
Point Cloud Simulator for Space in-Orbit Close Range Autonomous Operations. 
 
 

L.M. González-deSantos 1*, H. González-Jorge 1, M. Sanjurjo-Rivo 2, H. Michinel1. 
 
 

1 Engineering Physics Group. School of Aerospace Engineering, University of Vigo, Campus Ourense, 32004 Ourense, Spain. 
2 Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain. 

 
 

Commission I, WG I/2 
 
 

KEY WORDS: LIDAR, Point Cloud, Aerospace, Rendezvous operations, on-orbit services, Pose tracking. 
 
ABSTRACT: 
 
In recent years, many different in-orbit close-range autonomous operations have been developed for multiple purposes, such as 
rendezvous and docking operations or ADR operations. In both cases, the systems have to calculate the relative position between the 
spacecraft and the target in order to control the orbital manoeuvres and the physic interaction between both systems. One of the sensors 
used for the pose calculation for these operations are LiDAR sensors, developing pose calculation algorithms that process the point 
cloud acquired by these sensors. One of the main problems for the development and testing of these algorithms is the lack of real data 
acquired in orbit and the difficulty of acquiring this data. This makes it fundamental to develop a simulator to generate realistic point 
clouds that can be used to develop and test pose calculation algorithms. This work presents a simulator developed for this purpose, that 
is the generation of realistic point clouds for algorithm development for pose calculation using LiDAR sensors for space in-orbit close 
range autonomous operations. The simulator uses the LiDAR sensor specifications, in order to introduces measurement errors and the 
scanning pattern, and 3D model of the satellite or object that is scanned.  
 
 

1. INTRODUCTION 

Nowadays, new systems for close-range autonomous operations 
have been developed to perform many different operations where 
the spacecraft have to interact with different targets. One example 
of these operations are the rendezvous and docking (R&D) 
operations, that consists of a series of orbital manoeuvres for 
approaching to the target ending with the mating process. The 
R&D operations are used for many different applications, such as 
on-orbit servicing (OOS) and active debris removal (ADR). OOS 
(Kaiser et al., 2008) basically consists of a R&D operation for 
different service propose, such as refuelling or repairing tasks. 
The objective of these operations is to enlarge operational 
lifetime of satellites, which is especially interesting for 
geostationary satellites. ADR operations (Liou, 2011) basically 
consist of the removal of obsolete satellites in orbit, that suppose 
a collision risks for other satellite and spacecrafts.  
 
Two different targets can be considered in these R&D operations, 
cooperative and uncooperative targets, depending on if they are 
equipped or not with a dedicated communication link for make 
its pose know by other satellites. The R&D operations with 
uncooperative targets are especially challenging, since it is 
necessary first to calculate its pose. Many different pose tracking 
systems have been developed, using different kind of sensors, 
some passive sensors, such as monocular cameras or stereo vision 
systems, or active sensors, such as LiDAR (Light Detection and 
Ranging) sensors. Different algorithms have been developed for 
pose tracking operations. Most of them are model-based 
algorithms (Opromolla et al., 2017), which uses the geometry of 
the target, that is previously known, to calculate its pose. In recent 
years, new deep learning and machine learning algorithms have 
been developed for these pose tracking operations.  
 
One of the main problems in the development of these algorithms 
is the access to data (images or point clouds) from real cases of 
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study. The aim of this work is to create a simulator able to 
generate point clouds from satellite models using the 
specifications of different LiDAR sensors and the relative pose 
between the sensor and the target. In this way, the system will be 
able to generate the point cloud that a LiDAR sensor should 
acquire for different trajectories. This simulator will take into 
account the errors of the selected LiDAR sensor to generate the 
most realistic point cloud possible.  
 
There are two major reasons to create this point cloud generator: 
 
• In the aerospace field, it is necessary a TRL (Technology 
Readiness Levels) 8 at least for hardware and software 
developments to be considered a “flight qualified” system. To 
reach this level for algorithms, it is necessary an exhaustive 
testing, which carries the use of a great amount of data, or in this 
case, point clouds. 
• For deep learning algorithms training, it is necessary a great 
amount of classified data, which can be generated with the 
simulator proposed.  
 
