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ABSTRACT 
 
Despite the fact that Thermal Infrared (TIR) cameras have been in use for decades, processing of TIR images poses a variety of chal-
lenges when compared to optical images, which are captured in the visible part of the electromagnetic spectrum. The estimation of the 
exterior orientation of TIR cameras by bundle adjustment is a difficult task due to the limited geometric resolution of a TIR camera 
and the low image quality in terms of contrast and texture compared to optical images. Optical images have a potential to increase TIR 
external orientation accuracy by incorporating them into a joint bundle adjustment. However, because the modality gap between those 
two image types is large, classical point matching algorithms typically fail to find matches, making processing both image types in the 
joint bundle challenging. In order to locate matching points in both modalities, this study suggests using the Edge Histogram Descriptor 
(EHD) in the frequency domain representation of the images based on phase congruency. To properly allocate edges from the phase 
congruency, which are then employed in EHD, non-maximum suppression and hysteresis thresholding are used. Considering that both 
sensors are fixed rigidly to a single platform, the search region for the matching point candidate of the TIR image is determined based 
on stereo calibration of a thermal/optical stereo setup combined with geometric constraints. The final matching is based on the cosine 
distance, while RANdom SAmple Consensus (RANSAC) is used in order to eliminate outliers. The findings of this study show that 
using a joint bundle adjustment with optical images versus a bundle adjustment only with TIR images improves TIR image orientation, 
which is supported by the increased accuracy of the adjusted Ground Control Point (GCP) coordinates. 
 
 

1. INTRODUCTION 

Thermal imaging systems were originally developed for military 
purposes, but they have since migrated into other fields and have 
found various applications in areas such as surveillance, pedes-
trian detection, driving assistance, as a backup tool for firefight-
ers, in a variety of inspection and assessment tasks and in many 
more. 

Thermal Infrared (TIR) photogrammetric processing has been 
thoroughly studied, yet there are still certain challenges to over-
come, and there is always potential for further development. 
Hoegner and Stilla (2015) present a method for automatically 
texturing building facades using terrestrial TIR image sequences. 
Pech et al. (2013) investigate the topic of capturing multi-tem-
poral thermal images and creating thermal orthophotos with a 
TIR camera mounted on an Unmanned Aerial Vehicle (UAV). 
Khodaei et al. (2015) show that DSMs derived from aerial ther-
mal data may be as accurate as DSMs produced from visual im-
ages. The influence of interior camera orientation, tie point 
matching, and ground control points on the resulting accuracy of 
the bundle adjustment and dense point cloud generation with a 
commonly used photogrammetric workflow for UAV based ther-
mal imagery in natural environments is investigated by Boesch 
et al. (2017). Hoegner et al. (2014) combine TIR and time-of-
flight depth images to produce an accurate 3D point cloud for 
scene segmentation and people recognition. 

Maset et al. (2017) demonstrate that commercial photogrammet-
ric computer vision software may be used to autonomously orient 
sequences of TIR images obtained from a UAV and to generate 
3D point clouds without the need for GNSS or Inertial Navigation 

                                                           
* corresponding author 

System (INS) data regarding the images' location and attitude. 
Furthermore, co-registration of images captured with both, opti-
cal and TIR cameras can improve the accuracy and density of the 
3D point cloud to be produced (Hoegner and Stilla 2016; 
Hoegner et al. 2016). 

 
Figure 1. Diagram of multimodal image matching with epipolar 

constraint (see text for details) 

This study focuses on multimodal matching between TIR and op-
tical images, while the final goal is to evaluate joint bundle ad-
justment results of both image types. Optical images in this study 
hereinafter are referred to as visible images., as the latter term is 
more common in the TIR community. Multimodal matching is 
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carried out in the frequency domain using phase congruency 
(PC). The PC transformation concept of an image was introduced 
by Kovesi (1999). PC is based on the local energy model and 
depicts the frequency domain behaviour of an image. PC is in-
variant to changes in light and contrast and may be used to iden-
tify and locate edges and corners (Kovesi, 2003). To obtain 
equivalent contents of TIR and visible images, consistent edge 
and corner structures are first detected from the PC. In the fol-
lowing stage, characteristics of the Points Of Interest (POI) of 
thermal infrared and visible images are retrieved based on con-
sistent edge structures using the Edge Histogram Descriptor 
(EHD). A confined search region in the TIR image is determined, 
in which matching candidates for each POI 𝑥௩௦ from the visible 
image are situated, as illustrated in Figure 1. The search region is 
defined by connecting 𝑥௩௦ to the correspondent point X in ob-
ject-space, defined by locating the intersection of the ray through 
𝑥௩௦ and the 3D model derived from the photogrammetric pro-
cessing of the visible images alone. Following that, X is projected 
into the image plane of the TIR image in order to calculate 𝑥௧ 
and to define the search region for possible matching candidates. 
The exterior orientation of the TIR camera is approximated from 
stereo calibration between the visible and the TIR camera, which 
was performed offline. Feature correspondences are determined 
using the cosine distance between feature descriptions, outliers 
are eliminated using the RANdom SAmple Consensus (RAN-
SAC) algorithm (Fischler and Bolles, 1981). Finally, the identi-
fied tie points between each multimodal stereo pair and all tie 
points generated from either thermal or visible images are used 
as input in a joint bundle adjustment. The advantage of the joint 
bundle adjustment is twofold: improved accuracy in terms of the 
adjusted GCP coordinates, as demonstrated in the experimental 
section of this paper; and the ability to combine TIR and visible 
images into a single block, allowing for further synergistic anal-
ysis of the observed scene. 

