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ABSTRACT: 

The positional accuracy derived from the outputs of carried integrated devices was evaluated in this study. For data collection, the 

inertial navigation system (INS) SPAN NovAtel and a handheld mobile laser scanner GeoSLAM ZEB Horizon which uses 

simultaneous localization and mapping technology (SLAM) were utilized for data collection. The accuracy was assessed on the set of 

reference objects located under the forest canopy, which were measured via a traditional field survey (the methods of geodesy). In the 

results of this study the high potential of the devices and the application of data collection methods into forestry practice were 

pointed out. In our research, when the horizontal position of artificial entities was evaluated the average RMSE of 0.26 m, and the 

average positional RMSE of the derived natural objects (trees) was 0.09 m, both extracted from SLAM. The horizontal positional 

accuracy of trajectories with RMSE of 9.93 m (INS) and 0.40 m (SLAM) were accomplished. 
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1.  INTRODUCTION 

Presently, the Global Navigation Satellite Systems (GNSS) are 

the most frequently used positioning technology. Since this 

technology was applied in practical tasks, many innovations 

have been implemented, such as the modernization of 

equipment, software, or data evaluation algorithms. This 

improvement helped to integrate GNSS into commercial 

services. In contrast, positioning of objects and data collection 

within forest stands is predominantly performed in traditional 

ways. Traditional methods, electronic total station, and GNSS 

technology, which ensures the positioning of control points, 

bring several advantages and few difficulties in more complex 

conditions - straight line visibility, signal outages, and 

associated productivity reduction and unavoidable impact on the 

mapped environment (Gillet et al., 2000).  

 

A comprehensive overview of the possibilities of using 

alternative methods for determining the position of objects was 

developed by (Keefe et al., 2019). Study is focused on the 

possibilities of using GNSS-based technologies in specialized 

and commonly used devices (ultra-broadband connections and 

radio telemetry, inertial navigation systems, simultaneous 

localization and mapping (SLAM), Bluetooth, RFID (radio 

frequency identification), QR code and others in real time with 

the use of postprocessing). The study describes the possibilities 

of using described methods to navigate moving objects, 

determine and share location of equipment, people, fish, 

animals, plants and even materials (e.g., air, water, fire) in 

forests. 

Studies focused on GNSS in the forest environment have share 

common opinion that the mentioned technology can achieve 

accuracy varied from a few centimetres to several meters. It 

depends on number of factors such as the instrumentation, 

length of data observation period, and processing (Kaartinen et 

al., 2015). For example survey-grade receivers provide higher 

horizontal positioning accuracy than consumer-grade receivers 

(Danskin et al. 2009) and using differential computation and 

static observations was achieved centimetre-level accuracy, but 

open-sky conditions were required (Bakuła et al. 2015, 2009). A 

mobile device with two GPS receivers (navigation grade and 

survey grade) was tested under the forest canopy in a deciduous 

and a coniferous forest stand, mean stand tree heights 8.4 and 

8.9 m, and reached the mean horizontal accuracy 4.1 m and 2.7 

m (Tachiki et al., 2005). RMSE of 4.2–9.3 m for real-time 2D 

GNSS positions was reached and for an all-terrain vehicle with 

mounted GNSS/INS RMSE of 0.7m for 2D position (Kaartinen 

et al.. 2015). Therefore, the trend in the forest information 

gathering, is currently focused on the application of contactless 

devices and new technologies, ideally their combinations, and 

moves to the mobile devices. 

 

An inertial navigation system (INS) is an autonomous system 

that does not depend on external information nor require energy 

from external space. They are therefore able to calculate the 

position, either with respect to a defined reference system/point 

or absolute coordinates (Gillet et al., 2000). INS are most 

effective in combination with GNSS devices. GNSS essentially 

requires an external input - a satellite signal. Accuracy in 

challenging environment is variable, depending on the number 

of satellites, their geometry, multipath effect etc. The 

technological combination makes it possible to bridge the gap in 

the GNSS signal and thus improve positional accuracy. The 

final integration is ensured by an algorithm for estimating 

quantities, called the Kalman filter and Tightly Coupled 
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INS/GNSS Integration (Bonnor, 2014). Furthermore the study 

describes similarity between the forest environment and urban 

canyons, and the problem of reducing the number of visible and 

suitable satellites due to shading objects – crowns of trees (Qian 

et al., 2017). It causes the multipath effect and serious errors are 

registered. The basic algorithm and the overall related issues are 

intensively studied and developed (practical principles and 

theoretical background) in several studies (Hide et al., 2003; 

Lee et al., 2013; Wang et al., 2010; Welch and Bishop, 2006). 

