
 PERFORMANCE ANALYSIS OF SEMANTIC REFRESH INDOOR NAVIGATION FOR 

SMARTPHONE’S SENSORS USING INS/VINS INTEGRATION SCHEME 

 
 

Cheng-Xian Lin 1*, Jhih-Cing Zeng 1, Mei-Chin Hung 1, Meng-Lun Tsai 2, Kai-Wei Chiang 3  

 
1 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan - e9971217@gmail.com, 

1 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan -  jessica31017tngs@gmail.com, 
1 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan -  sylviahung85@gmail.com, 

2 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan - taurusbryant@geomatics.ncku.edu.tw, 
3 Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan - kwchiang@geomatics.ncku.edu.tw 

 

 

Commission I, WG I/7 

 

 

KEY WORDS: Semantic, YOLO-v3, INS, VINS, Sensor Integration, Indoor Navigation, GNSS-challenging, Smartphone. 

 

ABSTRACT: 

 

Positioning and Orientation System (POS), which integrates Inertial Navigation System (INS) and Global Navigation Satellite 

System (GNSS), is widely used to accomplish outdoor navigation missions for land vehicles. However, the positioning accuracy 

would become worse in GNSS-hostile environments (Chiang et al., 2013), which is quite challenging to accomplish indoor 

navigation environments.  Nevertheless, smartphones are contained many embedded sensors, including GNSS, IMU, camera, which 

have the potential to be an ideal personal navigation device. In this research, we mainly propose an integrated scheme of 

INS/VINS/object detection refresh (ODR) for indoor challenging environments. The goal is to achieve indoor navigation for 

vehicular applications only using smartphones. The algorithm is developed based on the smartphone. By the conventional inertial 

navigation system, which is integrated with two designed processes to further improve the performance. First is assistance from the 

visual-inertial navigation system (VINS). The long-term drift caused by the INS could be decreased effectively, and complete the 

extended Kalman filter (EKF) composition. The second is to apply neural network, YOLO-v3 (Redmon et al.,2018), to detect objects 

and provide the object's describer information to refresh the proper position. Therefore, the proposed method uses visual estimation 

and recognition methods to assist the smartphone platform to obtain a more accurate solution. 

Finally, we use the navigation-grade IMU as the reference system for accuracy verification. The accuracy comparisons of the three 

integration solutions are analysed reasonably. The position accuracy is reasonable. Compared with the original smartphone INS 

integration method, the proposed integration scheme improves the accuracy from the horizontal direction by 78.5%. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Nowadays, the navigation estimation technology of land 

vehicles has been gradually innovated. This technology will 

integrate different platforms and a variety of sensors, equipped 

with a global navigation satellite system, inertial navigation 

system, integrated micro electro mechanical systems (MEMS), 

software engineering, and other components to assist the 

structure of navigation technology. Specifically, in GNSS-

challenge environments like the concrete jungle of the urban 

city or indoors, the availability of GNSS would be degraded 

extremely (Chiang et al., 2013). Consequently, simultaneous 

localization and mapping (SLAM) using cameras or lidars in 

INS integration schemes is currently becoming more popular as 

well (Chu et al., 2012) (Li et al., 2019). The application of 

multi-sensors such as visual odometry (VO), lidar odometry 

(LO) enables the redundancy of the classical state estimation 

methods and improves the robustness of the current algorithms 

(Liang et al., 2020). Accurate indoor navigation is a coveted 

objective, which can be achieved through the strategy of multi-

sensor integration. However, in indoor environments where 

GNSS signals are occluded, a variety of indoor positioning 

methods have been proposed. But most methods are expensive 

and can be difficult to implement. For example, Wi-Fi and 

Bluetooth based positioning and assistance from other sensors 

(Huang et al., 2017) (Zhang et al., 2017) (Zhuang et al., 2016). 

However, these solutions are mostly designed based on 

pedestrian thinking and require the placement of additional 

equipment such as Bluetooth beacons or WiFi routers. 

Smartphones are the most prospective personal navigation 

devices, whether in pedestrian or in-vehicle mode. However, 

with the low-cost design of smartphones, the measurement 

quality is unsatisfactory. At present, several studies using 

smartphones related to navigation have been proposed.  

