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ABSTRACT:  

 

This paper proposes a novel algorithm to use Radar in ego-motion estimation for autonomous navigation applications. This method is 

based on the analysis of Radar data to remove noise, ghost points, and outliers and keep the accurate features. From the detected 

features and the knowledge of Radar data rate and the vehicle's average speed, the change in range and azimuth between any two 

points can be constrained to find the corresponding points. With the help of the corresponding points, the vehicle's ego-motion can be 

estimated. Then, Radar is integrated with an Inertial Navigation System (INS) and odometer through an extended Kalman filter (EKF) 

to smooth the Radar solution and aid INS to overcome its large drifts in GNSS denied environments. Two real data were collected 

from frequency modulated continuous wave (FMCW) Radar sensors and Inertial Measurement Unit (IMU) in suburban areas near the 

University of Calgary, Canada. The proposed algorithm was tested by introducing simulated GNSS signal outages with different 

durations. The Root Mean Square Error (RMSE) for the horizontal position was improved by an average of 30.44% and 4.76% if it 

was compared with RMSE from odometer/INS solution with a percentage error less than 1% of the traveled distance which was 1.59 

km and 2 km for the two datasets, respectively.      

 

 

1. INTRODUCTION 

Autonomous vehicles consist of multiple components. The first 

and the most crucial component is autonomous navigation 

because the other components depend on the vehicle's navigation 

state and its accuracy. The major challenge in autonomous 

navigation has been to provide a reliable and continuous solution 

in all environments. GNSS is the most used navigation sensor in 

autonomous vehicles applications as it can estimate the vehicle's 

position, velocity, and heading with high accuracy. However, 

GNSS cannot be relied upon in some scenarios, especially GNSS 

challenging environments, such as, in underground parking, 

through canyons, or beside tall buildings, where the GNSS signal 

is partially or fully blocked (Elsheikh & Noureldin, 2020; El-

Sheimy and Li, 2021, Liu et al., 2010) 

An Inertial Navigation System (INS) is a dead reckoning (DR) 

system that can estimate the relative position and relative 

attitude. INS has the advantage of working indoors and outdoors, 

solving the continuity problem. Moreover, it works with a high 

data rate; nevertheless, the INS navigation state cannot be used 

as a standalone solution since INS navigation solution 

deteriorates and drifts with time (Wang et al., 2017). Thus, INS 

is, normally, integrated with GNSS to compensate for GNSS 

signal outages and overcome the INS errors. There are three 

types of INS/GNSS integration: loosely coupled, tightly coupled, 

and deeply coupled (Noureldin et al., 2013). However, in case of 

the GNSS signal outage for a long time, INS needs to be aided 

by other sensors to overcome the INS drift. 

The magnetometer and odometer are two examples of the 

sensors used to aid INS. However, the magnetometer is affected 

by the surrounding magnetic field (Renaudin et al., 2010). 

Recently, Camera and light detection and range (Lidar) have 

been used to aid INS and in other autonomous navigation 
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applications, e.g., Simultaneous Localization And Mapping 

(SLAM) (Kim et al., 2004; Travis et al., 2005). However, vision 

sensors cannot work in different light and weather conditions 

(Bila et al., 2017; Huang & Liu, 2018). Lidar also is affected by 

fog and rainy weather conditions (Yoneda et al., 2018). 

Moreover, it requires a high computational power due to its 

dense point clouds. Lidar also is a high-cost sensor. Radio 

detection and range (Radar) is an all-weather sensor since it can 

work in different weather and light conditions. So, INS and 

Radar are the only two sensors that can solve the continuity 

problem. Therefore, this paper focuses on integrating INS and 

Radar to estimate the vehicle's ego-motion in GNSS denied 

environments. 

This paper is organized as follows: Section 2 contains the related 

work, while the methodology is described in section 3. In section 

4, the experimental work and results are discussed, and finally, 

the conclusion is shown in section 5.     