 

The terrestrial laser scanning (TLS) is an increasingly inflected 

term. In addition to the constant development of new 

applications aimed at expanding the range of measurements 

under specific conditions, technology is increasingly used in 

ecosystem research (Danson et al., 2018). Several authors have 

developed the issue of TLS in the forest environment (Chen et 

al., 2019; Hyyppä et al., 2020c, 2020b; James and Quinton, 

2014; Liang et al., 2019, 2016; Tomaštík et al., 2017). Although 

TLS offers benefits such as high efficiency and productivity 

there is a growing demand for dynamic forest information 

gathering tools that make it more efficient in many ways. The 

TLS method is highly efficient in plot-level. Small circular area 

of forest with a radius aproximately 10 m is typical shape of 

permanent sample plot in natural forest inventories. Large areas 

data collection by the conventional measurement tools is 

expensive. Although TLS is viable option lack of mobility in 

challenging environment is a great obstacle (Xinlian Liang et 

al., 2014). This is the reason why the community investigate the 

potential and accuracy of the Mobile Laser Scanning (MLS) 

systems. 

  

MLS techniques can be divided into phone-based scanning, 

vehicle-based scanning, Unmanned Aircraft Vehicle (UAV) - 

based, handheld (HMLS) and other personal laser scanning 

(PLS) techniques (Hyyppä et al., 2020b). Several authors 

analysed and studied the named methods; the accuracy and 

efficiency of UAV, TLS and MLS methods utilized in urban 

tree mapping and monitoring was evaluated in (Holopainen et 

al., 2013), also the usage of a mobile laser scanning system for 

mapping large forest plots and possibilities of PLS for forest 

mapping and ecosystem services were explored in (X Liang et 

al., 2014; Xinlian Liang et al., 2014). For automatic or 

semiautomatic ALS individual tree detection (ALSITDauto or 

ALSITDvisual) and manual or automatic measurements of TLS 

and MLS (TLSauto, MLSauto, MLSmanual, MLSsemi) 438 

trees located in urban parks and forested environments were 

measured, mapped and compared with reference TLS data set 

(Holopainen et al., 2013). In the process of tree detection rate 

and location accuracy evaluation RMSE varied between 0.44 m 

and 1.57 m. The stem mapping accuracy 87.5% with RMSE of 

the location 0.28 m (RMSE of the diameter at breast height 

(DBH) estimation was 2.36 cm) was reached within the large 

forest plot mapping (X Liang et al., 2014), and with a 

multipass-corridor-mapping method for PLS data processing the 

tree stem detection accuracy 82.6% RMSE of the estimates of 

tree location was 0.38 m (RMSE of the DBH was 5.06 cm) 

from data collected on a 2,000 m2 large forest plot (Xinlian 

Liang et al., 2014). Further, general results based on the 

examination of studies (Liang et al., 2015; Ryding et al., 2015) 

are available, the possibility to cover a 5ha research area in 15 

minutes with MLS/PLS with stem mapping accuracy ranges 

between 80% and 92% with the DBH RMSE% varied between 

8% and 29%, what is comparable with TLS multi-scan method 

with fixed radius at the same conditions (Liang et al., 2019). 

However, it reveals nothing about the location of the objects. 

With Google Tango technology for outdoor measurements in 

forest inventory tasks RMSE of the DBHs were up to two 

centimetres, and RMSE positions were over one metre for the 

Spiral pattern and 0.20 m for the Sun pattern of data collection 

(Tomaštík et al., 2017). The position references were measured 

using a total station. In comparison with the calliper and tape 

measured data set, the usability of the Kinect and Google Tango 

depth sensors for tree stem mapping was shown, where Kinect-

derived tree reached RMSE 1.90 cm and for Tango 

measurements RMSE 0.73 cm. Besides, the work sketches a 

question of possibility to measure the location of the trees which 

they would like to use as a reference - potential application of 

an assisted GNSS in 3D Game Engine based approach.  

 

With using an in-house-built backpack laser scanner and 

GeoSLAM ZEB114 of the 18 trees were recognized, within 30 s 

duration of data collection on the 250 m2 area (Oveland et al., 

2017). The RMSE of the DBH varied between -1 cm and 3 cm 

when the automatic estimated of tree positions and stem 

diameter from MLS was imputed. Soon after, the three ground 

based laser measurement methods were compared (Oveland et 

al., 2018): TLS, HMLS and a backpack laser scanner (BPLS) 

with GNSS and total station made reference dataset. They 

achieved positional RMSE 82 cm (TLS), 20 cm (HMLS) and 62 

cm (BPLS), as well as 6.2 cm (TLS), 3.1 cm (HMLS) and 2.2 

cm (BPLS) RMSE of DBH estimation. During the stem 

detection and stem curve extraction from the under - canopy 

UAV laser scanning data (Hyyppä et al., 2020a) the one of the 

goals of mentioned study was described as alebo as follow: 

identification of points reflected from the tree trunk, where the 

tree positioning errors had to be taken into account (resulted 

from the movement of the laser scanner). It was still on the 

order of 10 cm or above. However, high-quality SLAM-system 

was integrated into composition. 