Our paper is structured as follows: Chapter 2 provides an over-
view of multimodal image registration and point matching. The 
theoretical aspects of PC and multimodal point matching are dis-
cussed in Chapter 3. The experimental section shows the results 
of the suggested technique as well as key justifications for how a 
joint bundle adjustment of visible and TIR images can increase 
the total TIR bundle accuracy in terms of Ground Control Point 
(GCP) coordinates. Conclusions and open questions for future re-
search are presented in the last chapter. 

2. RELATED WORK 

TIR and visible images capture distinct wavelength intervals of 
the electromagnetic spectrum, and thus depict different infor-
mation in their Field of View (FOV). Visible images, in general, 
collect light in the visible part of the electromagnetic spectrum 
(0.3 − 0.7𝜇𝑚). When taken under good light conditions, they 
frequently capture a detailed depiction of an object, including its 
texture. TIR images, on the other hand, capture thermal infrared 
radiation, which is emitted and/or reflected from a different part 
of the electromagnetic spectrum (0.7 − 14 𝜇𝑚). As a result of 
those differences, TIR images generally depict an object in a con-
siderably less detailed manner, while textures are essentially non-
existent. In addition, differences in thermal capacity, emissivity 
and material transitions frequently produce a different appear-
ance in the thermal image. While visual and thermal radiation 
have similar properties in terms of reflection, refraction, and 
transmission, they depend not only on the reflected or emitted 
radiation, but also on the scene geometry from which light is re-
flected or emitted. Thus, multimodal analysis comes into place to 
relate the two types of images to each other. A pre-requisite for 
multimodal analysis is to close the gap between modalities such 
that each one is expressed by a common representation. 

Multimodal image matching is a fundamental and critical prob-
lem in a wide range of applications, including medical imaging, 
remote sensing, photogrammetry and computer vision. It in-
volves identifying and then matching the same content from two 
or more images with significant modality or nonlinear appear-
ance differences. Over the last few decades, a growing number of 
different techniques have been suggested with the goal of reduc-
ing the modality differences inherent in multimodal imaging. 

Jiang et al. (2021) present an in-depth review of multimodal 
matching. Each application field, for example medical imaging 
(James et al. 2014, Mani et al., 2013) or remote sensing 
(Ghassemian 2016), receives a separate overview of techniques 
and methodologies. The registration of visible and TIR images is 
the more relevant part of this review related to this study. The 
feature-based technique is one of the most typical ways in multi-
modal matching, although it is not the only one. Typically, a fea-
ture-based pipeline goes through the steps of feature detection, 
description and matching. This pipeline is more extensively uti-
lized in the image matching community because sparse features 
may be thought of as a basic representation of an image, making 
it more flexible and resistant to geometric and illumination 
changes and to noise. The detected features often reflect certain 
structures in an image or in the real world and may be categorised 
as corner, blob, line or edge, and area features. The term "feature 
description" refers to the process of translating the local grey 
value surrounding of a feature point into a stable and discrimina-
tive form (often as a vector), which allows for quick and easy 
matching of the detected features. The generated descriptors of 
two matched features should be as close as possible in the de-
scriptor space and the descriptors of two non-matching features 
should be as far away as feasible. At the same time, feature de-
scription should be resilient to geometrical transforms, image ap-
pearance changes, and different image quality. Feature matching 
seeks to create proper feature correspondences between extracted 
feature sets. If modality differences are sufficiently suppressed in 
the feature detection and description phases, generic approaches 
may perform well in the matching stage. 

A study by Hrkać et al. (2007) investigated how to register infra-
red and visible image pairs that were obtained from slightly dif-
ferent viewpoints of the same buildings. The researchers rely on 
the assumption, that the corners are most stable features points in 
both images type. They located Harris corners from these two 
images, and then applied a simple similarity transformation to 
register infrared and visible images. The partial Hausdorff dis-
tance was chosen as the measure of similarity between the two 
descriptors. A frequency-based corner and edge detector, in con-
junction with an EHD approach, was proposed by Mouats and 
Aouf (2013) in order to compute correspondences between im-
ages of the visible and infrared spectrum. The convolution of the 
Fourier transform of the image with a bank of Log-Gabor filters 
at different orientations and frequencies yields the desired fea-
tures, which are highly localised and invariant to changes in im-
age contrast and illumination. The descriptor is based on a com-
bination of frequency information at the position of the key point 
and the spatial distribution of the contours in a window surround-
ing the feature points that have been extracted. Taking into ac-
count the large variation in terms of resolution and appearance 
produced by different image sensors, Du et al. (2018) suggested 
a scale-invariant Partial Intensity Invariant Feature Descriptor 
(PIIFD) for corner feature description and matching that is both, 
fast and accurate. Additionally, a locality preservation require-
ment was paired with a false match removal approach in order to 
improve the estimation of the employed affine matrix in a Bayes-
ian framework. Cui and Zhong (2018) suggested a technique, 
which involves extracting corners from phase congruency images 
using their extremal moments and then describing them with 
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Log-Gabor filters. Once the matching process was completed, the 
descriptors were compared to identify credible point correspond-
ences, and the RANSAC approach was utilised to verify these 
correspondences.  Zeng et al. (2019) extracted edges using the 
morphological gradient approach, and then employed the 
C_SIFT detector, an adaptation of SIFT (Lowe 2004), on edge 
maps for distinct point search and BRIEF (Calonder et al. 2010) 
for description, resulting in scale- and orientation-invariant 
matching and a morphological gradient method for description. 

