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ABSTRACT: 

 

Plastic pollution has become one of the main global environmental emergencies. A considerable part of used plastics materials is 

dispersed or accumulated in the environment with a significant damaging impact on many terrestrial and aquatic ecosystems.  

Artificial Intelligence has proven a fundamental approach in last years for the detection of plastics waste in the aquatic habitats: several 

groups have recently tried to tackle such problem by developing some machine learning-based methods and multispectral or RGB 

imagery. This study compares the results obtained by two machine learning classifiers, namely Random Forests and Support Vector 

Machine, to detect macroplastic in the fluvial habitat through multispectral imagery. The acquisition of images has been made with a 

hand-held multispectral camera called MAIA-WV2. Despite the obtained results are quite good in terms of accuracy in a random 

validation dataset, some issues, mostly related to the presence of white rocks and glares on water have still to be properly solved.  

 

 

1. INTRODUCTION 

Plastic is the third world’s most produced material by industry 

and in the last fifty years it has been recorded a significant growth 

of production. It is a material with great versatility and 

indestructibility, and the disposal of plastic waste is becoming a 

dramatic problem. At global level, only 9% of used plastic is 

recycled, while the rest is burned and accumulated in landfills or 

in the environment (Geyer et al., 2017). Therefore, plastic 

pollution is one of the major global environmental emergencies, 

with a remarkable negative impact on many terrestrial and 

aquatic ecosystems.  

150 million tonnes of plastic are present in the oceans and, 

according to the current trend, it is foreseen that in 2050 there 

may be more plastic than fish in the sea (Jong, 2018). The 

majority of plastic litter in seas and oceans comes from rivers 

(Lebreton et al., 2017), which motivates the need for detecting 

macro-plastics (linear dimensions > 5 mm, (Bråte et al., 2017)) 

in the fluvial environmental. Once the plastic reaches the sea the 

individual pieces tend to fragment. The microplastics, after a 

period in suspension, sink and deposit forever in the seabed. At 

the bottom of the sea these particles become food for marine 

organisms, hence plastics come to be part of the food chain.  

Detection of macro-plastics in fluvial habitats shall enable their 

recovery before they reach marine environments. Unfortunately, 

studies on this kind of detection and recovery system are still 

quite embryonal, and, in fact, only 20% of global studies about 

rivers concerns problems related to macro-plastics (Blettler et al., 

2019), whereas most of them are concerning other problems 

(Aminti et al., 2020). 

Most of the research works on plastic waste detection only 

exploits Infrared bands (from 900nm to 1700 nm), in particular 

NIR (Near InfraRed) and SWIR (Short-Wave InfraRed), because 

these parts of the electromagnetic spectrum are not influenced by 

the object colour (Salzer and Heinz, 2014). A consistent part of 

works on this topic are based on the use of satellite imagery for 

                                                                 
*  Corresponding author 

 

detecting large accumulations of floating plastics in natural 

seawater (Topouzelis et al., 2019; Themistocleous et al., 2020), 

however, the spatial resolution of satellite multi-spectral images 

is quite limited (from half a metre to some kilometres) and high-

resolution data are often not freely available. This motivated the 

use of a hand held multi-spectral camera in this study. 

Given the fast improvements obtained in the last decade on object 

detection and other tasks by artificial intelligence approaches, 

some research groups recently tried to exploit such approach to 

automatically detect plastic waste on either multispectral or RGB 

imagery. 

Among the machine learning tools, it is commonly accepted that, 

when compared with other machine learning approaches such as 

Maximum Likelihood Classification (MLC) (Ahmad and 

Quegan, 2012) or Support Vector Machine (SVM), Random 

Forest (RF) often allows to reach the best performance level in 

classification problems, in particular when dealing with high-

dimensional data and multi-class classification. It works well 

with noisy data and discriminate the classes having similar 

spectral characteristics. In addition, it is known for its capabilities 

of reducing the overfitting issue. (Akar and Güngör, 2012; Lowe 

and Kulkarni, 2015; Martin et al., 2018). Deep Learning on high 

geo-spatial resolution imagery has also been considered in (Wolf 

et al., 2020): in such work convolutional neural networks (CNNs) 

have been effectively employed to determine the type and 

quantity of waste dispersed in aquatic environmental, with an 

accuracy 83%.  