 

The benefits of terrestrial laser scanning (data collection speed, 

high quality, wide applicability of data) is combined in SLAM 

technology. It meets high requirements for image quality of the 

recorded environment even in locations with low GNSS signal 

quality. In the application of SLAM technology to the forest 

environment, research has been moving forward in recent years. 

Many authors are exploring the possibilities of using this 

technological process in relation to the forest environment and 

various ecosystems, for example following the forestry work 

processes and navigation of logging and transport technologies 

(Nevalainen et al., 2020), in comparison with other mobile laser 

scanning technologies in boreal forest conditions (Hyyppä et al., 

2020c),mobile robotics (Ali et al., 2020), autonomous research, 

and forestry. SLAM solutions in modern mapping devices are 

expected to improve measurement accuracy when the satellite 

signal is weak (Qian et al., 2017). From earlier studies, the 

usage of SLAM technology was examined in several works 

(James and Quinton, 2014; Ryding et al., 2015). They discuss 

about the HMLS ability to map complex environment 

approximately 40 times faster than TLS, and as fast as a photo-

survey method, processed by structure from motion and multi-

view stereo algorithms. Additionally, the ability to derive DBH 

comparable with TLS estimation was achieved (modelling 

success rate of 91 % with DBH > 10 cm). 

Improvement of GNSS/INS reduced by forest stand features 

with application of the LiDAR-based SLAM technique is 

studied in the southern boreal forest zone (Qian et al., 2017). 

Results show the horizontal positioning accuracy of an entire 

trajectory of 800 m is 0.13 m. The another study presents the 

influence examination of scan density, when single tree 

attributes need to be estimated (Perugia et al., 2019). For the 

single-tree attributes assessment a10 m scan path provided the 

best results, with an omission error of 6% in pure Castanea 

sativa (Mill.) stands cultivated for fruit production. For reaching 
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a precision which complies with the accuracy standards for land 

survey, two types of SLAM devices were used (Chudá et al., 

2020). Comparing with GNSS and total station measured data 

the RMSE of under-canopy object position were 25.3 cm and 

28.4 cm. Two SLAM methods for odometry and mapping 

comparison was presented in (Nevalainen et al., 2020). Both 

methods present 85% agreement in registration within 15 m of 

the strip road and accuracy of odometry 0.5 m per 100 m. The 

device has been mounted on a harvester with a laser scanner and 

GNSS performing forest thinning. The pulse-based backpack 

laser scanner with in-house developed SLAM were utilized 

(Hyyppä et al., 2020b) when the derivation of stem curve and 

volume were examined. The positioning error of individual 

points is on the order of 10–20 cm after the SLAM algorithm 

application. The circle's coordinates in the TLS point cloud at 

the height of 1.3 m was basis for the reference tree position 

determination. 

 

This paper is focused on the use of carried integrated devices 

under the vegetation cover and the subsequent evaluation of the 

accuracy of determining the position of objects when their 

position is automatically derived from the data products of the 

mentioned devices. In this paper, to obtain navigation solutions 

for trajectories under the forest canopy GNSS/INS data were 

used as well as solution produced by HMLS using SLAM 

technology. The image of the environment was recorded in the 

form of a point cloud created by HMLS, then natural and 

artificial objects were extracted from the point cloud. These 

objects were used for evaluation of the positional accuracy of 

the points recorded under the forest cover. 

Goal of this paper is to verify the positional accuracy of objects 

under forest canopy measured with different approaches to data 

collection in non-ideal conditions, without the use of latest 

positioning kits designed for challenging environment. The area 

of interest was mapped by SLAM technology, according to the 

recommendations and results of our previous research, a 

procedure optimal for the forest environment. To evaluate 

performance of devices not consisting of an additional devices 

kit, and their essence and purpose is defined by the task. 

2. MATERIAL AND METHODES 

2.1 Study area 

For the needs of this study, two similar tree composition stands 

were selected. The stands have different ages and different 

densities of individuals. During the selection of sites for 

research areas, we followed the visual assessment of the stands 

in the first step. The aim was to select localities which differs in 

the number of individuals and the difference in average DBH 

will increase twofold. Two localities with density 133 trees/ha 

(locality 1) and density 344 trees/ha (locality 2) were chosen 

(Figure 1). Two research sub-plots were established in each of 

the mentioned stand locality, in the shape of a square measuring 

25 x 25 m (locality 1 – F, G; locality 2 – A, B). The corner 

points of the research plots were stabilized, marked, and 

measured by the total station. To establish a high accuracy, 

position the corner points was measured from the standpoints 

with ideal conditions for measurement by GNSS technology. 

