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ABSTRACT:

Combining image and LiDAR draws increasing interest in surface reconstruction, city and building modeling for constructing 3D
virtual reality models because of their complementary nature. However, to gain from this complementarity, these data sources must
be precisely registered. In this paper, we propose a new primitive based registration algorithm that takes 3D segments as features.
The objective of the proposed algorithm is to register heterogeneous data. The heterogeneity is both in data type (image and LiDAR)
and acquisition platform (terrestrial and aerial). Our algorithm starts by extracting 3D segments from LiDAR and image data with
state of the art algorithms. Then it clusters the 3D segments of each data according to their directions. The obtained clusters are
associated to find possible rotations, then 3D segments from associated clusters are matched in order to find the translation and scale
factor minimizing a distance criteria between the two sets of 3D segments. Two optimizers (simulated annealing and RANSAC)
are tested to minimize this distance criterion, first on synthetic data, then on real data. The experiments carried out demonstrate the
robustness and speed of RANSAC compared to simulated annealing.

1. INTRODUCTION

1.1 Context

The volume of datasets acquired by optical and LiDAR systems
is rapidly increasing due to demand from a variety of applica-
tions including remote sensing, 3D mapping and autonomous
driving. 3D scene analysis and reconstruction from image and
LiDAR is an active research area in computer vision. On the
one hand, the LiDAR data provides highly accurate and robust
surface information. On the other hand, the image provides
high resolution details and rich spectral information Kim et al.
(2006) but the 3D geometry estimated from dense marching is
less robust and accurate, in particular in homogeneous, specu-
lar or repetitive regions and near depth discontinuities. Hence,
integrating data from these two sources can lead to a more ro-
bust and complete semantic segmentation and reconstruction of
3D scenes. Following a classical methodology Kumar Mishra
and Zhang (2012), the problem of registration is decomposed in
three main steps: (i) Feature extraction, (ii) Feature matching,
(iii) Transformation model estimation.

1.2 State of the art

There is a considerable amount of prior work on image/LiDAR
registration. We start by classifying some existing methods ac-
cording to their types and attributes, citing the advantages and
limitations of each category.

1.2.1 Keypoint based method Corners are widely used key-
points for image/image registration, which can be extended to
image/LiDAR registration Ding et al. (2008). The uniqueness
and high precision in the localization are the strongest prop-
erties of corners Kumar Mishra and Zhang (2012). However,
corners are not always easily matched between LiDAR and im-
age.
∗ Corresponding author

1.2.2 Linear feature based method Straight lines are the
most used feature for image/LiDAR registration because they
can be automatically, accurately and efficiently extracted form
the LiDAR and image data Habib et al. (2006) especially if we
have a set overlapping images Deng et al. (2008).

1.2.3 Structural feature based method High level struc-
tural features such as rectangles can help increasing the robust-
ness of both detection and matching steps for image/LiDAR re-
gistration. These structural features can be extracted from both
data sets as connected segments Liu and Stamos (2012). This
kind of features can be efficiently used to estimate camera trans-
lation. Camera rotation can be estimated using at least two van-
ishing points. The major limitation of these methods consists in
the dependence on either the strong presence of parallels lines
to infer vanishing points or availability of feature pair corres-
pondences Wang and Ferrie (2015). Moreover, these methods
are not efficective when applied to aerial data.

1.2.4 Mutual information based method Statistical and in-
formation theoretic methods have demonstrated excellent per-
formance for a wide variety of 2D-2D and 2D-3D registration
applications. Mutual information, a central concept of inform-
ation theory, consists in measuring the statistical correlation of
two random variables, which is a measure of the amount of in-
formation one random variable contains about the other Cover
(1999). Recent methods use mutual information(MI) as a stat-
istical metric to register image and LiDAR data Lu et al. (2019).
A mutual information (MI) approach was proposed in Mastin
et al. (2009). This method performs the registration by seeking
the camera matrix that maximizes the MI between the distri-
bution of image features and projected LiDAR features. The
authors of Wang and Ferrie (2015) search for the optimal cam-
era pose through maximizing the MI between camera image
and LiDAR attribues (LiDAR intensity image, LiDAR eleva-
tion image) Wang and Ferrie (2015). The major limitation of
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these methods lies in the decreasing registration accuracy when
only LiDAR elevation image is used.