For example, the smartphone fusion location method optimized 

by indoor/outdoor detection is proposed. Using the lightweight 

sensor, the magnetic sensor and the satellite signal are 

integrated to recognize the indoor/outdoor status (Zeng et al., 

2017). And one completed the evaluation of sensors in modern 

smartphones (Forster et al., 2012). But the main purpose is 

vehicle traffic monitoring, not vehicle navigation applications. 

On the other hand, visual-inertial odometry (VIO) is proposed 

in the visual to assist the drift of the accumulated error of the 

IMU through visual estimation (Forster et al., 2012) (Mueggler 

et al., 2018) (Huai et al., 2018). Among those VIO algorithms, 

the VINS is an algorithm that integrates camera and IMU data 

to achieve visual odometry (Qin et al., 2018). 

So far, there is no single technology that can provide reliable 

indoor positioning. In particular, several major problems need 

to be overcome. The first is that indoor navigation solutions 
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need to rely on additional equipment. The second is that most 

indoor navigation solutions using smartphones are specially 

developed for pedestrians. Applications need to be developed 

with vehicle navigation, even with indoor navigation. Therefore, 

two integration schemes are developed to overcome the above 

problems, namely INS/VINS with visual-inertial odometry 

assistance, and INS/VINS/ODR integration scheme with 

semantic recognition refresh algorithm. The purpose is to focus 

on indoor vehicle navigation applications using smartphones in 

this study. There is also no need to mount other additional 

equipment on the vehicle to achieve navigation. 

 

2. METHODS 

2.1 The Proposed VINS aided INS integration scheme 

In this research, this loosely coupled INS/VINS integration 

scheme is shown in Figure 1. The EKF is integrated into the 

multi-sensor measurement of smartphones. Particularly, the 

IMU raw measurements include specific forces and angular 

velocities in three axes with six degrees of freedom. The IMU 

error model is based on the mechanization of the INS. The 

position (r), velocity (v), and attitude (ψ) can be derived from 

the INS mechanization based on the compensated observations 

of three axes gyroscopes (g) and accelerometers (a). Among 

them, the position (
vr ) velocity (

vv ) are developed from the 

VINS on the basis of fusing the advantages of INS and visual 

estimation. Furthermore, in the designed EKF, the biases (b) 

and scales (s) of IMU observations are estimated, and the 

complete navigation states (S) can be listed as the following 

equation. Instead of estimating the navigation, the state 

transition matrix predicts the state errors at the next epoch and 

calculates the uncertainties. 

 

1 27v v a g a gS r v r v b b s s


 =    (1) 

 

 

Figure 1. The proposed VINS aided INS integration scheme 

 

Modern people rely on smartphones to provide sufficient 

location services for GNSS navigation support in outdoor 

scenarios. Due to the limitations of smartphone sensors, 

integrated navigation solutions relied on low-cost inertial 

sensors within smartphones alone cannot retain sufficient 

accuracy in GNSS challenging areas or indoor scenarios. In this 

research, other vehicle motion constraints, such as NHC, ZUPT, 

and ZIHR, are also adopted. The details of these motion 

constraints will be explained in the following part. 

In the applications of indoor vehicle navigation, GNSS signals 

will be completely blocked and shielded. However, in this case, 

the conventional pure INS integration is expected to have a 

long-term error accumulation even after applying those motion 

constraints. Therefore, the VINS is applied to improve accuracy 

over the driving distance. The features of most indoor parking 

lot scenarios can be easily extracted and matched by the VINS 

algorithm, which not only provides a robust position but also 

limits drift caused by long-running INS. This is a significant 

pre-eminence to acquire continuous relative orientations 

including position and attitude. Finally, VINS solutions are 

transformed into the position and velocity as the input in the 

designed integrated scheme. 

 

2.1.1 Joint Calibration 

In this part, we adopt an extension to the joint calibration tool 

Kalibr that allows for determining the extrinsic and intrinsic of 

multiple IMUs in a single estimator. We further demonstrated 

that it is feasible to infer the location of individual 

accelerometer axes to millimeter precision (Rehder et al., 2016). 

The method mainly calibrates a sensor suite that includes one or 

multiple IMUs and one or multiple external perception cameras. 