 
Figure 1. The research areas - a managed forest located in the 

Central Slovakia. 

 

2.2 Reference data 

The reference data were the centres of the upper walls of the 

cubes, distributed along the lines in the research area. The 

reference objects - cubes were placed in a checkerboard pattern 

throughout the research plots, in lines with regular spacing 

between objects and regular line intervals. Also, DBH of all 

trees was measured at the height of 1.3. with diameter tape. 

After measuring the DBH of all trees, we can state that the data 

collection sites were suitably differentiated, for research 

purposes. At the locality 1 there are 25 individuals in on sub-

plot F with the average DBH 31.2 cm, and 55 individuals with 

an average DBH of 21.6 cm on the sub-plot G.  

At the sub-plot A located in the locality 2 lies 98 individuals 

with an average DBH of 6.8 cm and at the sub-plot B 58 

individuals with an average DBH value of 9.8 cm were 

measured.  

 

2.3 Experimental data collection 

To obtain navigation solutions for trajectories under the forest 

canopy, GNSS/INS data were collected by a NovAtel SPAN 

system and processed using the Waypoint Inertial Explorer 

software package. Simultaneously, to obtain the same trajectory 

and additional view of the environment the HMLS GeoSLAM 

ZEB Horizon with SLAM technology was used. It produces a 

point cloud with data acquisition 300 000 points/sec. with 

relative position accuracy 1 - 3 cm and maximum range of 100 

m. The INS records data in the form of a trajectory which the 

device describe as a line of points. It was necessary to create 

reference point signallers over which it would be possible to 

cross with both devices. At the same time, it was necessary to 

use objects with the shape that is easy to identify in the point 

clouds acquired by SLAM device to calculate their centre 

coordinates. Also, the position of all trees, as well as DBH, 

were recorded the same way. Data collection took place 

simultaneously (Figure 2) with both devices at the same time to 

ensure the same conditions for all collection forms. 
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Figure 2. GeoSLAM ZEB Horizon and IMU backpack SPAN 

NovAtel during data collection. 

The devices were carried in a uniform rectilinear motion across 

the research plots according to predefined schemes (Figure 3). 

The central points of both devices were carried above the 

reference object. 

 
Figure 3. Schematic representation of the movement around the 

sub-plots - dense, medium, and sparse area coverage. 

Three forms of data collection were accomplished. Depending 

on the intensity of the area covered and the number of turns 

during the data acquisition, they can be named as dense, 

medium, and sparse lines. 

2.4 Data processing 

INS data - files containing trajectory records – were processed 

in Waypoint Inertial Explorer software. The RINEX correction 

files adding was needed. Afterward, for data processing, the 

tightly coupled method could be used. 

HMLS data were pre-processed directly in the field immediately 

after recording in GeoSLAM Hub as part of the data collection 

process when the algorithm evaluates and processes the 

recorded data. The next step was the transformation of point 

clouds into the S-JTSK coordinate system according to 

reference geodetic spheres placed at the corner points of the 

research areas. Their locations were measured as a part of the 

reference data collection process. The procedure for extraction 

and calculation of the position of the reference objects was as 

follows. For easier handling, point clouds were reduced to a 

height of 2 m above the ground. Then, based on a 20 cm 

distance zone around the reference objects (Figure 4), the cubes, 

and their immediate surroundings, were cut out of the point 

cloud. 

 
Figure 4. Reference artificial object. 

The procedure for the diameter of trees derivation in the 

program DendroCloud 1.50, was described in more detail in 

several works (Chudá et al., 2020; Hunčaga et al., 2020; Koreň, 

2019). Most parameters were left at predefined values. The 

thickness of the point clustered section was determined at five 

centimetres, concerning the overall dimensions of the cubes 

(Figure 5). The cross-section height was selected according to 

the place on the reference cube where the reference point was 

measured therefore the cross-section contained an area with the 

location of the reference point. 

 
Figure 5. Example of the reference object position calculation.  

Although the program is used primarily to derive stem 

thicknesses, the Centroid method derives the stem position as 

the arithmetic mean of the points of the spatial cluster. The 

radius is approximate by the mean distance of the points from 

the stem position. Due to the fact, in this case, it is not the 

radius that is important but the position, which was calculated 

as described above, the procedure was satisfactory. 

The position of the trees was derived according to mentioned 

study, too. The resulting product is therefore a data set 

containing, in addition to data on the position of the trunk, its 

derived DBH. 