1.2.5 Frequency Based Registration The most popular fre-
quency based method is phase correlation. Due to differences
in data characteristics, these frequency based methods cannot
be applied directly to register images and LiDAR data. Zhu
et al. (2020) has proposed a new registration method to deal
with the problem of aerial image and LiDAR registration. This
method is based on structural features and 3D phase correla-
tion, in order to address significant geometric distortions and
nonlinear intensity differences between the aerial and LiDAR
intensity images. The 3D phase correlation is used to detect
control points (CPs) between aerial images and LiDAR data in
the frequency domain, that will be used to correct the exterior
orientation elements. The main limitation of this method lies in
the use of the intensity images of LiDAR only, which contains
less information about the topography.
After this simple comparison, we advocate that the best meth-
ods to apply for image/LiDAR registration in urban environ-
ments are mutual information and straight lines based method.
We have chosen to develop a straight lines based algorithm for
the following reasons:

• In building environment, most objects are composed of
planar surfaces delimited by straight lines.

• On our scenes of interest, we have both overlapping im-
ages and LiDAR scans

• There are efficient algorithms in the literature to automat-
ically and precisely extract these features from both im-
ages and LiDAR data.

Figure 1. Pipeline details.

1.3 Overview and contributions

In a man made environment, we advocate that the best feature to
use for image/LiDAR registration is the straight line segment.
Straight line segments can be reliably, accurately and automat-
ically extracted from both LiDAR and image data under suf-
ficient image overlap. They aggregate more information than

points, therefore they are less sensitive to dense noise and are
more frequent than more complex primitives (rectangles).

In this paper, we propose a new method for image/LiDAR re-
gistration, that consists in:

• Feature extraction:

– 3D line segments reconstruction from a set of over-
lapping 2D images.

– 3D line segments detection in LiDAR data.

• Feature matching: in the absence of multi-modal descriptors
for lines extracted from imagery and LiDAR, all pairs of
lines may match a priori. We thus rely on randomized
matching of line segments (RANSAC and simulated an-
nealing), which is made possible by the relatively limited
number of lines to be matched.

• Estimating the geometric transformation (scaling-rotation-
translation) that minimizes the distance between the two
segments sets . At each step of our optimization, we use a
quality criterion to evaluate the corresponding transform-
ation and select the best one in order to be fully robust to
initialization as shown in 1

Our contributions are the following:

1. We define a new distance between 3D line segments that
combines both their overlap, their length and their 3D dis-
tance, while being robust to long line fragmentation.

2. We show that clustering the segments according to their
direction helps generating plausible hypotheses for can-
didate motion registration.

3. We show that a RANSAC procedure can efficiently min-
imize the error criterion, better than simulated annealing,
and provide an accurate registration between images and
LiDAR.

4. We show that our algorithm is robust to initialization.

5. We propose an optional way to exploit the vertical direc-
tion (if it is known for both data sources) to accelerate the
optimization by limiting the search space.

2. 3D SEGMENT EXTRACTION

2.1 3D Line Segment Extraction from LiDAR Data

3D line segment detection is a crucial step in our registration
procedure. According to Lu et al. (2019), this problem can be
classified into three categories:

• Point based methods use least square fitting of 3D line seg-
ments after detecting the boundary points. The main prob-
lem of this kind of method is the non-robustness to the
noise.

• Plane based methods: a 3D line segment can be generated
by the intersection of two 3D planes. The drawback is that
the endpoints of the intersection line are generally difficult
to determine.
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(a) Indoor point cloud

(b) Extracted 3D lines

Figure 2. 3D line segments detection from an indoor scan

• Image based methods start by converting the 3D point cloud
into images. They then extract 2D line segments for each
image. Finally, the 2D line segments are reprojected to the
point cloud to get the final 3D line segments. The diffi-
culty of this kind of method is that the adequate resolution
is hard to determine.

In this work, we have chosen the algorithm proposed in Lu et
al. (2019) to extract 3D line segments from the LiDAR data.
It is a simple and efficient algorithm that starts by segmenting
the point cloud into planar 3D regions via region growing and
merging. All the points belonging to the same planar region are
projected into the supporting plane of this region to form a 2D
image. Then, 2D contour extraction and least square fitting are
performed to detect 2D line segments. Finally, these 2D line
segments are transformed back into the 3D frame to get the 3D
segments.