    

2. RELATED WORK 

As mentioned in the previous section, Radar can work in 

different environments. FMCW Radar transmits a Radio wave 

that reflects from the surrounding objects. Thus, the range from 

the Radar unit to these objects can be determined based on the 

time of flight (TOF). The relative velocity between the vehicle 

containing the Radar unit and the surrounding objects can be 

estimated from the doppler frequency shift. Thus, Radar is used 

in Adaptive Cruise Control (ACC) to avoid obstacles, detect the 

pedestrians, range, and velocity of the surrounding vehicles (de 

Ponte Müller, 2017). Besides, Radar is used in autonomous 

navigation to estimate the vehicle's pose. 

The Iterative Closest Point (ICP) is the most common technique 

to estimate the transition and rotation between point clouds in 
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any two successive Radar frames (Censi, 2008). ICP is based on 

minimizing the distance between the corresponding points to 

estimate the vehicle's ego-motion. However, this technique is 

affected by outliers and could need more iterations to estimate 

the vehicle's pose (Nießner et al., 2014). ICP was improved by 

using the Inertial Measurement Unit (IMU) to estimate an initial 

rotation to reduce the iterations needed in ICP (Xu et al., 2018). 

Normal Distribution Transform (NDT) differs from ICP as it is 

based on building a normal distribution model for the point 

clouds in each Radar frame. Then, the models are matched to 

estimate the vehicle's rotation and transition. Compared with 

ICP, NDT is not affected by outliers (Biber & Strasser, 2003). 

Fourier-Mellin Transform (FMT) is another technique used in 

autonomous navigation. FMT converts the Radar frame into the 

Fourier domain. The rotation and transition between Radar 

frames are converted as a linear shift (Gérossier et al., 2009).  

Visual feature detection methods, e.g., SIFT and ORB, were 

exploited in autonomous vehicles. (Callmer et al., 2011) fixed a 

360o Radar on a vessel. SIFT was adopted to detect and extract 

the features from Radar images and build the descriptor for each 

feature. The features were matched based on the descriptor. 

Then, the rotation and transition can be estimated. (Elkholy et 

al., 2021) used ORB for autonomous vehicle applications to 

detect the features and estimate the rotation and transition 

between Radar frames. ORB was proved to be more efficient 

than the traditional scan matching techniques, e.g., ICP or NDT, 

and other visual feature detection methods, e.g., SIFT and SURF.  

Constant False Alarm Rate (CFAR) is another method that can 

detect the features by applying a moving filter to remove the 

noise and outliers and keep the real features (Rohling, 2011).  

(Cen & Newman, 2018) used a 360o FMCW Radar for vehicle 

motion estimation. They applied a median filter, binominal filter, 

and threshold to remove the noise and outliers and detect the 

landmarks from Radar data. The authors used the unary 

descriptor and the relationships between the landmarks 

(Euclidian distance) for data association. The relative motion 

was estimated by applying singular value decomposition (SVD) 

(Challis, 1995). 

Radar also was integrated with a Reduced Inertial Sensor System 

(RISS) to enhance the navigation solution and limit the INS 

errors. The RISS is used as an alternative sensor to the traditional 

INS as it uses fewer sensors than the regular INS (Iqbal et al., 

2008). (Rashed et al., 2019) integrated FMCW Radar with RISS 

through Kalman Filter for land vehicle navigation applications. 

The Radar unit was mounted on the front bomber. So, the relative 

distance between the vehicle and the in-front vehicle can be 

estimated, and the traveled distance can be estimated based on 

that. However, this method might fail if there are no vehicles in 

front. (Al-Qudsi et al., 2014) integrated INS with FMCW Radar 

using EKF for indoor applications. A particle filter was applied 

to estimate the position from Radar based on the time difference 

of arrival. (Abosekeen et al., 2018) integrated Radar with RISS 

through EKF. FMCW Radar unit was mounted at the front 

bomber facing the ground. Thus, the estimated relative velocity 

from the reflected signals refers to the forward vehicle velocity. 