 

In the case of creating pairs between reference and derived data 

from INS, we proceeded as follows: The basis for the work was 

the trajectory of the SLAM device and GPS time data from both 

devices. In the first step, we determined the zero point - the 

place at the beginning of the trajectories of both devices, when 

the operator was already in motion and the trajectories were 

visually as close to each other as is possible on the way there 

and on the way back from the stand. Because the HMLS device 

achieved very accurate results, we used data from it as a basis 

for processing. Based on GPS time data, we recorded the 

duration of data collection in seconds from the zero point until it 

is reached again. Subsequently, we converted the absolute 

values to relative, which gave us the answer to the question: 

when were both devices above the reference point. After finding 

the corresponding a relative value in the INS data, we were able 

to identify the reference data with the data from the INS 

trajectory. Thus, to obtain the coordinates of the points that 
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should have been above the reference object at a specific 

collection time and to calculate their differences with respect to 

the specific reference objects - cubes. 

 

Preceding the evaluation of the data, a pair of reference and 

derived positions was identified. The maximum distance 

between position extracted from trajectories is 4.0 m so that a 

cube model from a neighbouring row cannot be assigned. The 

value is used for logical control and exclusion of inclusion of 

extremely remote values in the evaluated files. In the case of 

natural and artificial objects whose position was taken from a 

point cloud, the threshold value was 0.284 m. 

 

2.5 Study methods 

The experiment was focused on evaluating the accuracy of 

position determination of points derived from HMLS point 

clouds using SLAM technology and point clouds representing 

the trajectory of INS equipment. In the statistical evaluation of 

positional accuracy of point determination, we based on the 

principles of quantitative validation of value errors (Sedmák, 

2009; Šmelko, 2015; Yang et al., 2004). 

The following equations were used for the accuracy evaluation 

of the natural and artificial object positions extracted from point 

cloud, and for trajectory accuracy assessment. 

    (1) 

 

    (2) 

 

      (3) 

 

    (4) 

 

  (5) 

 

   (6) 

 

 (7) 

Where:  x, y, z = object coordinates (cubes/trees/trajectory 

points) 

n = number of identified cubes/trees/trajectory points 

se = standard deviation 

 

The significance of position estimation errors was tested by 

one-way ANOVA with a post hoc Tukey HSD test in Statistica 

software (Statsoft Inc., Tulsa, OK, USA). 

 

3. RESULTS 

The following section presents the research results. For better 

appreciation of results, we present, the approximate travel 

distances for every data collection type: dense – 480 m, medium 

– 370 m, sparse – 360 m. The low difference between medium 

and sparse is caused by the fact that each research area had a 

different starting point for data collection to achieve optimal 

conditions for collection (free space without crowns). The time 

aspect, the positional accuracy of the objects extracted from 

point cloud (natural and artificial objects), the accuracy of the 

trajectories of the GeoSLAM ZEB Horizon device and the 

trajectories of the inertial navigation system SPAN NovAtel 

were evaluated (Table 1). Testing of the statistical significance 

of the bias was performed with a One-sample T test (a 95% 

confidence level, p-value <0.001). For cases where the 

statistical significance of the systematic error was demonstrated 

in the evaluation of the differences calculated for the reference 

and derived coordinates in the direction of the X, Y and Z axes, 

we present the modified values a in parentheses.  

Positional accuracy Dimension Average RMSE 

artificial objects 

(cubes) 

(2D) SLAM 0.26 (0.14) m 

(3D) SLAM 0.29 m 

trajectory accuracy 

evaluated 

at artificial objects  

(2D) INS -

postp. 
9.93 (9.185) m 

(2D) SLAM 0.13 m 

(3D) SLAM 0.40 (0.215) m 

natural objects  

(trees) 

(2D) SLAM 0.09 m 

(3D) SLAM 0.23 (0.215) m 

Table 1. Results of positional accuracy assessment – average 

RMSE values (in parentheses - the values after counting out the 

systematic error). 

3.1 Time 

The time required is not high, as the collection lasted a 

maximum of 18 minutes and a minimum of 7 minutes (Table 2). 

With the planned and pre-marked direction of movement, the 

differences between sites of different characteristics are within a 

few minutes. The area coverage density affects the duration of 

data collection.  

Locality I. (133 trees/ha)  

sub-plot  
Duration for coverage intensity  

dense  medium  sparse  

F  15  11  ?  

G  16  18  8  

Locality II. (344 trees/ha)  

sub-plot  
Duration for coverage intensity  

dense  medium  sparse  

A  13  8  7  

B  14  11  12  

 

Table 2. Comparison of data acquisition duration at research 

plots. 