The goal is to improve the state estimation results of all fused 

sensors in our experiment smartphone. Using an EKF based 

framework was proposed to estimate the exterior orientation 

between the IMU and the camera from a sequence of calibration 

images recorded by moving the device in front of the target 

relationship transformation (Kelly et al., 2009). Consequently, 

we can obtain the configuration of the smartphone with accurate 

internal and external orientation parameters, which can provide 

the solution to good initialization of subsequent visual-inertial 

navigation. However, the smartphone joint calibration is 

calibrated with reference to a combination of a low-cost IMU 

and a rolling shutter camera, as shown in Figure 2 (Lee et al., 

2018). 

 

 

Figure 2. Schematic overview and calibration coordinate 

description of a simulated smartphone calibration. (Lee et al., 

2018) 

 

where   {Ｗ} = coordinate of the world 

 {Ｃ} = coordinate of the rolling shutter camera 

  {Ｉ} = coordinate of the IMU 
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2.1.2 The VINS Aiding Scheme 

Nowadays, many visual odometry (VO) algorithms have been 

proposed, such as LSD-SLAM (Engel et al., 2014), ORB-

SLAM (Mur-Artal et al., 2015) and DSO (Gao et al., 2018), 

which mainly support indoor mapping of robot’s application. 

On the other hand, with the popularity of inertial and inertial 

sensors, visual inertial odometry (VIO) has begun to apply it in 

fields such as autonomous driving. Many algorithms have also 

been proposed, such as MSCKF (Heo et al., 2018) (Sun et al., 

2018), VIO-ORB (Mur-Artal et al., 2017), OKVIS 

(Leutenegger et al., 2015). In this study, after many literatures 

and self-test results, we selected VINS as the main algorithm. 

VINS is a state-of-the-art tightly coupled formulation that not 

only adds image features to the feature vector but also increases 

the dimension of the state vector of the entire system to a very 

high quality, which requires a lot of computational stabilization. 

In order to limit the number of optimization variables to use a 

marginalization strategy, the algorithm is performed using a 

sliding window to make estimates. First, solve for the IMU 

estimation and the camera estimation, and then initialize the 

alignment to estimate the true scale of the camera trajectories 

for both. In addition, the IMU can accurately predict the pose of 

the image feature frame and the position of the feature point in 

the next frame of images. In addition, the matching speed of the 

feature tracking algorithm and the robustness of the algorithm to 

fast rotations are improved. The coordinate system must be 

transformed between the local coordinate system defined in the 

camera and the navigation coordinate system. Finally, the 

velocities in the three directions are converted and used for the 

actual navigation on the navigation coordinate system. Because 

practical car navigation applications do not discuss closed-loop 

scenarios common in vision, the closed-loop optimization effect 

will not be enabled in this study. The VINS sliding window of 

illustration is following as Figure 3. 

 

 

Figure 3. Illustration of the sliding window monocular VINS 

 

2.1.3 Motion Constraints 

When only INS operation and sensor cumulative error, the 

additional aids according to the physical facts of the land-

vehicle motion are essential to enhance stability, with the 

known values from specific modes. For example, zero velocity 

while stopping, and cars usually have near-zero velocities in 

lateral and vertical directions during drive straight. These 

known values are derived from commonly used motion laws 

and provide important updates to control error growth, which 

can be called motion constraints (Shin et al., 2005). These 

constraints can reduce the drift problems of conventional 

navigation systems, especially smartphone low-cost MEMS-

grade IMU. With motion constraints are updated, components 

of the state vector in the Kalman filter are readjusted. Ensuring 

better estimation of the initial state for the following pose 

estimation. In this section, the mathematical models and 

equations related to ZUPT and non-holonomic constraints 

(NHC) are explained. 

Zero Velocity Update (ZUPT) is technique that utilizes the 

static motion of land vehicles to constrain error accumulation 

(Shin et al., 2005). The ZUPT bounds the error accumulation by 

assigning the velocity to be zero in any direction when the 

vehicle is stationary, as shown in Figure 4. In urban scenarios, 

because of obeying traffic rules to react, it is common to employ 

and implement these constraints when a vehicle must frequently 

start and stop. The equation is written as follows: 

 

3 1 3 1
0n

ZUPT INSZ V  
 = −       (2) 

 3 3 3 3 3 21 3 27
0 0ZUPTH I   

=    (3) 

 

where  
ZUPTH  = the design matrix for ZUPT 

 

This ZUPT setting is usually given by the user-defined 

coefficients. Using zero velocity update and velocity error are 

bounded and fixed according to the different platform’s 

characteristics, as well as position errors. Especially, the ZUPT 

is only enabled when static motion is detected. 