In this study, we use a PC with a mixture of edges and corners as 
POIs. PC was already proven to be a useful tool for dealing with 
low-light images, which could be characterized by weak edges 
and corners (Mouats et al, 2015 and Mehltretter et al, 2018). The 
PC approach by Kovesi (2003) is used with some modification to 
extract edges and corners. The proposed modification of allocat-
ing edges and corners in this study relies on non-maximum sup-
pression and hysteresis thresholding in order eliminate weak 
edge. Furthermore, while the majority of the previous studies em-
ployed visible and TIR images of similar image resolution, this 
study used a high-resolution visible image and a low resolution 
TIR image. This difference in image resolution leads to addi-
tional complexity in finding corresponding points. To solve the 
multi-scale matching issue this study proposes that distinct filter 
banks be employed for different image types.  

3. METHODS 

The focus of this chapter is on multimodal matching of TIR and 
visible images. Providing the reader with relevant theoretical 
background information as well as a full description of the pro-
posed approach are the primary objectives, and adaptations of the 
employed technique to the problem at hand are discussed. 

3.1. Phase congruency 

The spatial frequency transform, resulting in magnitude and 
phase information, is one of the most essential and commonly 
used tools for image representation and analysis. Because of the 
relevance of phase information, it has been implemented in a va-
riety of tasks such as edge and corner detection, image segmen-
tation, and similar steps. Due of phase's strong invariance to noise 
and low contrast, it is a desirable technique for image processing 
in general, as well as for TIR image processing in particular.   

Kovesi (1999) introduced the Phase Congruency (PC) transfor-
mation of an image. It is based on the local energy model (Mor-
rone et al., 1986) postulating that a feature can be best perceived 
once the frequency components of the signal are all in phase. The 
transformation is invariant to changes in light and contrast and 
may be used to identify and locate edges and corners (Kovesi, 
2003). It is necessary to reconstruct a signal over a large fre-
quency range in order to compute PC. One goal is to keep as 
many frequency components in the signal as feasible. To accom-
plish this goal, a filter bank is generated in which each filter's 
transfer function overlaps with its neighbours in such a way that 
the total of all transfer functions produces a relatively uniform 
spectrum coverage. The reconstructed signal is a band pass ver-
sion of the original signal, amplified according to the scaling and 
overlap of the transfer functions. Log-Gabor wavelets are em-
ployed in the filter bank, which is a common technique.  

 The transformation may be calculated at different scales n and 
orientations o, as shown in equation (1). In this equation, 𝐴(𝑥) 
is the amplitude of the transformed signal at a given scale and 
orientation. 𝐴(𝑥) is calculated as shown in equation (2). 𝐼(𝑥) 
denotes the input signal and 𝑀

  and 𝑀
  denote the even and 

odd Gabor wavelets at a scale n and orientation o. 𝑇 is a noise 
threshold that is calculated independently for each orientation, 
and 𝑊 is a weight function that seeks to compensate an uneven 
distributions of the filter response. The 𝜀 in equation (1) is a small 
value, which is used to prevent division by zero. The optimal 
value of 𝜀 is determined by the accuracy with which convolutions 
and other operations on the signal can be performed; it is not de-
termined by the signal itself (Kovesi 1999) and is set to 0.01 in 
this study. The impact of noise can be reduced by using large 
values of 𝜀. 

𝐴(𝑥)  = ඥ(𝐼(𝑥) ∗ 𝑀
 )ଶ + (𝐼(𝑥) ∗ 𝑀

 )ଶ ( 2 ) 

A difficulty inherent in PC is its response to noise (Kovesi 1999). 
In the vicinity of a step (edge), PC is only high at the point of the 
step. Away from the step, however, noise-induced variations are 
large in comparison to the surrounding signal. This will happen 
regardless of how uniform the environment is. The upper con-
straint on the influence of noise on the total of the wavelet re-
sponse amplitudes is provided by the sum of the estimated noise 
responses over all wavelet scales, parameter 𝑇 in the equation 
(1). 

Applying a sigmoid function to the filter response, as given in 
equation (3), is used to create PC's weight function. As men-
tioned, the primary purpose of this weight function is to penalise 
uneven filter response distributions, particularly in the area of 
steps corresponding to line features. The parameter c is the cut-
off value of the filter response spread, below which phase con-
gruency values are penalised, and the parameter g is the gain fac-
tor that regulates the sharpness of the cut-off.  

𝑊(𝑥)  =
1

1 + 𝑒∙൫ି௦(௫)൯
 ( 3 ) 

𝑠(𝑥)  =
1

𝑁
ቆ

∑ 𝐴(𝑥)

𝜀 + 𝐴௫(𝑥)
ቇ ( 4 ) 

Many applications, such as stereo matching, motion tracking and 
image registration, need an accurate detection of so-called "cor-
ners" throughout image sequences. This is where the Harris cor-
ner detector (Harris and Stephens, 1988) can be applied. The re-
sponse of the Harris operator, as well as that of other corner op-
erators, varies largely depending on image contrast, which makes 
determining adequate thresholds for extended image sequences 
difficult, if not impossible. Following his first phase congruency 
suggestion, Kovesi (2003) enhanced his method and offered a 
new corner and edge detector. This new operator employs the 
primary moments of the phase congruency information. The re-
sultant corner and edge operator has a much better localisation 
accuracy and exhibits image contrast insensitive responses. 