3.2 Artificial objects  

RMSE acquired the following values when evaluating the 

positional accuracy of objects – cubes: at the plot 1 the total 

RMSE acquired the highest value on the sub-plot F for the 

second type of trajectory (medium) 0.125 m, on the contrary the 

lowest value was also recorded on the sub-plot F for the first 
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type trajectory (dense) 0.105 m. At the plot 2, the differences in 

RMSE between sub-plots are evident. The values of the total 

RMSE in the first sub-plot A acquire the values 0.068, 0.090 

and 0.085 m, while in the sub-plot B the values are several 

times higher - 0.798, 0.852 and 0.832 m. In the case of plot 2, 

RMSE grows directly moderately with higher area coverage. 

 

3.3 SLAM trajectory 

When evaluating the positional accuracy of HMLS trajectories, 

133 differences between points on trajectory and reference 

points at plot 1 and 113 differences at plot 2 out of a total of 12 

measurements were processed.  

The RMSE in evaluating the positional accuracy of the HMLS 

trajectory acquired the following values: the total RMSE 

acquired the highest value at site 1 in sub-plot F in the first type 

of data collection 0.432 m. It acquires the lowest value at the 

studied locality at the sub-plot G at the third type of data 

collection 0.299 m.  

At the plot 2, RMSE acquires the highest value in sub-plot B at 

the second type of data collection 0.566 m. The lowest RMSE 

value can be seen at the partial area A at the first type of data 

collection 0.399 m. It is evident that a very high value of the 

partial RMSE in the Z direction, which is in all cases several 

times higher than the values in the directions of the other two 

axes, has a significant effect on the RMSE results. 

 

3.4 IMU trajectory 

The evaluation of the positional accuracy of the INS trajectory 

brings the following outcomes: At the plot 1, the success rate 

was significantly worse than in the case of the plot 2. Out of six 

trials at the plot 1, the calculation was completely successful in 

only two cases and in the remaining cases the processing 

software reported a data error that does not allow further 

processing. In the case of plot 2, the results were more 

favourable, out of six attempts, we encountered a calculation 

failure in only one case. A total of seven trajectories were 

successfully calculated from twelve collection tests at the two 

research plots. 

At the plot 1, 60 differences between points on trajectory and 

reference points, and 132 differences at plot 2 out of a total of 7 

measurements were processed. RMSE obtained the following 

values when evaluating the positional accuracy considering the 

X and Y axes: the total RMSE gained the highest value at plot 1 

in sub-plot G at the second type of data collection 2.83 m. It 

acquires the lowest value in the given locality on the partial area 

F at the first type of data collection 0.927 m. At plot 2, RMSE 

acquires the highest value in sub-plot B at the third type of data 

collection 15,729 m. It acquires the lowest value in the given 

locality in the sub-plot A at the first type of data collection 

9.925 m. 

 

3.5 Natural objects 

The primary way to evaluate the positional accuracy of the used 

devices can be considered the evaluations of the accuracy of the 

reference point signals described above. In the following 

section, the evaluation of the positional accuracy of the derived 

positions of the trees extracted from the point cloud created by 

HMLS with SLAM continues. 

During the evaluation, 217 differences between derived and 

reference tree position at the plot 1 and 301 differences at the 

plot 2 out of a total of 12 measurements were processed. The 

RMSE in the evaluation of the positional accuracy of the objects 

took the following values: at the plot 1 the total RMSE acquired 

the highest value on the sub-plot F at the third trajectory type 

0.117 m, on the contrary the lowest value was recorded on the 

partial area G at the first type of trajectory 0.137 m. At the plot 

2, the differences in RMSE between the sub-plots are not as 

evident as was the case when evaluating the positional accuracy 

of artificial objects - cubes. The total RMSE gained the highest 

value in the sub-plot and in the first type of trajectory 0.501 m, 

on the contrary, the lowest value was also recorded in the sub-

plot A in the third type of trajectory 0.232 m. At the plot 2, the 

total RMSE values are in each case higher by more than 10 

centimetres, which we attribute to the impact of the stand on 

data collection. 

 

4. DISCUSSION 

We tested hand-held mobile laser scanner GeoSLAM ZEB 

Horizon and inertial navigation system SPAN NovAtel inside a 

forest environment for accurate positioning. These devices 

differ mainly in the way they access location data. Although the 

INS provide position data immediately, without additional 

devices the positional deviations appear too high. In contrast, 

HMLS requires postprocessing, the quality of positional data for 

both investigated types of objects (natural and artificial) are 

many times higher. One of the assumptions was the claim that 

by thoughtful data collection it is possible to refine the 

estimation of the location of objects to the level which complies 

with the accuracy standards. We can clearly state that the data 

from the used HMLS meet the assumptions in all directions. In 

this work we achieved an average RMSE determination of the 

position of derived artificial objects at the level of 0.26 m in 2D, 

and average RMSE accuracy of the device trajectory 0.403 m in 

3D. 