 

Figure 4. Schematic of ZUPT 

 

Non-Holonomic Constraint (NHC) expresses that unless the 

vehicle is off the ground or slides on the ground, the vehicle's 

velocity in the plane perpendicular to the forward direction is 

almost zero. NHC is used in most vehicle navigation and has 

effectively reduced velocity and position errors in inclined and 

vertical directions. The NHC-based measurement update shows 

that the forward direction cannot be obtained by the integrated 

navigation solution, which affects the position solution over 

time, and without other sources could lead to errors transiting in 

the forward direction. 

 

2.2 Semantic Refreshed INS/VINS/ODR Integration 

Scheme 

The INS/VINS integration scheme is still subjected to 

significant error accumulation indoors when the smartphone’s 

inertial sensors are applied, even though both IMU and vision 

can complement each other's shortcomings. Therefore, this 

research proposed an idea to use the semantic location 

information extracted from images to act as a position aid to 

control the error accumulation of an INS/VINS/ODR 

integration scheme, as shown in Figure 5. The semantic location 

features here are mainly to give user refreshes that provide 

VINS location and velocity in indoor environments. In this way, 

the georeferenced semantic feature is recognized in the learning 

algorithm. The descriptor from the pre-built model (green 

shadow) is refreshed at the moment when the maximum area of 

the bounding box of recognition occurs. To sum up, using the 
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smartphone to accomplish the pursuit of indoor navigation. 

Details concerning the proposed scheme are described below. 

 

 

Figure 5. The proposed semantic refreshed INS/VINS/ODR 

integration scheme 

 

2.2.1 Object Detection Refresh 

Geo-referenced features acquired by the proposed Object 

Detection Refresh (ODR) algorithm are applied for the position 

refresh process for VINS. This is an innovative algorithm 

developed specifically for indoor vehicular parking applications, 

which can individually provide location information and 

provide updates on indoor environments shown in Figure 6. 

When the vehicle moves closed to certain objects in the indoor 

parking lots such as pillars, the proposed ODR algorithm 

detects and records relevant descriptions, including timestamp, 

serial number, image coordinates, bounding box size based on 

YOLO-v3 (Redmon et al., 2018), and some value of prior 

information, such as locating target (green point) built with an 

indoor mapping procedure. 

The background of this geo-referenced feature includes inertial 

navigation and photogrammetry components. The location of 

each image is known, and the recorded images are used for 

classification and labeling. By appraising a variety of image 

detection algorithms, the most suitable one is YOLO-v3. This 

trained and predicted built model and the positions obtained by 

the mobile mapping system are translated into a pre-built 

dataset. As a result, the positioning target and its narrative 

content are obtained. With the above pre-built content, based on 

the condition that the vehicle must drive in the lane, the method 

of semantic detection can refresh the position by locating targets. 

Consequently, as long as the vehicle drives along the lane in 

that parking lot, location information is obtained whenever an 

object is detected. In conclusion, this approach can be achieved 

even without any pre-built location device.  

 

Figure 6. Schematic of proposed ODR 

 

2.2.2 YOLO-v3 

The process of establishing a model by correcting the weights of 

each layer through learning samples is called training. At 

present, most of the algorithms involve object detection based 

on artificial neural networks (ANN). In this research, the most 

common pillars in indoor scenarios are selected primarily as 

geo-referenced objects, which are easily identified. The current 

algorithm for object detection contains R-CNN, Fast R-CNN, 

Faster R-CNN (Ren et al., 2015) (Girshick et al., 2015), YOLO 

(Chen et al., 2021). YOLO has continuously updated and 

improved algorithms to achieve better performance and improve 

detection capabilities at different levels. Therefore, the YOLO-

v3 (Redmon et al., 2018) of the supervised learning network is 

adopted for object detection in this study. The smartphone is 

installed above the vehicle dashboard, and the recorded content 

handles labeling and description of object details. The results of 

YOLOv3 object detection are shown and the pillars (yellow 

bounding box) are well detected in Figure7. 