Kovesi (2003) proposes the following to incorporate information 
on how phase congruency varies with orientation: using equation 
(1), calculate phase congruency in each orientation separately, 
then compute moments of phase congruency and examine the 
variation of the moments with orientation. The primary axis, 
which corresponds to the axis around which the moment is min-
imised, indicates the feature orientation. The magnitude of the 
maximum moment, which corresponds to the moment around an 
axis perpendicular to the major axis, indicates the feature signif-
icance. If the minimum moment is likewise big, it means the fea-
ture point has a strong 2D component and should be categorised 
as a corner. 

𝑃𝐶(𝑥) =
∑ ቀ𝑊(𝑥)൫∑ ඥ(𝐼(𝑥) ∗ 𝑀

 )ଶ + (𝐼(𝑥) ∗ 𝑀
 )ଶ

 − 𝑇൯ቁ

∑ ∑ 𝐴(𝑥) + 𝜀
 ( 1 ) 
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For each point in the image, three different components are cal-
culated as shown in the equations (5), (6) and (7). 

𝑎 = ൫𝑃𝐶(𝜃)𝑐𝑜𝑠(𝜃)൯
ଶ

ఏ

 ( 5 ) 

𝑏 = 2  𝑃𝐶ଶ(𝜃)𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

ఏ

 ( 6 ) 

𝑐 = ൫𝑃𝐶(𝜃)𝑠𝑖𝑛(𝜃)൯
ଶ

ఏ

 ( 7 ) 

where 𝑃𝐶(𝜃)  refers to the phase congruency value determined 
at orientation θ, and the sum is performed over the discrete set of 
orientations used (typically six with the step of 30°). The angle 
of the principal axis Φ is given by 

Φ =
1

2
𝑎𝑡𝑎𝑛2 ቆ

𝑏

ඥ𝑏ଶ + (𝑎 − 𝑐)ଶ
,

𝑎 − 𝑐

ඥ𝑏ଶ + (𝑎 − 𝑐)ଶ
ቇ ( 8 ) 

The maximum (eq. (9)) and minimum (eq. (10)) moments, M and 
m respectively, are given by 

𝑀 =
1

2
ቀ𝑐 + 𝑎 + ඥ𝑏ଶ + (𝑎 − 𝑐)ଶቁ ( 9 ) 

𝑚 =
1

2
ቀ𝑐 + 𝑎 − ඥ𝑏ଶ + (𝑎 − 𝑐)ଶቁ 

( 10 ) 

The phase congruency edge and corner strength images are little 
impacted by image contrast, as shown in Figure 2, and may be 
easily thresholded (in this case with a value of 0.5 for the maxi-
mum value of the minimum moments) to provide a clear set of 
features. 

 
Figure 2. Maximum and minimum momments of an artificial  

image with low contrast 

3.2. Multimodal matching 

In his work, Kovesi (2003) compares his approach to the Harris 
corner detector. Because the latter depends on the image gradient 
covariance matrix, it is extremely sensitive to image contrast 
fluctuations, making threshold setting very challenging. Unlike 
image intensity gradient values, phase congruency values are 
normalised quantities with no units. When the moments are nor-
malised for the number of orientations evaluated, the phase con-
gruency moment values vary from zero to one. As a result, the 

maximum and minimum phase congruency moments may be uti-
lised to determine whether there is a substantial edge and/or cor-
ner point. 

The approach, proposed by Kovesi (2003), assigns corners and 
edge to features by using a fixed threshold. However, while such 
a threshold approach may be used intuitively, some noise will be 
classified as an edge and weak edges will not be found. The ap-
proach suggested to detect edges in this study is inspired by the 
edge detection technique developed by Canny (1986). This study 
recommends using maximum moments M (eq. 9) and the angle 
of the principal axis Φ (eq.8) instead of the image gradient am-
plitude and gradient angles, as in Canny’s edge detector. The fol-
lowing is what has been suggested: 

 In non-maximum suppression, the edge strength from maxi-
mum moments M (eq. 9) of the current pixel is compared to 
the edge strength of the pixel in the positive and negative di-
rection Φ (eq.8). The value will be kept if the current pixel's 
edge strength is the highest compared to its neighbours. The 
value will be suppressed otherwise. 

 The double threshold step identifies three types of pixels: 
strong, weak, and irrelevant pixels. Strong pixels are those 
that have a larger edge strength than the high threshold and 
undoubtedly contribute to the final edge. Weak pixels are 
pixels with an edge strength value that is not high enough to 
be considered strong, but not low enough to be regarded ir-
relevant for edge detection. Weak edges are identified if their 
edge strength falls in between the high and low thresholds. 
All other pixels are ignored when calculating the edge. 

 Hysteresis edge tracking is based on the thresholding find-
ings; hysteresis transforms weak pixels into strong pixels in 
an iterative way, if and only if at least one of the pixels around 
the one being processed is a strong one. 

The EHD's fundamental concept, as proposed by Mouats et al. 
(2013) and used by others (Wang et al, 2020, Xu et al., 2020 and 
Mehltretter et al., 2019), works as follows: from the edge map, 
an area of 𝑁𝑥𝑁 pixels centred on a POI is extracted. Local spatial 
maxima from the maximum and minimum moments of PC, see 
equations (9) and (10), are considered as POIs. Local edge histo-
grams are generated for each image patch, which is partitioned 
into 4x4=16 sub-regions. Horizontal, vertical, 45° diagonal, 135° 
diagonal, and isotropic (edge without orientation) are the five 
types of edges investigated. Accordingly, there are four direction 
histogram bins and one non-direction bin. The last bin corre-
sponds to places where there are no edges. To detect the afore-
mentioned edge orientations, five filters are utilised, as demon-
strated in Figure 3. Every pixel in each sub-region contributes to 
the histogram, and the filter with the highest response is picked 
to vote for the appropriate bin. Subsequently, the histogram vec-
tor is normalised; it has 80 bins (4x4x5). The descriptor depicts 
the spatial distribution of the region's edges. 