Other authors (He et al., 2017) have already used simulated point 
clouds to test pose tracking algorithms, but in this case the point 
cloud is generated without considering different important 
parameters, such as occlusions, acquisition time, LIDAR 
parameter (errors, point rate, range…), so the point cloud 
generated is not as realistic as it should be. In recent years, new 
deep learning algorithms (Sharma and D’Amico, 2020) have 
been developed for pose tracking of satellites using monocular 
camera systems, where synthetic images generated from the 
satellite model are used, so something similar can be done but 
using synthetic point clouds instead of images. 
 
There are currently point cloud simulators, such as the Helios++ 
simulator (Winiwarter et al., 2022), from the University of 
Heidelberg, but they are orientated to be used in other fields, such 
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as civil engineering, agroforestry applications, among others. 
The presented point cloud simulator has been specifically 
designed for space operations.  
 

2. METHODOLOGY 

The developed point cloud simulator has been tested with the 
Envisat satellite (Figure 1) (ESA, n.d.), which is a satellite 
developed by ESA (European Space Agency) in 2002. It was 
developed for Earth Observations tasks and was equipped with 
different sensors, such as radiometers, radar and multispectral 
cameras.  
 

 
Figure 1. Envisat satellite. 

Figure 2 shows the workflow of the point cloud simulator 
developed. It is composed of three main parts: the satellite 
modelling, the LiDAR modelling and a raytracing algorithm. The 
first part, that is the satellite modelling, consist of generate a 3D 
model to be used by the raytracing algorithm. Then, the LiDAR 
model is defined, using the datasheet of a commercial LiDAR to 
extract its specifications. Both the LiDAR simulated and the 
satellite model are positioned and orientated, and after that a ray 
tracing algorithm is executed.  

 
Figure 2. Workflow of the point cloud simulator 

 

2.1 Satellite modelling and positioning.  

The developed simulator uses a mesh of the satellite to generate 
the point cloud, tracing multiple rays and calculating the 
intersection point between the ray and the 3D model. In this case, 
the STL format is used to capture the geometry of the satellite. 
STL (Standard Triangle Language) is a format used by many 
different CAD (Computer Aided Design) programs to describe 
the surface geometry of an object or design using an unstructured 
triangulated discretization, where the corners of each triangle are 
points in the surface of the object modelled. Depending on the 
accuracy of the surface described by the triangulated surface, the 
number of triangles needed increase of decrease.  
 
As was mentioned previously, for this work the satellite selected 
was the Envisat, so a STL model of the satellite was used (Figure 
3). This STL archive is basically composed of two matrices. The 
first one contains the cartesian coordinates of the corners of each 
triangle with a similar format of a point cloud, while the second 
one contains the reference of the points that forms each triangle.  

 
Figure 3. STL model of the Envisat satellite 

  
For the satellite positioning, the position and orientation of the 
satellite are defined, applying them using rigid body 
transformations, that basically are three rotations (around X, Y 
and Z axis) and one translation. As was mentioned before, the 
first matrix of the STL model contains the cartesian coordinates 
of the corners of each triangle, so these transformations are 
applied to this matrix, without any modification over the second 
matrix, that contains the reference of the points from the first 
matrix that define each triangle. 
 
2.2 LiDAR modelling and positioning. 

In order to simulate a realistic point cloud, the specifications of 
the LiDAR have to be taken into account, not only introducing 
the errors of the specific sensor, but also the scanning pattern and 
acquisition speed. For the LiDAR modelling, the specifications 
of a commercial LiDAR are needed, introducing these data in the 
point cloud simulator. The specifications used by the simulator 
are:  
 
• FoV (Field of View) type: this variable defines the type of 
LiDAR used (mechanical or solid-state LiDAR), and also defines 
the type of coverage of the LiDAR (usually 360º horizontal FOV 
in the case of the mechanical LiDAR sensors and a smaller one 
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for the solid-state LiDAR sensors). This variable is used for the 
scanning pattern definition. 
 
• Horizontal and vertical FoV (in degrees). 
 