This study compares the classification results obtained by using 

RF and SVM on very high spatial resolution multispectral 

images. 

 

2. DATASET CHARACTERIZATION 

In this study, a proximity multispectral sensor (i.e. MAIA-WV2) 

combined with machine learning classification methods are 

deployed for detecting macro-plastics in fluvial ecosystems.  
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The multispectral camera is developed by SAL Engineering 

(Modena, Italy) and EOPTIS (Trento, Italy) and is equipped with 

nine different passive sensors (eight monochromatic and one 

panchromatic, RGB) that permit a simultaneous acquisition on 

all the available wavelengths through its global shutter 

technology (Nocerino et al., 2017).  MAIA-WV2 has the same 

spectral bands as the WorldView-2 satellite (Digital Globe) from 

395 nm to 950 nm. The disposable bands are violet, blue, green, 

orange, red, red-edge, NIR1, NIR2 and RGB (see also Table 1).  

 

Table 1. Wavelenght intervals of MAIA WV-2 bands 
 

 The usage of the MAIA camera conveniently allows to collect 

very high resolution images (pixel size up to few centimetres) 

and to repeat the acquisitions without any additional cost (De 

Giglio et al., 2020). Each array has a CMOS sensor (size is 3,6 × 

4,8 mm) and the size of pixels is 3,75 × 3,75 μm with 1,2 Mpixel 

of resolution. The sensors have fixed lens with nominal focal 

length of 7,5 mm and focal aperture equal to 2,8 mm (SAL 

Engineering and EOPTIS 2018).  On the negative side, the area 

that can be covered in this way is clearly much smaller with 

respect to using satellite remote sensing methods. The images 

obtained from the MAIA multispectral camera are in RAW 

format but are convertible in TIFF format by the proprietary 

software of the camera. The software MAIA - Multicam Stitcher 

Pro allows geometric and radiometric corrections (SAL 

Engineering and EOPTIS 2018).  

This study exploits the dataset already considered by De Giglio 

et al. (2019), which distinguishes four different artificial 

scenarios of potential interest: high riverbanks, grass and trees, 

white rock immersed in the water, sandy soil and flowing water. 

However, this work focuses only on the flowing water case (172 

multispectral images), i.e. floating plastics in fluvial water. This 

imagery is not overexposed nor underexposed, and it permits the 

investigation of the sunglint problem (Martínez-Vicente et al., 

2019) (see Figure 1). 

 

 
 

Figure 1. Example of multi-spectral image in the considered 

dataset. Red, Green and Blue (RGB) colours of the image are 

displayed in the figure. It is possible notice the sunglint effects 

on the sea surface. 

 

In addition to the eight monochromatic bands directly provided 

by the multispectral camera, certain studies investigated the use 

of certain spectral indexes for increasing the classification 

accuracy, e.g. Page et al. (2020) and Themistocleous et al. (2020) 

suggested to use Normalized Difference Water Index 2 

(NDWI2), Plastic Index (PI) and Reversed Normalized 

Difference Vegetation Index (RNDVI):  

 

𝑁𝐷𝑊𝐼2 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
                        (1) 

 

PI=
𝑁𝐼𝑅

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
       (2) 

 

𝑅𝑁𝐷𝑉𝐼 =
(𝑅𝑒𝑑 − 𝑁𝐼𝑅)

(𝑅𝑒𝑑 + 𝑁𝐼𝑅)
                                                               (3) 

 

These indexes, along with the standard camera output channels, 

are considered in this study as inputs for a Random Forest and an 

SVM classifier. 

 

Figure 2 shows an example of the distribution of the values in the 

Blue band (from 455 nm to 520 nm) NIR 2 band (from 825 nm 

to 950 nm) of the images in the considered dataset, showing quite 

different characteristics for what concerns plastic with respect to 

other materials in the images. 

 

 
3. PROPOSED METHOD 

In the procedure implemented in this paper, machine learning 

tools, such as RF and SVM, are used in post processing for the 

plastic classification on previously acquired images.  

In particular, the classification performance is investigated 

varying the combination of the considered inputs. 