2.2 3D line segment extraction from image data

3D line segments reconstruction from 2D images has received
continued attention in the photogrammetry and computer vis-
ion literature. The first proposed methods used pairwise recon-
struction where only two overlapping images are required to
perform the reconstruction. Other methods have recently been
proposed which use multi-view reconstruction where various
overlapping images are used and the camera pose can be ob-
tained using an SfM (Structure from Motion) pipeline. In this
work, we chose the approach developed in Hofer et al. (2017),
which uses an oriented image sequence as input. The camera
pose can be obtained by any conventional SfM pipeline. 2D
line segments are detected using the LSD algorithm Von Gioi
et al. (2012). Potential matches between the 2D line segments
from different images are evaluated using a scoring formula-
tion based on mutual support to separate correct form incor-
rect segment matches. 2D segments from different views are
clustered using an efficient graph clustering formulation to ob-
tain clusters of corresponding 2D segments. For each cluster,

(a) An image from the 2D image sequence

(b) The reconstructed lines

Figure 3. Reconstructed 3D line cloud

a 3D segment minimizing reprojection error with the 2D seg-
ments of the cluster is reconstructed. We used the code avail-
able on https://github.com/manhofer/Line3Dpp to gener-
ate the 3D lines. To improve the performance of this algorithm
we have replaced LSD by its more robust variant MLSD Salaün
et al. (2016).

3. 3D SEGMENTS BASED REGISTRATION

Registration is usually performed either based on a global dis-
tance metric between the two data sets to register, or by match-
ing features. In our case, the line segments are not characteristic
enough to match them robustly independently. This is why we
preferred to define a global robust distance between two seg-
ment sets and propose a robust approach to minimize this dis-
tance.

3.1 Distance between segment sets

We propose to define a distance between 3D segment sets in
a way that minimizing this distance will favor important over-
laps between segments and small distances over these overlaps
while being robust to outliers, as many lines extracted form one
data set will have no counterpart in the other. This will im-
plicitly also minimize angles between the segments as an im-
portant angle with an important overlap implies a large dis-
tance. Given two sets of 3D segments [A1

iB
1
i ] and [A2

jB
2
j ]

with center points Gk
i = (A1

i + B1
i )/2 and direction vectors

dk
i =

−−−→
Ak

iB
k
i /||
−−−→
Ak

iB
k
i ||, we start by defining a relative overlap

between two segments over the projection p on the bisector of
the two segments:

overlap([A1
iB

1
i ], [A2

jB
2
j ]) =

|p([A1
iB

1
i ]) ∩ p([A2

jB
2
j ])|

min(|p([A1
iB

1
i ])|, |p([A2

jB
2
j ])|)

We define this bisector as the line passing through the closest
point Pi,j to (A1

iB
1
i ) and (A2

jB
2
j ) and oriented by the bisector
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vi,j of d1
i and d2

j . Calling

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 such that [v]×u = v × u,

(1)
× denoting the 3D vector product, we have

Pi,j =
(
[d1

i ]2× + [d2
j ]2×
)−1 (

[d1
i ]2×A

1
i + [d2

j ]2×A
2
j

)
(2)

The projection on the bisector is

p(P ) = Pi,j + c(P )vi,j , (3)

with the projected point’s linear coordinate

c(P ) =
−−−→
Pi,jP .vi,j . (4)

The length of the projected segment is then defined to be ori-
ented as

|p([A1
iB

1
i ])| = max(c(A1

i ), c(B1
i ))−min(c(A1

i ), c(B1
i )) (5)

and the overlap length of the projected segments as:

|p([A1
iB

1
i ]) ∩ p([A2

jB
2
j ])| =

min(max(c(A1
i ), c(B1

i )),max(c(A2
j ), c(B2

j )))
−max(min(c(A1

i ), c(B1
i )),min(c(A2

j ), c(B2
j )))

(6)

We then define a distance between a segment L1 ∈ L1 and a
segment set L2:

Edthr (L1,L2) =

|L2
1|d2thr−

∑
L2∈L2

|L2
1∩L1

2|max(0, d2thr −Dist(L1, L2)2) (7)

where dthr is a distance threshold above which a line is just
considered an outlier and Dist is a metric distance between
segments; our choice is

Dist([A1
iB

1
i ], [A2

jB
2
j ]) = (8)

dist(A1
i , [A

2
jB

2
j ]) + dist(B1

i , [A
2
jB

2
j ])

4
+ (9)

dist(A2
j , [A

1
iB

1
i ]) + dist(B2

j , [A
1
iB

1
i ])

4
. (10)

For each line pair, this distance vanishes if L1 is completely
overlapped by segments of L2. Finally we can write our final
symmetric robust distance between 3D segments sets as:

dist(L1,L2) =
∑

L1∈L1

Edthr (L1,L2) +
∑

L2∈L2

Edthr (L2,L1)

(11)

3.2 3D segments directional clustering

In order to simplify the minimization of this distance between
segments sets, we cluster the segments (by direction) in order
to define the rotation between the segments sets by matching
clusters and not individual segments in order to be more robust
and precise. This is done using a greedy algorithm described in
Algorithm 1.