Mouats et al. (2013) also proposed adding a second part to the 
descriptor derived from the phase congruency result. For each 
POI in the image, 24 Log-Gabor coefficients corresponding to six 
orientations at four frequencies (scales) are produced during PC 
calculation. These coefficients are utilised as the descriptor's sec-
ond part. Finally, for the ith POI a descriptor 𝐷 is composed of 
104 elements, with 80 of them coming from the histogram and 
24 from the Log-Gabor coefficients. 

In the current study, the feature vectors are retrieved on POIs us-
ing the EHD approach. All local maxima of the minimum mo-
ments m (eq. 10) of PC that are associated with corners and all 
local maxima of the maximum moments M (eq. 9) of PC that are 
related to edges are assigned a POI. In contrast to the original 
EHD extraction technique, only the section of the EHD feature 
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vector that corresponds to the estimated histogram is used in this 
study, because of the varying number of scales used in the PC 
computation for the different image modalities (TIR vs. visible). 
The justification for the varying number of scales for each mo-
dality type will be given in the section 4.2. 

 
Figure 3. EHD extraction flow diagram (Mouats et al., 2013) 

 

The cosine distance dist (eq. 11), which is commonly used in 
comparing wavelet-based descriptors, is used as similarity meas-
ure in the matching process. Each descriptor in the visible image 
(𝐷ூௌ) at a given location ൫𝑥

ூௌ, 𝑦
ூௌ൯ is compared to all de-

scriptors (𝐷்ூோ) in the TIR image within a circular region with 
radius 𝑐 centred at that location (𝑥

்ூோ , 𝑦
்ூோ). 

dist൫𝐷
்ூோ , 𝐷

ூௌ൯ = 1 −
∑ 𝑑

்ூோ𝑑
ூௌ



ට∑ ൫𝑑
்ூோ൯

ଶ
 ∑ ൫𝑑

ூௌ൯
ଶ



 ( 11 ) 

where ൫𝐷
்ூோ , 𝐷

௧
൯ are the descriptors of the POIs to be com-

pared, while indices k and n denote the corresponding POIs. The 
feature in the TIR image that minimizes the distance for a partic-
ular feature in the visible image is chosen as potential match. 
Then, a threshold is used to keep only the strongest matches. The 
suggested technique, like any feature detection-description-
matching scheme, is still prone to false matches. After initial 
matching, an outlier removal step is performed to reduce the 
number of blunders. This process is executed by fitting an essen-
tial matrix approximating the epipolar geometry to the matched 
locations using the RANSAC technique. 

As illustrated in Figure 1, the coordinates of point 𝒙
்ூோ are com-

puted by projecting point 𝑿𝒊 from a reconstructed 3D model (eq. 
12). A thorough photogrammetric processing of a block includ-
ing only visible images is used to generate this 3D model. Despite 
the fact that both image sets observe the same scene in space and 
time, visible images with far higher resolution and including sig-
nificantly more information are selected as a more reliable source 
for 3D model reconstruction. As we use a rigid dual-sensor con-
figuration for data capture, the interior orientation (𝑲𝑻𝑰𝑹 in eq. 
12) and the exterior orientation (𝑹𝑻𝑰𝑹 𝑎𝑛𝑑 𝑻𝑻𝑰𝑹 in eq. 12) of the 
TIR camera can be recovered offline from the image orientation 

                                                           
2 www.dji.com/de/matrice-200-series 

of the visible sensor and stereo calibration of the ridged sensor 
set up.  

𝒙
்ூோ

1
൨ = 𝑲𝑻𝑰𝑹[𝑹𝑻𝑰𝑹|𝑻𝑻𝑰𝑹] ቂ

𝑿𝒊

1
ቃ ( 12 ) 

Due to a variety of uncertainties, including inaccuracies in the 
interior and exterior orientation of both cameras, as well as the 
uncertainty of the reconstructed 3D model, a search radius 𝑐 for 
related point candidates must be employed to find matches. 

4. EXPERIMENTS AND RESULTS 

The purpose of this chapter is to provide a more in-depth discus-
sion of the approaches outlined in the previous chapter and to 
present the outcomes of this study. A quick introduction to hard-
ware, software, and the surveyed scene will be provided first. The 
paramertization of specific methods, as well as their rationale, 
will be explained next. Finally, the experiments and results will 
be presented and discussed in relation to the use of the joint bun-
dle adjustment of TIR and visible images.  

To begin with, we define the experimental objectives as well as 
the assessment criteria. As previously stated, the primary goal of 
this research is to improve the accuracy of the TIR camera exte-
rior orientation using supplementary information derived from 
visible images. Despite the importance of the multimodal match-
ing element itself from a scientific standpoint, this step is consid-
ered a secondary aim in this study. Due to the lack of ground 
truth, the multimodal matching between visible and TIR images 
is evaluated based on average re-projection errors of the tie points 
and the GCP and the deviations of the GCP coordinates in object 
space. An improvement of the accuracy of those measures is the 
success criteria in this study.  