 

 
Figure 7. The results of YOLO-v3 object detection 

 

2.2.3 Maximum Area Algorithm 

The algorithm applied to determine the moment when the 

vehicle is about to drive past the pillar in this research is the 

proposed maximum area algorithm, as shown in Figure 8. The 
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images recorded by the smartphone camera are pre-processed 

first, and then the training model pre-trained by YOLO-v3 is 

used for prediction. During the process, the size and description 

of the bounding box of each frame will be continuously 

recorded. After the design time threshold is passed, it considers 

whether the area size of the bounding box is reduced from the 

maximum value to near zero. These updated measurements are 

also used to calculate the primary navigation states, which are 

the 10th to 15th values in the S state from equation 1. 

As for the maximum area algorithm, it is designed based on the 

change of bounding size. The judgment method is composed of 

the threshold value of the area and duration time of the 

bounding box in which the image appears, both of which must 

exceed the threshold value at the same time. After the maximum 

area algorithm is established, the semantic refreshed 

INS/VINS/ODR integration scheme can be carried out. As a 

consequence, the algorithm will then update the position and 

velocity estimated by real-time VINS to correct the accumulated 

error. And record the maximum area value (red circle) of each 

frame, and provide information in combination with a semantic 

application, as shown in Figure 9. 

 

 
Figure 8. Flowchart of maximum area algorithm 

 

Where 
THRA   = threshold of area 

  
DURT  = threshold of duration time 

        = area of bounding box 

        = duration of detection maximum area 

There are empirically 
THRA based and 

DURT  thresholds 

representing area and duration of time, respectively. Then, λ and 

τ represent the area and time measurement. Thus, whenever this 

method is available, the semantic refresh application is provided. 

 
Figure 9. Illustration of the maximum area algorithm for 

detection 

 

3. EXPERIMENT SETUP 

The experiments are divided into two parts. The first part 

focuses on the indoor navigation solution to use the smartphone 

with INS/VINS integration. The second part emphasizes the 

performance of the semantic refreshed aided INS/VINS/ODR 

integration scheme specifically for indoor scenarios.   

The experiments scenario starts from the open sky outset of Tzu 

Chiang Campus, Nation Cheng Kung University (NCKU). 

Drive the general road and verify indoor positioning through the 

library parking lot on the Cheng Kung Campus, and return to 

the starting point. There are two navigation systems equipped 

on the experimental vehicle, iMAR iNAV-RQH-10018, and 

NovAtel PwrPak7D-E2. The reference solution combining 

iNAV-RQH-10018 navigation-grade IMU with powerful 

OEM7 GNSS engine from PwrPak7D-E2 are processed by 

commercial software, which uses carrier phase measurements 

with DGNSS and smoothed mode tightly coupled for 

INS/GNSS integration process are regarded as the true value. 

The antenna used in one of the systems was an Antcom 

72GNSSA-XT-1 choke ring for PwrPak7D-E2, and the other 

system used a NovAtel GPS-703-GGG. In particular, the choke 

ring is resistant to multipath effects. The smartphone can be 

thought of as a multi-sensor combined system in this research. 

Which contains the low-cost MEMS-grade IMU, and rolling 

shutter camera. And the smartphone is mounted on the holder 

on the dashboard, as shown in Figure10. The configuration of 

the experimental reference system is shown in Figure 11. 

 

Figure 10. Smartphone set above the dashboard. 

 

 
Figure 11. The experimental configuration of reference system. 
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4. RESULTS AND DISCUSSION 

4.1 Performance Analysis of INS Integration Scheme 

This is the analysis result of the INS integration solution of the 

smartphone compared with the reference system. Therein, the 

blue line means the smartphone pure INS integration result, and 

the red line means the reference, as shown in Figure 12. The 

size of this indoor parking lot is about 80x75 meters. And the 

experimental test indoor travel time is about 300 seconds. This 

shows that it is not ideal to only use the IMU of a smartphone 

for navigation estimation applications. Using it for navigation 

may cause the user to become disoriented. The position errors 

of the E and N directions are 6.96 meters and 2.87 meters, and 

the height direction is about 7.53 meters, as shown in Table 1. 