 

 

 

Wavelenght Intervlas 

Sensor Strat WL Stop WL  Colur 

  nm  nm   

S1 395 450 Violet 

S2 455 520 Blue 

S3 525 575 Green 

S4 580 625 Orange 

S5 630 690 Red 

S6 705 745 Red Edge 

S7 750 820 Nir 1 

S8 825 950 Nir 2 

S9 / / RGB 
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Figure 2. Distribution of the values in the Blue (from 455 nm to 

520 nm, top subfigure) and NIR 2 band from 825 nm to 950 nm 

(bottom subfigure). 

 

 

3.1 Random Forest 

Random Forest algorithm, one of more popular multistage 

classifiers. It belongs to the Decision Trees group of classifiers. 

It has a non-parametric nature and good managing skills of non-

normal, non-homogeneous and noisy data (Ghose, Pradhan and 

Ghose, 2010).  It has been widely used thanks to its high 

performance in terms of classification accuracy (Lowe and 

Kulkarni, 2015; Martin et al., 2018). 

RF classification is based on the use of a set of decision trees. 

Each individual tree in the RF delivers a class prediction and the 

class most highly voted is elected as the model’s predicted class. 

Randomness plays a key role in the select of training subset from 

each tree (Lowe and Kulkarni, 2015). 

Random Forest has high robustness and low generalization error 

since it is part of the ensemble classifiers (Martin et al., 2018). 

An important role in the classification performance is played by 

the parameter settings. In particular, the number of trees (N) and 

the number of variables to split at each node (m). In particular, it 

is often suggested in the literature that setting the value of N to 

500 allows a stabilization of the errors before this number of 

classification trees is achieved (Belgiu and Drăguţ, 2016). 

 

3.2 Support Vector Machine  

Support Vector Machine is a binary algorithm that identify a 

linear discriminate function with maximum margin to separate 

each class. When samples are not linearly separable it is even 

possible to apply a nonlinear transformation, e.g. also named the 

kernel trick, aiming at identifying a more appropriate spatial 

description of the dataset: a hyperplane  is used in such a higher 

dimensional representation to separate the classes of interest 

(Akar and Güngör, 2012). Roughly speaking, the support vectors 

are the points of dataset that are closet to hyperplane; they are 

considered as the critical elements of the dataset. SVM aims to 

identify the hyperplane that best divides support vectors into the 

desired classes.  

The most popular kernels used in the kernel trick usually are: 

- Linear; 

- Polynomial; 

- Radial Basis Function (RBF). 

SVM showed to efficiently deal with classification on high 

spatial dimensions and to be quite versatile (Fletcher, 2009).  

 

3.3 Connected region detection  

The connected region detection is a process based on spatial 

proximity of pixels. It is typically used on binary image, to 

segment regions of pixels connected together. In this paper 

connected regions are computed in such a way to determine 

which areas are classified as plastic. The rationale is that (almost) 

isolated pixels classified as plastic have highly probably been 

misclassified. Consequently, connected regions originally 

classified as plastic are discarded if their area is smaller than a 

certain threshold. 

 

4. RESULTS 

Table 2 summarises three different cases, whose performance 

will be compared in the following.  

 

 
 Table 2. Description of the cases analysed. 
 

During the validation phase we obtained the results shown in 

table 3 and 4 on a randomly selected subset of the overall image 

pixels in the dataset.  

The performance comparison is done in terms of: 

- accuracy, (true positives+true negatives) / validation dataset 

size,  

- precision, (true positives / (true positives+false positive)),  

- recall, (true positives / (true positives+false negative)),  

- quality, (true positives / (true positives+false positive+false 

negative). 

Results shown in table 3 and 4 do not exploit the connected 

region step yet. 

  Case 1 Case 2 Case 3 

Number  

bands 

image 

8                                     

(violet, blue, 

green, orange, 

red, red-edge, 

NIR1, NIR2) 

11                                     

(violet, blue, 

green, orange, 

red, red-edge, 

NIR1, NIR2, 

NDWI2, PI, 

RNDVI) 

8                                     

(violet, blue, 

green, orange, 

red, red-edge, 

NIR1, NIR2) 

Classifier 

Random 

Forest                     

(n. trees = 

500) 

Random 

Forest                     

(n. trees = 

500) 

Support 

Vector 

Machine                 

(Kernel Auto 

Function) 

Number 

pixel train 
10000 10000 10000 
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 Table 3. Summary table of False Negative (FN), False Positive 

(FP), True Negative (TN) and True Positive (TP). 
 

 

 Table 4. Summary table of accuracy, precision, recall and 

quality.  
 