The authors improved the horizontal position RMSE during 50 

seconds of GNSS outage from 47.57 m to 7.14 m. (Almalioglu 

et al., 2021)  integrated IMU sensor with Millimeter-wave 

(MMwave) Radar through Unscented Kalman Filter (UKF) for 

indoor ego-motion estimation. The authors adopted NDT with 

angular velocity from the IMU sensor to eject errors from IMU 

such as biases and remove Radar noise.     

This paper applies a new method for Radar data association and 

develops a new algorithm for Radar ego-motion estimation. 

Also, Radar/odometer/INS integration is adopted through a 

closed-loop EKF. Therefore, INS can smooth Radar solution, 

and Radar can overcome INS limitations and errors and 

compensate for GNSS signal outage during different periods up 

to 4 minutes outage.  

   

3. METHODOLOGY 

Radar data is noisy because Radar is affected by wave multipath 

which can create ghost points and interact with other Radar 

waves in the surrounding environment. Therefore, the first step 

in Radar data processing is analyzing and preprocessing to 

remove all the outliers, noise, and false objects. After removing 

the outliers, the next step is data association, in which the 

detected objects are matched between the successive Radar 

frames. Then, a novel algorithm is adopted to estimate the 

vehicle's ego-pose. The final estimated pose will be aided by the 

INS and odometer. These steps are explained in detail in the 

following sub-sections. 

 

3.1. Data Analysis and Preprocessing 

The data analysis is performed in multiple steps (see Figure 1).  

a) Removing close and far points as they are considered ghost 

points. 

b) Removing points with a z value less than -2.0m as the Radar 

unit was fixed on the vehicle's roof, where z represents the 

vertical distance from the Radar unit. Any point cloud with z 

less than the vehicle's height means that this point is under 

the ground. 

c) Removing the moving objects by checking the speed of the 

detected objects. Thus, we can differentiate between static 

and moving objects and keep the constant objects or features. 

d) Removing outliers with intensity less than a threshold. 

 

 
Figure 1. The Block diagram shows the preprocessing steps. 

 

3.2. Data Association 

After removing the noise, ghost points, and outliers, now it is the 

turn of data association to find the corresponding and matching 

features between Radar frames. The proposed method for data 

association is based on point-to-point matching. With the 

knowledge of Radar data rate (about 8 Hz) and the average 

vehicle speed (about 7 m/sec), the change in range and azimuth 

between any two points can be constrained as the range 

difference between any two corresponding points should be 

about 1m and the change in azimuth is about 1o. Then, the 

corresponding points can be related.  

3.3. The Proposed Algorithm for Ego-Motion Estimation  

A novel algorithm was implemented to estimate the vehicle's 

ego-motion (see Figure 2). This algorithm calculates the 

coordinates of the objects (𝑥𝑖
𝑡 , 𝑦𝑖

𝑡) in the first Radar frame. It 

then uses these calculated coordinates and the range in the 

second frame to estimate the coordinates of the Radar center 

(𝑥𝑐
𝑡+∆𝑡 , 𝑦𝑐

𝑡+∆𝑡). The difference between the calculated Radar 

center in the second frame and the one in the first frame 

represents the transition between the two frames.  

 

𝑥𝑖
𝑡 =  𝜌𝑖

𝑡sin (𝜃𝑖
𝑡) (1) 

𝑦𝑖
𝑡 =  𝜌𝑖

𝑡cos (𝜃𝑖
𝑡) (2) 
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 𝜌𝑖
𝑡+∆𝑡 = √(𝑥𝑖

𝑡 − 𝑥𝑐
𝑡+∆𝑡)2 + (𝑦𝑖

𝑡 − 𝑦𝑐
𝑡+∆𝑡)2 (3) 

 

The rotation between the two frames can be estimated by 

calculating the difference between the bearing of objects at a 

time (t) and time (𝑡 + ∆𝑡). 
 