4.1. Hardware and Software 

A DJI M2002 UAV, a VTOL quadcopter equipped with a GNSS 
receiver, an inertial measurement unit (IMU), a barometer, and 
the stereoscopic camera system DJI Zenmuse XT23, was used to 
acquire the data. The Zemuse XT2 is a gimbal-stabilized system 
in a dual-sensor configuration that firmly combines a FLIR radi-
ometric thermal imager with 512x640 pixels with 17 𝜇𝑚 pixel 
pitch and a CMOS optical camera in 12 MP resolution with pixel 
pitch of 1.85 𝜇𝑚. 

Stereo calibration was carried out according to standard protocol. 
An aluminium board with black squares was created to obtain a 
strong thermal contrast in the TIR images. The board remained 
stationary facing the sky during the calibration operation in order 
to capture the cold reflection of the skies on the aluminium por-
tion of the board. As a consequence of the employment of black 
paint, which increases the board's emissivity, a good thermal con-
trast was produced, as illustrated in Figure 4. 

 

Figure 4. DJI Zenmuse XT2 images of calibration test field. 
Left: TIR image, right: visible image 

 

3 www.dji.com/de/zenmuse-xt2 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-157-2022 | © Author(s) 2022. CC BY 4.0 License.

 
161



A test flight was conducted in the German city of Hannover. Be-
cause of the larger Ground Sampling Distance (GSD), flight plan-
ning was reliant on the TIR camera parameters. The flying height 
was set at 30 metres above ground, based on a pixel size of 17 
𝜇m and a focal length of 13 mm, resulting in a GSD of 3.9 cm for 
the TIR images (the corresponding GSD of the optical camera 
was 0.71 cm). A total of 152 image pairs of visible and TIR im-
ages were captured. Figure 4 shows the placement of six GPCs 
(white boards with black circle) in the study region. RTK GNSS 
equipment was used to carry out the GCP measurements. 

Agisoft Metashape4 was used to do rigorous photogrammetric 
processing, which included GNSS measurements for the loca-
tions of the image projection centres as initial values. 

 
Figure 5. Visualization of the surveyed area with GCPs marked 

with red circles 

4.2. Multimodal matching 

Following the detailed description of PC construction in chapter 
3.1, this sub-chapter concentrates on the demonstration of the PC 
application to multimodal matching. Kovesi’s original imple-
mentation recommended employing four frequencies (scales) 
and six orientations for the filter bank, based on Log-Gabor 
wavelets. The noise threshold, 𝑇 parameter, see equation (1), is 
calculated using the median value of the sum of the amplitude 
responses of all scales. The weight function cut-off, parameter c, 
see equation (3), is set at 0.5. 

Figure 6 shows test images in the visible and the IR spectrum of 
the same scene in the 1st column; the PC of both images is shown 
in the 2nd column, while the 3rd column shows enlarged regions, 
which are marked by red rectangles in the 1st column. For the TIR 
image, the PC has kept practically every significant edge and has 
removed the majority of the noise from uniform areas. For the 
visible image, the situation is similar in terms of object edges; 
however, PC also includes a lot of details, especially texture rep-
resentation; those details are associated with high frequencies in 
the image. The outcome of using of the default PC parameters is 
that the representation difference between two PCs is still sub-
stantial, partly due to the different GSD of the two sensors. 

Figure 7 shows the experimental results for particular filter bank 
settings for the PC calculation, where the GSD difference was 
partly compensated: Default parameters for the PC of the TIR 
image were used, i.e. four scales with a starting frequency of 
three pixels. For the PC of the visible image, five scales were 
utilised, with the initial frequency of 10 pixels. As can be ob-
served in the third column of Figure 7, the PC of the visible image 
has far less high frequency components and resembles the PC of 
the TIR image considerably more. The result is that the modality 

                                                           
4 https://www.agisoft.com/ 

representation gap may be reduced by optimizing the selectin of 
PC calculation settings for each image type. 

 

Figure 6. Phase Congruency of TIR and visible images with 
default parameters 

 

Figure 7. Phase Congruency of TIR and visible images with 
optimized parameters 

The multimodal matching is based on EHD (see chapter 3.2) and 
the cosine distance (eq. 11) followed by RANSAC. Unfortu-
nately, it is not possible to integrate additional phase information 
in the EHD construction, as recommended by Mouats et al. 
(2013): The EHD description of the TIR image would include 24 
elements for each point on the image, while the EHD descriptor 
of the visible image would contain 30 entries, resulting in de-
scriptor lengths that are conflicting. Therefore, we only use the 
part of the EHD vector for the histogram elements. The final re-
sults of multimodal matching are shown in Figure 8: every cor-
responding point was allocated on an edge or a corner, which is 
an inherent characteristic of the method. 

Because the visible and TIR cameras are set up in a rigid-body 
dual sensor configuration, there is no requirement for orientation 
compensation from the descriptor side. However, the GSD of the 
cameras varies (because of differences in focal length and pixel 
size). Thus, from the standpoint of well-known descriptors, there 
is a requirement for scale invariant matching. Based on the sen-
sor's prior knowledge, scale invariance is accomplished by using 
varying window sizes for the EHD extraction. A 48x48 pixel 
window is used for the TIR images. The EHD of the visible im-
ages, on the other hand, is extracted on a 240x240 pixel window. 
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This ratio of EHD window sizes set to five based on the GSDs 
ratio, being approximately 5.4. 