 

With the INS device an average size of the horizontal position 

deviation (2D) in real time of 2.3 ft (0.70 m) and after 

postprocessing processing of 1.4 ft (0.42 m) compared to the 

reference data from the total station was achieved (Reutebuch et 

al., 2003). Also with the NovAtel device, publishes results on 

solving the position of the vehicle's trajectory points in a forest 

environment at the sub-meter level (Soloviev et al., 2012).The 

fusion integrating the laser sensor and GPS technology in the 

off-line generation of the stand map achieved an accuracy of 

determination with an error of 0.55 m (in 2D) measured at 

sample points (Aguiar et al., 2020; Rossmann et al., 2009). In 

this case, we see similarities in the design of the experiment and 

the technology used, where accuracy is evaluated at reference 

points and we can say that using GNSS technology in 

integration with IMU, we achieved in 2D an average RMSE of 

9.93 m, in the case of SLAM equipment and position of 

artificial objects to 0.13 m, for natural objects up to 0.09 m. 

Comparing the results with the work of (Hussein et al., 2015) on 

autonomous navigation in the forest operating based on 

scanning scans with an average error in the position of the robot 

of less than 2 m, the results of our research are not shown in the 

best light. It should be noted that the mentioned works date back 

several years, so there is a presumption of the progress of the 

compared technological procedures and increasing the accuracy 

of positioning in the forest. Essential in all the mentioned works 

the carrier on which the device is placed, because the motorized 

devices are not capable of such sudden changes of movement as 

the operator during walking. We therefore assume that this 

factor has a significant impact on the quality of the results. It is 

also important to note that data from site 2 - young, denser stand 

- have a significant share in the final average RMSE. At the 

same time, those are disproportionate to the data from locality 1 

- older stand, the data from only two collections were 

successfully evaluated, while at site 1 were five successful 

collections. For information, we state that after data distribution, 
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the average RMSE at site 1 is 1.66 m, while at site 2 it is 9.16 

m. 

When comparing our results of GNSS integration with IMU in 

2D, we lag the work, which also works with the fusion of GNSS 

and INS and achieves a positional accuracy of 0.13 m in 

mapping (Qian et al., 2017). The authors used GNSS and INS 

data to correct SLAM device data, and thus it is more complex 

forest mapping solution than INS backpack SPAN (GNSS + 

INS) provides separately. From recent work, author described a 

point cloud coupling approach based on Delaunay triangulation 

in autonomous harvester navigation, where 2D localization 

accuracy result was at a 12 cm error level on the tested sequence 

in real time at speeds up to 0.5 m/s (Li et al., 2020). However, 

as in the case of the previous work (Qian et al., 2017) GNSS 

and INS are used in integration with another system, which 

allows both wider usability and more accurate results. Authors 

discuss about combining laser odometry with IMU when 

measuring a stem diameter with an error of 7.1 m at a length of 

260 m (Hyyti and Visala, 2013). This value is similar to our 

results when evaluating the INS backpack trajectory in 2D, 

where we achieved an average RMSE of 9.93 m, the similarity 

of the work we see in both cases is not an advanced fusion of 

modern sensors and different real-time positioning methods, as 

we are talking about odometry in combination with IMU. 

Recent works maps for example an unstructured environment in 

the form of a snowy forest using a fusion of IMU, GPS, 

LIDAR, and camera sensors where the error in trajectory shift at 

the level of 0.36 m (Chahine et al., 2021). It is obvious that this 

result is much better in 3D (SPAN GNSS and INS - average 

RMSE 9.93 m), but again it is important to emphasize that the 

integration of sensors refines the results significantly. 

Based on this work and the previously mentioned work, we 

state that integration is more than desirable if we consider using 

the GNSS + INS assembly for space mapping or positioning. It 

is important to consider the circumstances and determine the 

exact requirements for specific research tasks, as well as to 

consider the costs of procuring equipment and possible 

substitution for other options which are more advantageous. 

 

To clearly demonstrate the potential of HMLS with SLAM 

technology, a comparison with other options is needed in terms 

of data collection efficiency in a specific environment. The 

authors use different methods and procedures, for comparison it 

is appropriate to calculate the area (m2) versus time (min.) per 

operator. Some authors performed relatively long-term data 

acquisition, which could be caused by nature of research 

location, e.g., a value of 20 m2/min. per operator (Ryding et al., 

2015) or 30 m2/min. per operator were achieved by (Chen et al., 

2019). Both studies were held within forest stand in extravillain. 

On the other hand, some works demonstrate much more 

effectivity during data collection. Study carried out in an urban 

park with effectiveness of 107.53 m2/min. per operator (Cabo et 

al., 2018). Even more outstanding results with a value of 123.81 

m2/min. per operator at a coastal cliff were published in (James 

and Quinton, 2014). In our study, average data acquisition time 

for locality 1 (133/trees/ha) was 50.08 m2/min. per operator and 

61.51 m2/min. per operator at the locality 2 (344trees/ha). These 

outcomes are comparable to similar studies located at forest 

stands mentioned before. Our results underline the fact that tree 

density on location where the research is carried out has an 

impact on duration of data acquisition. 