Algorithm 1 Greedy direction clustering

1: Input: Set of segments L, each segment Li = [AiBi] has
a director vector vi =

−−−→
AiBi, a length leni = ||vi|| and a

unit direction di = vi/leni.
2: Initialize an empty set of 3D segment clusters C. We will

call direction of a cluster C the weighted mean of the dir-
ections of the 3D segments:

d(C) =

∑
Li∈C

sign(vi · v1)vi

||
∑

Li∈C
vi||

3: For each segment Li in descending order of length (from
longest to shortest):
• If C = ∅ or maxC∈C di · d(C) < cos ε, create a new

cluster C = {Li} and add it to C. Note that this is
equivalent to finding if Li has an angle smaller than ε
with an existing cluster direction but this formulation
with dot products is faster to compute.

• Else add Li to the cluster arg max di · d(C).

3.3 Valid cluster associations

To define a rotation between the two segment sets, it is sufficient
to associate two pairs of segments from the two sets. However
this is not very precise, so we propose to associate the segment
clusters defined above. We propose two possible sets of valid
associations depending on whether we have a vertical cluster
for each scan.

3.3.1 LiDAR vertical cluster selection We assume that all
LiDAR scans are vertically oriented (this is the case for most
modern scanners) and select the cluster with the smallest angle
with the Z-axis (0, 0, 1) as being the vertical cluster.

3.3.2 Image vertical cluster selection We assume that the
images are upright (the real world vertical projects as a nearly
vertical 2D vector in all images) and select the vertical cluster
of the line cloud reconstructed from the images according to
Algorithm 2

Algorithm 2 Image vertical cluster
for each cluster i do

for each 3D line j in cluster i do
for each 2D image im associated with line j do

Compute Sim the verticality score weighted by the
length of the 2D segment li = [aibi] in the im-
age im that has been used for the reconstruction of
line j using the method proposed in section 3.3.3

end for
Compute avj : the average verticality score for all im-
ages associated with line j

end for
Compute AV i: the average verticality score for all 3D
lines in cluster i

end for
Select the cluster which has the smallest score as the ver-
tical cluster

3.3.3 Verticality score calculation We have an image im
which contains 2D segment li = [aibi]. This 2D segment li has
a director vector vi =

−−→
aibi and a unit direction di = vi/||vi||.

We compute Sim the verticality score weighted by the length
of the 2D segment as the angle between di and y-axis (0, 1)
according to the equation 12:

im = ||vi||〈di, y〉 (12)
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If the two segment sets S1 and S2 (image and/or LiDAR) can
be vertically oriented (the assumptions above are true), we obvi-
ously associate the vertical cluster of S1 to the vertical cluster of
S2, and then associate any non vertical cluster of a S1 with any
non vertical cluster of S2. In the other case (at least one scan
cannot be vertically oriented), we associate any pair of clusters
of S1 to any pair of clusters of S2. As for each cluster we have
two possible direction vectors:{d(C),−d(C)}, we can:
define the variables sji : i ∈ [1, 2], j ∈ [1, 2], sji ± 1

Calling C1
1 , C

1
2 a pair of clusters of S1 and C2

1 , C
2
2 a pair of

clusters of S2. In the two cases, for each cluster associations
As = {(C1

1 , C
1
2 )↔ (C2

1 , C
2
2 )}, we have sixteen possible forms.

If one of these sixteen forms satisfies equation 13, we consider
that this association is valid, we use the retained form to calcu-
late the rotation. We reject the cluster association, if the equa-
tion 13 is not validated by any form.

|∠(s11d(C1
1 ), s12d(C1

2 ))− ∠(s21d(C2
1 ), s22d(C2

2 ))| > ε (13)

3.4 Rotation estimation

Once a the best form of the valid cluster association As =
{(s11C1

1 , s
1
2C

1
2 ) ↔ (s21C

2
1 , s

2
2C

2
2 )} is selected, we want to find

the rotation that best aligns the corresponding two pairs of dir-
ections. After selecting the directing vectors of two clusters.
We start by creating orthonormal basesOi = (xi,yi, zi), where:

xi = si1d(Ci
1)

yi =
si2d(Ci

2)− si2d(Ci
2) · xixi

||si2d(Ci
2)− si2d(Ci

2) · xixi||
zi = xi × yi (14)

We then compute the rotationR that aligns the associated clusters
as the base change matrix between O1 and O2:

R = O2O−1
1 . (15)

3.5 Optimization

To carry out the registration of the two segment sets, we now
have to find the rotation, the scale factor and the translation that
minimize the distance (11) we have defined between two 3D
segment sets. We want this minimization to be insensitive to
initialization, so we propose two randomized optimizers: simu-
lated annealing and RANSAC.