 

 

Validation of the RF allowed to obtain an accuracy performance 

of 98%, however the number of false positives is currently higher 

than expected. 

The following figures show two different images of the dataset 

with their respective classifications (see figures 3, 4, 5, 6, and 7, 

8, 9, 10). It is worth to notice that the two images have different 

graphic results in the post classification. 

 

 

 
Figure 3. Image of the dataset represented in RGB. It is possible 

distinguish the plastic sample at the center of the image. 
 

 

 

 

 
Figure 4. Classification of image in Figure 3 with Random 

Forest algorithm (case 1).  
 

 
Figure 5. Post classification result (connected region area 

threshold: 100 pixels). 

 

 
Figure 6. Post classification result (connected region area 

threshold: 600 pixels). 
 

Classification Results  

  Case 1 Case 2 Case 3 

FN 492 482 3038 

FP 11311 11403 26045 

TN 322689 322597 307955 

TP 29960 29970 27414 

Classification Results  

  Case 1 Case 2 Case 3 

Accuracy  0.98 0.97 0.92 

Precision 0.87 0.72 0.51 

Recall 0.84 0.72 0.49 

Quality 0.96 0.98 0.90 
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Figure 7. Image of the dataset represented in RGB. It is possible 

distinguish two plastic sample (white bottle in top-center and red, 

in the top-right).  
 

 
Figure 8. Classification of image in Figure 7 with Random 

Forest algorithm (case 1). 
 

 
Figure 9.  Post classification result (connected region area 

threshold: 100 pixels). 

 

5. DISCUSSION 

Despite the results illustrated in the previous paragraph are quite 

encouraging, the RF accuracy and quality values are quite high 

in all cases (table 3 and 4), some issues are quite visible when 

dealing with the graphical results (figures from 3 to 10).  

The best results were obtained through the Random Forest 

classifier and with a dataset with 8 bands (violet, blue, green, 

orange, red, red-edge, NIR1, NIR2). Each validation index in the 

table 4 is more than 80%.  

 

 
Figure 10. Post classification result (connected region area 

threshold: 600 pixels). 

 

 

Differently from other works in the literature, considering three 

additional channels (NDWI2, PI, RNDVI) didn’t lead to any 

significant improvement in our case study (case 2 in tables 3 and 

4). These results can be quite easily motivated for this dataset by 

checking for instance the plastic and non-plastic value 

distributions for such indexes in the considered dataset, for 

instance Figure 11  shows the PI distribution.  

 

 
Figure 11. Distribution of the values in the PI band. 
 

The SVM classifier produced less satisfactory results with 

respect to RF. In the Case 3 the False Positive (FP) are about 

twice that in the other two cases, i.e. this classifier identifies 

many pixels as plastic even if they aren’t.  

It is also important to notice that, despite the classifiers have been 

trained by using the same input size for what concerns the two 

classes (plastic and not-plastic), within each image the number of 

plastic pixels is much lower than those of the other class. 

Figures 4 and 8 show that classification problems related to sun 

glint, sea foam and withe rocks are consistent.  

The introduction of a region selection step based on the area of 

the detected (plastic) connected regions can partially reduce such 

classification issues (see Figure 5 and 6), however they cannot 

completely solve it (check Figure 9 and 10). In particular, the 

latter case shows that the (quite small) size of certain plastic 
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samples can compromise the effectiveness of the connected 

region-based selection step. 

Motivated by these considerations, our future work will focus on 

the introduction of an additional classification/selection step 

based on the local image spatial statistics (Facco et al., 2013) 

and/or on the recognition of certain object shape (Su et al., 2015). 

Furthermore, the use of deep learning methods will also be 

considered in order to improve the overall classification 

performance of the system. 

 

 

6. CONCLUSIONS 

 

In this study we showed some initial results of a project dealing 

with the problem of macroplastic detection in the fluvial habitat 

through a handheld multispectral camera, where the acquired 

dataset is analysed by means of Artificial Intelligence tools.  

Despite the results obtained by means of a Random Forest 

approach are quite encouraging, some issues related to the 

presence of white rocks, foam sea and sun glint are currently not 

properly dealt by the implemented approach.  

Since solving such issues can be crucial for the real effectiveness 

of the proposed approach in a real world scenario, our future 

work will focus on the development of new tools to properly deal 

with such problems.  
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