module 

is the second, which adds functions to the application where 

algorithms are needed. The third type includes the extensions, 

which are more complex functions that load and manipulate data 

sets. This module uses implemented algorithms to calculate new 

data, provided SDKs to communicate with hardware and already 

implemented functions from the internal GFaI library. With this 

software design, the application can be extended during the 

project duration when a new algorithm or function is completed 

without major changes to already finished modules. That means 

every module has to be independent from other modules, so an 

agile and stable software development is possible.  

 

4. RESULTS AND DISCUSSION 

4.1 Data set 

The room where test data was acquired, contains many pipes and 

facilities as well as two columns which could serve as AOIs and 

may lead to different gaps in the dataset. The room was scanned 

from one position using the TLS of type Z+F IMAGER® 5010X 

in a high-quality mode with an angular resolution of 0.036°. The 

RGB images are captured using Canon EOS 5D mark IV with the 

fixed focal length of 28 mm and pixel pitch of 4.24 𝜇𝑚.  Figure 

3 (a) shows the 3D point cloud of the room after separation of the 

corresponding roof part of the data set. The AOI is the gap areas 

located behind the column in the right corner of the room. The 

point cloud and one of the camera images are illustrated in Fig. 3 

(b) and (c), respectively.   

 

 
(a) 

       
 

Figure 3.  Test data set: (a) 3D point cloud, (b) camera image of 

AOI, (c) 3D point cloud of AOI. 

 

4.2 Experiments 

Our experiments focus on the gap detection, feature extraction 

and matching between each single camera image and synthetic 

image of one scan to find the correct keypoint correspondences 

between them. Additional images at different perspective and 

distances considering depth accuracy of 1 mm and sub-millimetre 

GSD are captured from the aforementioned AOI and its 

surrounding to build an image block.  Therefore, it allows to 

generate sparse point cloud using SfM as well as dense point 

cloud. Finally, the transformation matrix between sparse point 

cloud obtained from image block and TLS point cloud is 

calculated using the 3D coordinates of correct corresponding 

keypoints resulted from feature matching.  

 

4.2.1 Gap Detection 

 

The algorithm explained in subsection 3.1 is employed to detect 

the gap area shown in Fig. 3 (a). The position of the TLS is 

depicted by the yellow arrow. From this position, the column on 

the right side is an obstacle for scanning a part of the room in 

behind and causes the gap in the point cloud. The proposed 

algorithm which is based on ray-tracing and voxel intersection 

method requires some parameters as shown in Table 1. These 

parameters depend on the point cloud density and the complexity 

of the environment. To detect the gap area, the horizontal and 

(b) (c) 
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vertical angle ranges are set to 𝜃 ∈ [270, 360] and 𝜑 ∈ [0, 135], 
respectively.  

 

Parameters Value 

Number of voxels 128x128 

The minimum number of occupied voxels 

along the ray 
2 

The maximum distance of the neighbouring 

voxel from visible voxel 
0.2 m 

The increment of 𝜃 angle  0.3° 

The increment of 𝜑 angle 0.3° 

Table 1. Parameters of the gap detection algorithm. 

 

The result of the gap detection is visualized in Fig. 4. This figure 

shows a volumetric representation of the point clouds using 

occluded and visible voxels. The detected gap areas (red voxels) 

of the AOI behind the column and pipes are recognizable from 

the other visible occupied voxels (yellow voxels).  

 

 

 

  
Figure 4. Voxelization of the test data set and detected gap areas 

 

4.2.2 Feature Matching 

 

To generate the central perspective-based synthetic image from 

AOI, the horizontal angle of TLS is considered as 𝐴𝑍 = 128°. 

The synthetic image is generated with the same properties as 

camera image consisting of the focal length (28 𝑚𝑚) and sensor 

size (24× 36 𝑚𝑚). Since the density of the point cloud is lower 

than the camera images, the resolution of the synthetic image is 

considered as 5×pixel size (i.e. 5×4.23𝜇𝑚 = 21.19 𝜇𝑚) of the 

camera image. Therefore, it results in an image with size of 

1158× 1737 pixels compared to the raw the camera image size 

of 5792 × 8688 pixels. The generated synthetic image is shown 

in Figure 5.  

 

 

Figure 5. The central perspective synthetic image. 

 

The OpenCV library is used in the python scripting language for 

applying Brisk feature detector and descriptor with affine 

transform (ABrisk) on the synthetic and camera images. To 

obtain Brisk feature detector and descriptor parameters, without 

loss of generality, the default values of the corresponding 

functions in the OpenCV library are considered. Figure 6 depicts 

the feature keypoints extracted from synthetic image (a) and 

camera image (b).  

 

    
 

Figure 6. The ABrisk feature keypoints extracted from (a) 

synthetic image and (b) camera image. 

 

After extracting the keypoints using ABrisk feature detector, the 

algorithm searches for reliable point correspondences by 

employing a distance ratio test using a threshold value of 𝑡 =

0.66 which is empirically obtained. Figure 7 shows the results 

of this primary feature matching.  

  

 

Figure 7. Feature matching using distance ratio test. 

 

As shown in this figure, there are some outliers which are 

removed after applying the estimated fundamental matrix with 

PROSAC.  Figure 8 shows the result of feature matching after 

outlier removal. 