𝜃𝑡,𝑡+∆𝑡 = 𝐴𝑧𝑖
𝑡 − 𝐴𝑧𝑖

𝑡+∆𝑡 (4) 

 

If we have multiple corresponding objects between any two 

Radar frames, Least-squares is applied to obtain the final 

transformation and rotation between the two frames. 

 

𝛿𝑥 =  −(𝐴𝑇𝐶𝑙
−1𝐴)−1(𝐴𝑇𝐶𝑙

−1𝑊) (5) 

 

where   𝛿𝑥 = is the vector containing the corrections for the 

transition (dx and dy) and the rotation (𝜃) between any two 

Radar frames. 

 A = the design matrix. 

𝐶𝑙 = the measurement variance-covariance matrix. 

 W = the misclosure vector. 

 

 
Figure 2. The proposed method to estimate the vehicle's ego-

motion. 

3.4. Radar/odometer/INS Integration 

This paper introduces a loosely coupled integration between 

Radar, INS, and odometer through a closed-loop EKF (see 

Figure 3). This paper will focus on the 2D navigation model, and 

the general 3D model is planned for future work. INS and 

odometer were used to estimate the Dead-Reckoning (DR) 

solution.   

∆𝑥 =  𝑣 ∗ ∆𝑡 ∗ cos (𝜑) (6) 

∆𝑦 = −𝑣 ∗ ∆𝑡 ∗ 𝑠𝑖𝑛 (𝜑)  (7) 

 

where: 𝛥𝑥, 𝛥𝑦 = transition in x and y directions (m). 

          𝑣    = forward velocity from odometer (m/sec). 

          ∆𝑡  = time interval in seconds. 

           𝜑  = azimuth angle measured clockwise from x-direction. 

 

The estimated transition and rotation from Radar are integrated 

with the DR solution from IMU/odometer to smooth Radar 

solution, enhance the navigation solution, and limit IMU drift. 

The integration is implemented through a closed-loop EKF. The 

EKF is based on two models. The first model is the system model 

to describe the motion mode. The second model is the 

measurement model.  

 

 
Figure 3. Block Diagram showing Radar/odometer/INS 

integration scheme. 

The system model in the continuous case is described as follow: 

�̇� = 𝐹𝑥 + 𝐺𝑤 (8) 

 

where: �̇� = the time rate of change of state vector. 

 𝐹 = dynamic matrix. 

 𝑥 = state vector. 

 𝐺 = noise coefficient matrix. 

 𝑤 = system noise. 

 

The system model predicts the state vector at time 𝑡 + ∆𝑡. The 

state vector consists of four states 𝑥 = [𝛿𝑥 𝛿𝑦 𝛿𝜑 𝛿𝐵𝑧], 
where 𝛿𝑥, 𝛿𝑦 represents the errors in the estimated horizontal 

position; 𝛿𝜑 is the error in the estimated azimuth angle; 𝛿𝐵𝑧 

denotes the error in the estimated vertical gyroscope bias, which 

is modeled by a first-order Gauss-Markov process: 

 

Assuming the forward velocity is constant during ∆𝑡, the 

dynamic matrix can be described by 

𝐹 =  [

0 0 −𝑣𝑠𝑖𝑛(𝜑) 0
0 0 −𝑣𝑐𝑜𝑠(𝜑) 0
0 0 0 1
0 0 0 −𝛽

] (9) 

 

where 𝛽 is the inverse of the correlation time of the Gauss-

Markov process. 

 

The measurement model is described by: 

𝑧 = 𝐻𝑥 + 𝜂 (10) 

 

where: 𝑧 = the measurement vector 

 H = the design matrix. 

 𝜂 = the measurement noise.  