 
Figure 12. The trajectory of INS integration method 

 

4.2 Performance Analysis of INS/VINS Integration Scheme 

The statistics with the smartphone for INS/VINS integrated 

filtered solutions are shown in Table 1. The horizontal position 

of the proposed INS/VINS scheme is shown in Figure 13 as 

well. The orange line is the reference system trajectory, and the 

pink line is the INS/VINS integration scheme. The results 

illustrate that with the addition of VINS assistance, the errors in 

the horizontal and vertical directions have been greatly 

improved and smoothed. In the RMSE position error analysis, 

the horizontal error is reduced by about half compared to the 

previous one, and the height error was reduced to 0.178 meters. 

 

Figure 13. The trajectory of INS/VINS integration method 

4.3 Performance Analysis of Semantic Refreshed 

INS/VINS/ODR Integration Scheme 

The orange line is the reference system trajectory, and the green 

line is the proposed semantic refreshed INS/VINS/ODR 

integration scheme, as shown in Figure 14. When the vehicle 

passes through the pre-build model and detects objects, that is 

the described point (red square) to refresh the position in the 

proposed algorithm. Overall, the position accuracy analysis 

shows that the trajectory results have been greatly improved. 

Whether it is E and N direction errors or three-dimensional 

errors are drastically reduced. 

 

Figure 14. The trajectory of proposed integration scheme 

 

Unit: 

Meter 

Position 

Error 
East North Height 

INS 

Mean 

Error 
-5.757 -0.271 6.851 

STD 3.885 2.861 26.530 

RMSE 6.955 2.874 7.525 

INS/VINS 

Mean 

Error 
-1.286 -0.112 -0.161 

STD 3.268 1.676 0.075 

RMSE 3.512 1.680 0.178 

INS/ VINS/ 

Object 

Detection 

Refresh 

Mean 

Error 
-0.470 -0.511 0.037 

STD 1.226 0.798 0.080 

RMSE 1.313 0.948 0.088 

Table 1. The analysis of the positioning error, including INS, 

VINS, and proposed integration scheme. 

 

The position error of the final scheme compared to the reference 

system is plotted in Figure 15. Whenever the vehicle records an 

image and detects this geo-referenced feature that has been built, 

the semantics of the object are refreshed. In other words, 

wherever the location and velocity information are refreshed, 

the position is going to be moved to the established locating 

targets (red circle). And continue to calculate the semantic 

refreshed INS/VINS/ODR integration navigation solution. 
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Figure 15. The position error of proposed INS/VINS/ODR 

integration scheme 

 

To sum up, the RMSE of the horizontal position is less than 3 

meters which is very accurate when a smartphone and a 

navigation grade IMU are applied as test and reference systems, 

respectively. Therefore, it can bring very good benefits to car 

navigation with smartphones in indoor scenarios. In conclusion, 

the final proposed fusion model has overcome more of the 

issues mentioned and achieved. The improvement in each 

direction is organized in Table 2. 

 

Navigation Improvement 

Scheme Error East North Height 

INS/VINS RMSE 49.5% 41.5% 97.6% 

Semantic 

Refreshed 

INS/VINS/ODR 

RMSE 81.1% 67.0% 98.8% 

Table 2. Summary of navigation improvement of the indoor test 

 

5.  CONCLUSIONS 

This study proposed indoor navigation by smartphone sensors. 

One is the scheme for the VINS aided INS integration, and 

another scheme is semantic refreshed INS/VINS/ODR 

integration. The smartphone that collected the data was used for 

testing. Moreover, a system comprised of navigation-grade IMU 

by iMAR iNAV-RQH-10018, and differential GNSS receivers 

from PwrPak7D-E2 was used to generate reference solutions. 

The accuracy comparisons of these integration solutions are 

analyzed. As a result of the INS/VINS integrated solution, the 

horizontal position error is about 3.893 meters, which improves 

by 48%. Finally, the result of the INS/VINS/ODR integration 

scheme, the horizontal position error is about 1.620 meters, 

which improves by 78%. For future work, different geo-

referenced objects will be applied as recognition models in the 

integrated system to add new datasets and tests. And the 

objective is optimized for the semantic refreshed 

INS/VINS/ODR integration scheme, and it is expected that 

smartphone GNSS can also be added to form an integrated 

scheme for indoor/outdoor seamless positioning. Ultimately, 

this framework should be integrated with the smartphone 

environment and run directly on this low-cost platform. 
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