 

When assessing the work dealing with SLAM technology in 

specific forest conditions, our results are comparable with 

results achieved in 2D when deriving the amount of biomass 

with a maximum error <32 cm, with the technology of 

combining scans based on SLAM (Tang et al., 2015). With the 

Google Tango was reached RMSE over one meter for the Spiral 

pattern and 0.20 m for the Sun pattern of data collection 

(Tomaštík et al., 2017). 

 

Comparing SLAM HMLS with TLS in deriving DHB and tree 

position shows that the position of the trunk reached RMSE at 

1.5 cm and 2.1 cm (Ryding et al., 2015) . The trend of using 

TLS results as reference data is evident mainly in works focused 

on derivation of DBH, or other characteristics of individual 

trees or stands e.g., (Hyyppä et al., 2020c) in work about 

derivation of stem curves and stem volume from point cloud 

acquired by carried MLS. The positional RMSE 20 cm (HMLS) 

and 62 cm BPLS (backpack laser scanner) were achieved by 

(Oveland et al., 2017). Later, TLS, HMLS and a BPLS were 

compared with GNSS and total station referred dataset and 

reached positional RMSE 82 cm (TLS), 20 cm (HMLS) and 62 

cm (BPLS), and also 6.2 cm (TLS), 3.1 cm (HMLS) and 2.2 cm 

(BPLS) RMSE of DBH (Oveland et al., 2018). 

 

However, when evaluating the position of objects in real space, 

we consider it as necessary to operate with reference data, 

which are made according to certain standards for a specific 

type of task. When researching the use of SLAM technology in 

a forest environment achieves a mean tree positioning error of 

4.76 cm with automated 3D mapping in forests with a tailor-

made mobile platform (Pierzchała et al., 2018). Our results in 

evaluating the positional accuracy of objects are RMSE 29 cm 

for unnatural (cubes) and RMSE 23 cm for natural objects 

(trees). In research focused on real-time appearance mapping of 

trees for large-scale forest inventory, RMSE reached more than 

30 cm in the x, y and z axes (Fan et al., 2020). This is followed 

by our results and the average RMSE with a height of 40 cm, 

which we achieved when evaluating the accuracy of 

determining the position of the SLAM trajectory in the forest 

environment. The exploration concludes with the work focused 

on navigation and mapping in forest environments using sparse 

point clouds (comparison of two methods for autonomous 

harvester navigation - sparse sSLAM and standard LeGO-

LOAM - dense SLAM method) with an average positioning 

error against GNSS of approximately 50 cm per 100 m of the 

path (Nevalainen et al., 2020). 

 

SLAM technology has potential to be widely used in forestry 

practice in many tasks. Based on previous research, we assume 

the negative impact of the high range of the device and the 

dense coverage of the area in an environment where the objects 

are very similar to each other (forest environment - trees). These 

enter the SLAM algorithm just at the limit of the range of the 

device, and due to the mentioned properties, they can be 

interchanged, as their morphological structure is similar, and the 

terrain conditions are never ideal. Therefore, we proposed at the 

beginning of the experiment to determine the maximum 

distance from which the collected points will enter the SLAM 

algorithm and use this value when exporting data, which will 

also ensure more acceptable hardware computing capacity, as 

the data will be smaller. The above information forms the basis 

for planning further experiments. 

The analysis of variance showed that the data do not show a 

significant difference in the case of evaluating the positional 

accuracy of artificial objects at defined inputs (stand age and 

density of the research area). We consider this result to be 

crucial and its confirmation should be verified by identical 

experiments on stands which will be even more different in the 

stand characteristics than the ones we have selected for the 

needs of this topic. 
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5. CONCLUSION  

The main goal of the presented work was to evaluate the 

positional accuracy of objects recorded by alternative 

approaches in the field of obtaining positional data in the forest 

environment. Following this, assess the suitability of the use of 

individual technologies in relation to the standards of 

positioning accuracy, as well as a possible increase in the 

effectiveness of mapping work in the forest environment. The 

high potential of the devices and the application of data 

collection methods into forest practice were pointed out in the 

results of this study. In this study, horizontal position of 

artificial objects (cubes) was evaluated with the average RMSE 

of 0.26 m and the average positional RMSE of the derived 

natural object (trees) was 0.09 m, both extracted from HMLS 

with SLAM achieved. The horizontal positional accuracy of 

trajectories with RMSE of 9.93 m (INS) and 0.40 m (SLAM) 

was accomplished. 
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