 

 

The measurements are used to update the system states. The 

measurement vector 𝛿𝑧 in this work is the difference between the 

predicted position and azimuth from DR solution and the ones 

available from Radar solution: 
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𝛿𝑧 =  [

𝑥𝐷𝑅 − 𝑥𝑅𝑎𝑑𝑎𝑟

𝑦𝐷𝑅 − 𝑦𝑅𝑎𝑑𝑎𝑟

𝜑𝐷𝑅 − 𝜑𝑅𝑎𝑑𝑎𝑟

]. (11) 

The design matrix 𝐻 is defined by  

𝐻 =  [
1 0 0 0
0 1 0 0
0 0 1 0

] (12) 

The above system and measurement models are employed in the 

EKF to obtain the final integrated Radar/DR solution. More 

details about the implementation of the EKF can be found in 

(Elsheikh & Noureldin, 2020; Liu et al., 2010)). 

 

 

4. EXPERIMENTAL WORK AND RESULTS 

The experimental work utilizes the Frequency Modulated 

Continuous Wave (FMCW) Radar UMRR-11 Type 132 in a 

short-range mode and Pixhawk 4 board containing a u-Blox 

GNSS and BMI055 Inertial Measurement Unit (IMU) sensors 

(see Figure 4). The Radar units and the board were mounted on 

the roof of a Honda Civic vehicle, as shown in Figure 5. Two 

real datasets were collected in two different suburban areas near 

the University of Calgary, Canada. 

 
Figure 4. The Pixhawk 4 board and UMRR-11 Type 132 Radar 

unit. 

  
Figure 5. The setup of Radar units and Pixhawk 4 Board on 

Testing Vehicle Roof. 

 

The experimental test was carried out with a maximum speed of 

50 km/hr and an average speed of about 29 km/hr. The proposed 

Radar localization algorithm was applied and integrated with 

INS and odometer. A simulated GNSS signal outage was tested 

for different outage durations ranging from 60 seconds to 4 

minutes.  

Figure 6 shows an example, from the first dataset, of the 

corresponding features between two successive Radar frames 

after applying the data association algorithm. With 

Radar/odometer/INS integration, the horizontal position RMSE 

for 2 minutes simulated GNSS outage was 8.99 m. The traveled 

distance was 655.18 m with a percentage error of 1.37%, as 

shown in Figure 7. 

 

 
Figure 6. Corresponding features in two successive Radar 

frames. 

 
Figure 7. The estimated trajectory of the second test from 

Radar/odometer/INS integration during a simulated GNSS 

outage for 1-minute versus the reference trajectory from GNSS 

and the estimated trajectory from INS standalone solution. 

 

 

Table 1 shows the horizontal position RMSE for different 

simulated GNSS signal outages for odometer/INS integration 

and Radar/odometer/INS integration navigation solutions.  

 

Outage 

Duration 

RMSE (m) 
Traveled 

Distance 
INS 

standalone 
Odo/INS 

Radar/odo 

/INS 

60 sec 105.5 2.51 1.71 219.69 m 

90 sec 199.47 4.13 2.33 470.9 m 

120 sec 274.44 8.41 5.44 655.18 m 

180 sec 352.63 14.43 10.63 1.207 km 

240 sec 392.95 18.95 15.17 1.59 km 

Table 1. Horizontal position RMSE for different GNSS signal 

outage durations for INS standalone, odometer/INS integration, 

and Radar/odometer/INS integration solutions. 

 

Table 1 indicates the advantage of the proposed 

Radar/odometer/INS integration over the traditional 

odometer/INS integration. The proposed integration scheme 

enhanced the horizontal position RMSE by about 31.87 % and 

43.58% for one and two minutes GNSS signal outages, 

respectively. Furthermore, the horizontal RMSE for 3 and 4 

minutes GNSS outage was improved by 26.3 % and 20%, 

respectively. Moreover, the horizontal RMSE was improved by 
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around 96.13% if the proposed method solution was compared 

with the INS standalone solution. 