 

Figure 8. Examples of multimodal matching 

4.3. Joint bundle adjustment of visible and TIR images 

The primary finding of this study is presented in this section: the 
effect on the bundle adjustment of TIR images with the support 
of supplementary information in form of visible images. This aid 
is provided in the form of tie points, which connect each pair of 
visible and TIR images. A variety of tests were carried out to 
evaluate the suggested approach. In each case, observations for 
the bundle adjustment were the image coordinates of all related 
tie points, the image coordinates of the six GCPs, which were 
measured automatically, and 3D coordinates for the GCPs. The 
standard deviations for those observations were set to 0.5 pixel 
for all image coordinate measurements and 1 cm for the 3D GCP 
coordinates. 

In the 152 visible images, approximately 410 ∙ 10ଷ tie points in 
image space were derived, whereas in the 152 thermal images a 
little more than 10% of tie points could be found. This ratio re-
flects the fact that the texture is much poorer in the thermal im-
ages as mentioned before. However, also the thermal images 
have more than enough tie points to reconstruct a stable photo-
grammetric block. 

Each bundle adjustment is assessed using two key criteria: the 
error in the adjusted GCP coordinates, stated in cm, and their 
mean; the Root Mean Square (RMS) values of the tie point resid-
uals in image space and the RMS values of GCPs reprojection 
errors in image space, expressed in pixels and in micrometres 
(𝜇𝑚) and their average. 

 

 

The following experiments were conducted: 

 Experiment 1 provides a baseline for comparing the effects 
of bundle adjustment. Each image set was processed inde-
pendently and no multimodal matching was carried out. 

 Experiment 2. In this experiment, the bundle adjustment was 
carried out using only the visible images. The TIR images 
were added to the block after the bundle adjustment was com-
pleted, with their exterior orientation computed based on the 
orientation parameters from the stereo calibration. Again, no 
multimodal matching was carried out. 

 Experiment 3 provides an initial idea of the performance of 
the joint bundle adjustment. Both image types were pro-
cessed in the joint bundle adjustment, with image coordinates 
of the GCPs acting as tie points between two modalities. In 
the visible images, each GCP was seen 36.3 times on average, 
whereas in the TIR images, it was seen only 22.2 times. The 
gap in the average number of GCP observations is due to dif-
ferent footprints of the two cameras. In total, (36.3+22.2) ∙ 6 
or approximately 350 multimodal tie points in image space 
were contained in this adjustment, these were added to the tie 
points from experiment 1. 

 Experiment 4 is the joint adjustment of both image types with 
conjugate points from multimodal matching and image coor-
dinates of GCPs as tie points. Multimodal matching yielded 
approximately 49 ∙ 10ଷ tie points in image space and these 
were added to the tie points from experiment 3.  

As demonstrated in Table 1, in the baseline experiment a subpixel 
accuracy for matching was reached. It is interesting to note that a 
slightly better result was achieved for the tie points of the thermal 
images (0.7 vs. 0.9 pixel). The RMS value of the GCPs in object 
space reflects this result as well. Not surprisingly, the visible im-
age accuracy outperforms the TIR image accuracy in all criteria: 
the GCPs coordinates (1.4 cm vs 2.9 cm), the RMS value of the 
tie points (1.7 𝜇𝑚 vs. 12.1 𝜇𝑚) and when considering the RMS 
value of the GCP reprojection errors (0.7 𝜇𝑚 vs 9.4 𝜇𝑚). The 
reason for this difference is twofold, which relates to the better 
texture representation of the observed scene and the smaller GSD 
of the visible images. 

Table 1 Results of experiment #1 – separate bundle adjustment 
of the visible and the TIR images 

 

Visible images TIR images 

3D 
Error 
(cm) 

RMSE 3D 
Error 
(cm) 

RMSE 

Pix 𝜇𝑚 Pix 𝜇𝑚 

TPs - 0.9 1.7 - 0.7 12.1 

GCP 1 1.2 0.3 0.6 1.2 0.6 10.7 

GCP 2 1.7 0.4 0.6 1.4 0.7 12.2 

GCP 3 1.2 0.4 0.8 4.2 0.3 5.8 

GCP 4 1.0 0.5 0.9 2.6 0.4 7.1 

GCP 5 1.2 0.4 0.7 5.6 0.6 10.7 

GCP 6 1.9 0.3 0.6 2.6 0.6 9.7 
GCP 

mean 
1.4 0.4 0.7 2.9 0.6 9.4 

  

Experiment 2 yielded an unexpected result (see Table 2). For the 
visible images the results are the same as for experiment 1, of 
course. However, the GCP reprojection errors for the TIR images 
increased dramatically. This is a sign that either the prior stereo 
calibration is not accurate enough, the sensor mounting is not 
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rigid or the images were not captured at the same epoch, pointing 
to a time synchronisation problem. 