 

 
Figure 8. Feature matching after outlier removal 

 

The number of extracted feature points from synthetic image and 

camera image equals to 75057 and 57211, respectively. This 

difference might be due to either noise or low spectral resolution 

of the synthetic image generated from reflectivity values.  

The number of correspondences found by ABrisk feature 

descriptor with imposing the ratio test is 297 and after estimating 

fundamental matrix using PROSAC is 198. From this result, it is 

obvious that about 66% of the ABrisk correspondences is 

remained after using fundamental matrix and PROSAC, which is 

adequate for co-registration between TLS point cloud and image 

block.   

 

4.2.3  Co-registration between TLS and Image Block 

 

As illustrated in Fig. 9, 52 camera images are calibrated to 

generate a sparse 3D point cloud using SfM algorithm in Pix4D 

software.  The 3D coordinates of correct corresponding keypoints 

generated by matching between a TLS synthetic image and one 

of the undistorted camera images (with the closest perspective to 

the synthetic image) are obtained from TLS point cloud and 3D 

sparse point, respectively. Afterwards, the rigid-body 

transformation matrix including 3D rotations and translations, as 

well as scale is calculated using the 3D coordinates of correct 

correspondences.  

 

(a) (b) 

voxels in the gap areas 

visible voxels occupied by point cloud 
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Figure 9: The generated sparse point cloud using SfM  

 

To exclude the possible outliers and having a robust estimation 

of the transformation parameters, the 3D residuals of the 

corresponding keypoints are computed after transformation with 

respect to their corresponding TLS coordinates. The outliers are 

eliminated by performing 2𝜎 test in five iterations. The L2-norms 

of the residuals are computed for each correct corresponding 

point and illustrated in Fig. 10. As shown in this figure, the L2-

norms of the residuals are mostly close to zero and only a few of 

them are around 2 mm, which means the fine registration might 

be neglected. 

 

 
Figure 10. L2-norms of the residuals for correct corresponding 

keypoints. 

 

Although the results in Fig. 10 look very good, it is worth 

mentioning that these are the residuals of the 58 points which are 

used in 3D rigid body transformation between the point clouds 

and should not be considered as the determinant criteria for 

evaluation of the whole process. Therefore, we will also compute 

and report the deviation of the photorammetric point cloud (after 

transformation) from TLS Point cloud.  

 

Using final transformation matrix, the exterior orientation 

parameters of the camera images are calculated in the TLS 

coordinate system. The generated dense photogrammetric point 

cloud is then integrated with TLS point cloud to complete the gap 

areas as shown in Fig. 11.    

 

            
 

 
 

Figure 11: The entire point cloud of the experimental room 

including TLS point cloud and SfM-based point cloud after 

transformation. Colorized point cloud is generated from SfM, and 

TLS point cloud is shown with grey colour. 

The Cloud to Cloud (C2C) distances between transformed dense 

photogrammetric point cloud and TLS point cloud are computed. 

To avoid the effect of non-correspondent points in our analysis, 

we use a cut-off distance 𝑟 which is the largest acceptable 

distance between TLS point cloud and the closest point in the 

photogrammetric point cloud. Hence, the C2C distances larger 

than the cut-off distance 𝑟 will be excluded from the 

computations. Moreover, to further avoid the outliers, we use the 

median absolute distance to measure the deviation of the 

photogrammetric point cloud from TLS data. The median 

absolute distance of the point clouds as a function of cut-off 

distances are illustrated in Fig. 12 (a). For the cut-off distances 

lower than 1.5cm, the medians of absolute C2C distances are 

almost equal to cut-off distances. However, it is almost constant 

and equal to 13 mm for the cut-off distance of 15 mm and higher. 

The results reveal that the calculated similarity transformation 

from corresponding keypoints can give the promising results for 

the robust registration of the image-based dense point cloud to 

TLS data.  

 
Figure 12. Median of absolute distances between SfM-based 

dense point cloud and TLS point cloud for each cut-off distance.  

 

5. CONCLUSIONS 

The LaScaBi project aims at a combination of TLS and 

photogrammetric point clouds in an automatic manner. In this 

paper, different components of the project as well as related 

methodologies are discussed. The result of the gap detection 

module shows that the proposed method can detect gap areas 

successfully. The geometrical parameters of the gap areas such 

as size and volume can be estimated in the volumetric space. This 

can be utilized as a constraint for determining the position of the 

cameras in the user guidance step. The results of feature matching 

module show that applying a binary detector and descriptor like 

Brisk with affine transform (ABrisk) can handle the different 

characteristics of camera and synthetic images derived from TLS. 

The proposed coarse registration of photogrammetric point cloud 

to the TLS point cloud using 3D coordinates of the 2D feature 

correspondences lead to the reliable and precise results for which 

the fine registration can be neglected. As future work, the 

proposed algorithm will be validated with on more images and 

different data sets. To design an optimum camera positions, we 

plan to use an optimization algorithm to prone a large amount of 

video frames considering the constraint obtaining appropriate 

depth precision. The 3D correspondences can be used as control 

points in a bundle adjustment integrated with robust estimation 

method to approximate the interior and exterior orientation of the 

cameras of the image block simultaneously. The use of a self-

calibrating algorithms is suggested for bundle block adjustment 

in locally acquired overlapping image data and extracted object 

coordinate. 
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