The percentage error was less than 1.0 % of the traveled distance, 

indicating how the proposed algorithm improved the navigation 

solution and overcame INS limitations and GNSS denied 

environments.  It is also worth mentioning that the INS helped in 

smoothing the Radar estimated solution.  

For the second dataset, the proposed method, 

Radar/odometer/INS integration, enhanced the navigation 

solution as the horizontal RMSE was 2.88 m for a one-minute 

simulated GNSS signal outage with a traveled distance of 352.6 

m and percentage error of 0.816 %, as shown in Figure 8. 

 

Figure 8. The estimated trajectory of the first test from 

Radar/odometer/INS integration during a simulated GNSS 

outage for 1-minute versus the reference trajectory from GNSS 

and the estimated trajectory from INS standalone solution. 

 

Table 2 shows RMSE for the horizontal position for different 

simulated GNSS outages outage durations for odometer/INS 

integration and Radar/odometer/INS navigation solution. 

Outage 

Duration 

RMSE (m) 
Traveled 

Distance  
INS 

standalone 
Odo/INS 

Radar/odo

/INS 

60 sec 166.47 2.6 2.88 352.6 m 

90 sec 203.37 4.48 4.65 550.3 m 

120 sec 311.39 10.77 10.30 917.83 m 

180 sec 408.62 24.15 23.17 1.31 km 

240 sec 632.2 22.34 21.12 1.92 km 

Table 2. Horizontal position RMSE for different GNSS signal 

outage durations for INS standalone, odometer/INS integration, 

and Radar/odometer/INS integration solutions. 

 

From Table 2, it is clear that there is a slight improvement in the 

navigation solution, especially for the long-term GNSS outage, 

e.g., two minutes outage and more. The horizontal RMSE 

improved by 4.05% and 5.46% for three and four minutes 

outages, respectively. Compared to the INS standalone solution, 

the RMSE was enhanced by around 96.6%. The percentage error 

was around 1 % of the 1.92 km traveled for the four-minute 

GNSS signal outage. The reason behind the slight improvement 

in accuracy compared to the first dataset is that the suburban area 

where the second dataset was collected included some empty 

areas. Therefore, Radar failed to detect any features and estimate 

the vehicle's ego-motion.   

From the previous results, it is evident that using Radar in 

outdoor applications is challenging because if there are no 

features that can be detected, Radar will fail to estimate the 

vehicle's pose, and that's what happened in the second dataset. 

On the other hand, if there are features in the surrounding 

environment and Radar can detect them, the vehicle's position 

accuracy from Radar/odometer/INS will be improved, e.g., the 

first dataset, especially for a long-time outage which will be 

beneficial to autonomous vehicles navigation.  

 

5. CONCLUSION 

In this paper, FMCW Radar was utilized to aid INS for 

autonomous navigation applications in GNSS denied 

environments. A novel algorithm was adopted for data 

association and ego-motion estimation. The proposed method 

was tested over two real datasets collected in suburban areas near 

the University of Calgary, Canada. Radar/odometer/INS 

integration was applied to smooth the Radar ego-motion 

solution, limit INS drift and compensate for GNSS signal 

outages. The integration system improved the navigation 

solution for different outage durations (1 minute up to 4 

minutes). The RMSE for the horizontal position was improved 

by an average of 30.44 % and 4.76 % for four minutes outages 

for the two collected datasets, respectively, compared to the 

odometer/INS solution. Moreover, the horizontal RMSE was 

enhanced by around 96% if it is compared with the INS 

standalone solution. For longer GNSS outage duration, the 

RMSE was about 1% of the traveled distance as the maximum 

traveled distance was around 2 km for the four minutes GNSS 

signal outage.  

The integration of Radar, odometer, and INS has the advantage 

of working in different weather and light conditions. Moreover, 

this system can work indoors and outdoors which can meet the 

continuity requirements to work in the GNSS denied 

environments. Also, the proposed method can be applied in real-

time. Thus, the proposed algorithm is useful for ego-motion 

estimation in autonomous navigation applications. 
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