Table 2 Results of experiment #2 - bundle adjustment of the vis-
ible images, while the TIR exterior orientation was calculated 

based on the stereo calibration  
3D 

Error 
(cm) 

Visible images TIR images 

RMSE RMSE 

Pix     𝜇𝑚 Pix 𝜇𝑚 

TPs - 0.9 1.7 - - 

GCP 1 1.2 0.3 0.6 11.4 193.0 

GCP 2 1.7 0.4 0.6 12.6 213.5 

GCP 3 1.2 0.4 0.8 12.0 203.8 

GCP 4 1.0 0.5 0.9 12.1 206.0 

GCP 5 1.2 0.4 0.7 13.3 226.6 

GCP 6 1.9 0.3 0.6 13.6 230.5 
GCP 

Mean 
1.4 0.4 0.7 12.5 212.2 

 

When the image coordinates of the GCPs are the only multimodal 
tie points as in experiment 3 (see in Table 3), the accuracy of the 
visible images again remains constant in comparison to the base-
line. The main reason is the much larger number of tie points 
from the visible images. An important, yet not surprising result 
is that the GCP accuracy in object space also remains constant. 
This means that for the thermal images, the standard deviation of 
the unknowns of the adjustment is now better by a factor of 2 (1.4 
cm vs. 2.9 cm) as a consequence of the joint adjustment. On the 
other hand, the RMS values for the thermal tie points are slightly 
worse (13.4 𝜇𝑚 vs. 12.1 𝜇𝑚) and the RMS values of the GCP 
reprojection errors of the TIR images are increased by about a 
factor of 3.5. Although these results are much better than of those 
of the experiment 2, the usage the GCP image coordinates as tie 
points apparently deforms the thermal part of the block. 

Table 3 Results of experiment #3 - jont adjustment of the visible 
and the TIR images with only GCPs used as tie points 

 3D 
Error 
(cm) 

Visible images TIR images 

RMSE RMSE 

  Pix 𝜇𝑚 Pix 𝜇𝑚 

TPs - 0.9 1.7 0.8 13.4 

GCP 1 1.2 0.6 1.1 1.2 19.9 

GCP 2 1.4 0.7 1.3 2.0 33.8 

GCP 3 0.8 0.9 1.6 1.7 29.4 

GCP 4 1.2 0.8 1.5 1.5 25.3 

GCP 5 1.9 0.8 1.5 3.4 58.0 

GCP 6 1.7 0.7 1.3 2.6 43.7 
GCP 

Mean 
1.4 0.7 1.4 2.1 35.0 

 

Experiment 4 (see Table 4), in which the correspondences be-
tween the two image sets are established by the result of multi-
modal matching (and, in addition, by the image coordinates of 
the GCPs), follows the findings that were obtained in the third 
experiment. The GCP accuracy in object space is again domi-

nated by the visible images, thus significantly improving the re-
sults of the thermal images of the baseline. While the RMS values 
of the tie points are practically unchanged compared to experi-
ment 3, the RMS values of the GCP reprojection errors in the TIR 
images are reduced by 20% (28.9 vs 35.0 𝜇𝑚). They are, how-
ever, still significantly higher than those from the baseline, point-
ing to remaining systematic errors in the thermal part of the com-
mon block. The fact that multimodal correspondences are created 
only across stereo image pairs, rather than throughout the whole 
block with both image modalities, might explain the large dispar-
ity. 

Table 4 Results of experiment #4 - jont adjustment of the visible 
and the TIR images with GCPs and result of mulimodal 

matching used as tie points 

 3D 
Error 
(cm) 

Visible images TIR images 

RMSE RMSE 

  Pix 𝜇𝑚 Pix 𝜇𝑚 

TPs - 0.9 1.6 0.8 13.2 

GCP 1 1.2 0.6 1.1 1.1 18.9 

GCP 2 1.4 0.7 1.2 1.6 26.7 

GCP 3 0.8 0.9 1.6 1.9 33.0 

GCP 4 1.2 0.8 1.4 1.0 17.5 

GCP 5 1.9 0.7 1.4 1.9 33.0 

GCP 6 1.6 0.7 1.3 2.6 44.2 
GCP 

Mean 
1.4 0.7 1.3 1.7 28.9 

 

5. CONCLUSION AND DISCUSSION 

This research contributes to multimodal point matching of visible 
and TIR images. It is demonstrated that point matching between 
visible and TIR images is feasible after pre-processing the images 
using the concepts of phase congruency (PC) and edge histogram 
descriptors (EHD). Although PC and EHD are not scale invari-
ant, scale differences can be compensated by including prior 
knowledge of the ground sampling distance of the images. 

Based on the multimodal matching results a joint bundle adjust-
ment was carried out. It could be demonstrated that the accuracy 
of the unknowns of the adjustment, namely the RMS values of 
the employed GCPs in object space, are improved by a factor of 
2 in the joint adjustment, compared to only using the thermal im-
ages. As a result, the proposed approach can be considered a val-
uable tool for enhancing the accuracy of photogrammetric pro-
cessing of thermal imagery. For instance, a thermal orthophoto 
of higher accuracy or, alternatively, an orthophoto with co-regis-
tered visible and thermal channels can be generated, allowing for 
a more detailed examination of the surveyed region. 

At the same time, we found certain problems which need further 
investigations. First, our supposingly rigid and synchronous ste-
reo set up showed errors. Second, the joint bundle introduced 
some systematic errors into thermal part of the block, resulting in 
larger residuals in image space. These issues will be further ana-
lysed in future work. 

Several additional questions remain unresolved. It remains un-
clear how to identify correspondences between all involved im-
ages from the two modalities. One problem is to determine how 
to account for rotation between two image types during the de-
scriptor construction step. Given our dual-sensor setup, the rota-
tion of a pair of visible and TIR images, which are not a specific 
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stereo pair, might be estimated by using stereo calibration be-
tween visible and thermal images and, in addition, the orientation 
of visible images computed from bundle adjustment. Another op-
tion is to utilise the PC's phase information (Φ  in eq. 8) to deter-
mine the principal axis of the given POI.  From a scientific stand-
point, it is also necessary to investigate the impact of establishing 
tie point connections between all of the images of both modalities 
on the bundle adjustment accuracy. 
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