3.5.1 Simulated annealing optimization We use simulated
annealing to explore the translation and scale parameters. In
simulated annealing, a new solution is iteratively computed in
the vicinity of the current solution and this new solution is ac-
cepted with a certain probability depending on its energy (the
robust distance in our case). However for rotations we want
to speed up the process by only exploring valid cluster associ-
ations to limit the complexity of the search, see Algorithm 3.

3.5.2 RANSAC optimization The adaptation of RANSAC
to valid associations is quite straightforward. At each RANSAC
iteration, we randomly select a valid cluster association, then
randomly select one 3D segment in each of the associated clusters.
If the distance between the supporting lines of two segments is
smaller than a threshold dmin chosen to be the expected noise

Algorithm 3 Simulated Annealing
Input:
M0: initial transformation (randomly chosen valid cluster
association and randomly chosen scale/translation)
E0: initial transformation energy
G: Current transformation
Tmax: initial temperature
Tmin: final temperature
alpha: cooling rate
MaxIter: maximum number of iterations
G = M0, E(G) = E0

while Tmax > Tmin do
for Iter = 1 . . . MaxIter do

With a small probability pjump, randomly select a new
valid cluster association and corresponding rotation.
Randomly sample a new scale/translation close to the
current one, and callMN the resulting transformation.

Compute ∆E = E(MN )− E0

if (∆E < 0) or (random < e
−∆E
Tmax ) then

M0 = MN

E0 = E(MN )
end if
if (E0 < E(G)) then
G = M0

E(G) = E0

end if
end for
Tmax = α ∗ Tmax

end while

level in the corresponding scan, we reject it because matching
coplanar segments will lead to degenerate scale estimation. We
then compute the rotation based on cluster association using
the method of Section 3.4 and estimate the scale/translation that
aligns the associated 3D segments. To do so, we define the point
to line distance as

dist(p, L = a + dt) =
||(a− p) ∧ d||

||d|| . (16)

Assuming that d is normalized, this writes

dist(p, L = a + dt) = ‖[d]×(ai − (spi + t))‖ . (17)

Our goal is to find the optimal translation t and scale s that
minimize

ε(s, t) =
∑
i

||[d]×(ai − (spi + t))||2. (18)

The minimum is reached where the gradient vanishes:

∇tε(s, t) = 2
∑
i

[di]
2
×(ai − (spi + t)) = 0, (19)

∇sε(s, t) = 2
∑
i

pt
i[di]

2
×(ai − (spi + t)) = 0. (20)

Calling:

w1 =
∑
i

[di]
2
×ai M1 =

∑
i

[di]
2
× M2 =

∑
i

[di]
2
×pi
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w2 =
∑
i

pt
i[di]

2
×ai = −

∑
i

(di × pi) · (di × ai)

M3 =
∑
i

pt
i[di]

2
×pi = −

∑
i

‖di × pi‖2

we get [
t
s

]
=

[
M1 M2

M t
2 M3

]−1 [
w1

w2

]
. (21)

Finally, we keep the sampled transformation that has the min-
imum robust distance. Optionally, we can refine this solution
by matching all pairs of segments that are close enough in the
two scans (with a distance smaller than dthr) and recompute the
scale/translation based on all these associations to have a more
precise estimation.

4. ICL IMPLEMENTATION

We have integrated the clustering and the quality criterion (the
global robust distance) in the ICL paradigm in order to compare
it with our algorithm in terms of performance and robustness.

4.1 Matching step

We applied a filter based on three criteria to select the corres-
pondences between two 3D segment sets: Angle, distance and
overlap

• Angle: in order to simplify the validation of this criterion,
we preferred to select segments belonging to the associated
clusters (to avoid choosing a threshold for this criterion)

• Distance: we have defined this distance according to equa-
tion 10

• Overlap: we have defined the overlap between two 3D seg-
ments according to equation 6

So at each iteration, we select the set of segments pairs which
validate the three criteria as the matching set.

4.2 Optimization step

At each iteration:

• We have estimated the rotation matrix that aligns the dir-
ection vectors of the matched 3D segments according to
Alshawa (2007).

• We have used the equations of section 3.5.2 in order to find
the scale factor and the translation between the matched
segments after having aligned them using the estimated ro-
tation.

• We computed the energy( robust distance) of the estimated
transformation (Rotation,scale factor, translation)

Finally, we keep the sampled transformation that has the min-
imum robust distance

5. EVALUATION AND DISCUSSION

The evaluation of our approach was carried out in two steps
using two data types:

5.1 Evaluation on synthetic data

The first evaluation of our approach was carried out on synthetic
data, where we generated two copies of a LiDAR line cloud.
We then removed 25% of lines in the first copy and 33% of the
lines in the second, added noise to both and applied an arbitrary
known transformation (rotation, scale factor, translation) to the
second. The objective of this first evaluation is:

• Compare the robustness and the speed of the two optim-
ization algorithms (simulated annealing and RANSAC) in
order to choose the best to apply.

• Evaluate the performance of our algorithm using the best
optimization algorithm.

• Make a comparison between the efficiency of our algorithm
and the Iterative Closest line algorithm (ICL).

The various experiments carried out have proven the robust-
ness and speed of RANSAC compared to simulated annealing
as shown in Figure 4. The obtained results have proven the per-
formance of our algorithm to register two sets of 3D segments,
whatever the initial position, unlike ICL which required a good
approximation of the initial transformation to be able to con-
verge towards the correct solution as shown in Table 1. The
average running time of our algorithm for the different tests in
Table 1 is 161.6 s by fixing the maximum number of iterations
of RANSAC to 5000 iterations, knowing that the first 3D seg-
ments set contains 144 lines and the second contains 128 lines.

5.2 Evaluation on real data

Afterwards, we performed the registration of heterogeneous data
with heterogeneous acquisition platforms:

• Terrestrial images / Terrestrial LiDAR registration as shown
in Figure 5.

• Terrestrial images / Aerial image registration as shown in
Figure 6.

As it is difficult to construct a ground truth for heterogeneous
data registration, we evaluated the registration quality on the 3D
visual results. The obtained results demonstrate our algorithm’s
ability to efficiently register image and LiDAR data. In addi-
tion, our algorithm has proven its robustness to small disturb-
ances of verticality.
Achieving precise results requires fine-tuning of the algorithm’s
parameters. The distance threshold must be chosen reasonably
so as not to consider a large number of lines as outliers. The
number of iterations of RANSAC must be large enough to en-
sure the robustness of the algorithm.

6. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with the heterogeneous data regis-
tration problem by proposing a new primitives based registra-
tion algorithm. The heterogeneity is both in data type (image
and LiDAR) and acquisition platform (terrestrial and aerial).
Our algorithm takes 3D segments as feature and extracts them
from both LiDAR and Image data with specific state of the art
algorithms. We defined a global robust distance between two
segments sets and we proposed a robust approach to minim-
ize this distance. In order to simplify this minimization, we
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Table 1. Performance tests of our algorithm on synthetic data using different initial errors.

Figure 4. Comparison of the convergence speed and the
robustness of RANSAC and simulated annealing: X axis

represents time in milliseconds, Y axis represents the energy,
green points represent the minimums estimated by RANSAC

and the red points represent the minimums estimated by
simulated annealing

started by clustering the 3D segments of each data set. The
clusters are associated to find possible rotations, then 3D seg-
ments from associated clusters are matched in order to find the
translation and scale factor minimizing the defined distance.
The obtained results demonstrate the efficiency and robustness
of our algorithm to register heterogeneous data (terrestrial im-
ages/terrestrial LiDAR, terrestrial images/aerial Image) Our main
perspective on this work is to use planar polygons as primitives
or to use combinations of more segments to have more charac-
teristic features to match.
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(a)
(b)

(c)
(d)

Figure 5. image / LiDAR registration results: (a) position of the two line clouds before registration( red:image lines, black LiDAR
lines),(b) position of the two line clouds after registration, (c) LiDAR scan, ((d,e)registration of image lines and the LiDAR scan

(a) (b) (c)

Figure 6. Aerial/Terrestrial registration: 3D lines reconstructed aerial image(red), 3D lines reconstructed from terrestrial images (blue)
(a): the initial position, (b): positions after registration, (c): position of pedestrian path lines after registration
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