• Maximum detection range (in meters). 
 
• Range precision (in meters) 
 
• Angular precision (in degrees). 
 
•Point rate: acquisition speed (in points/s). 
 
• Scanning pattern.  
 
Figure 4 shows the workflow implemented for the LiDAR 
modelling. Once the specifications of the sensor are defined, the 
scanning pattern is simulated. Depending on the LiDAR selected 
for the simulation, the scanning pattern can be different. This 
process basically consists of the determination of the scanning 
ray’s angles and its order. 
 

 
Figure 4. LiDAR modelling workflow 

 
For this work, the LiDAR simulated is the Livox MID-70 
(LIVOX, n.d.), which is a solid-state sensor designed for 
autonomous driving applications and mobile robots. This sensor 
uses a non-repetitive petal scanning pattern, which is defined 
using polar coordinates, using Equation 1:  
 

  𝑟𝑟 = 𝐴𝐴 ∗ sin(𝐵𝐵 ∗  𝜑𝜑),                     (1) 
 
where  r = radius of each point of the pattern 
 A = Variable defined by the FoV of the sensor 
 B = number of petals of the scanning pattern 
 𝜑𝜑 = angle of each point of the pattern 
 
Each time the petal pattern completes a turn (𝜑𝜑 = 360°), a new 
pattern starts, but with a small rotation of 5° around its central 
axis, achieving in this way a complete coverage of the FoV. 
Figure 5 shows the intersection between the rays defined in three 
consecutive turns of the petal pattern and an orthogonal plane to 
the sensor placed one meter away from it.   

 

 
Figure 5. Three consecutive petal patterns. 

 
The last step for the LiDAR modelling is the angular error 
introduction, which is the angular difference between the 
theorical direction of each scanning ray and the real direction of 
that ray during the scanning process. This error usually has a 
normal distribution and the value given in the datasheet of the 
sensor is its 1σ value. In order to introduce this error in the ray’s 
direction generated by the scanning pattern, two rotations around 
the perpendicular axis of the ray are carried out, using a normal 
distributed random number with the same distribution of the 
angular error of the LiDAR. Figure 6 shows the histogram of the 
angular error introduced to the rays defined by the scanning 
pattern.  
 
 

 
Figure 6. Normal distribution of the angular error introduced. 

 
The last step of the LiDAR modelling is defining the pose 
(position and orientation) of the sensor for the simulation. Once 
the pose is defined, each ray of the scanning pattern is rotated and 
translated using rigid body transformations.  
 
2.3 Ray tracing algorithm 

Once the LiDAR and the satellite are defined and positioned 
(Figure 7), the next step is to carry out a ray tracing algorithm 
with the rays of the scanning pattern, defined in the previous 
section.  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

 
25



 

 
Figure 7. Positioning of the LiDAR (red) and the Satellite. 

 
This ray tracing algorithm basically consist of calculate the 
intersection between each ray and 3D model of the satellite. As 
was mentioned before, the format used to capture the surface 
geometry of the satellite is STL, which is a 3D mesh composed 
of triangles. Due to this, the algorithm has two main parts, the 
first one is the identification of the tringles that are intersected by 
a ray, and the second one is the calculation of the intersection 
between the ray and the plane of the triangle.  
The first part, that is the calculation of the triangles intersected 
by the ray, is carried out using a library developed by Tuszynski 
(Tuszynski, n.d.). This algorithm basically calculates which are 

the triangles intersected by a line (Figure 8), in this case each ray 
of the LiDAR, and returns their index. In some cases, the ray does 
not intersect the 3D model, generating no points in the simulated 
point cloud. As can be seen in the figure, in the mathematical 
model one ray can intersect more than one triangle, which cannot 
happen, since the ray would not reach beyond the first 
intersection. To define where the real intersection is made, the 
distance between the LiDAR and the intersections are calculated, 
defining the real intersection as the one with the shortest distance, 
which therefore is the first intersection between the ray and the 
object. 

 
 
 

 
Figure 8. Ray tracing algorithm. Intersection of one ray with the STL model (red: LiDAR and ray; purple: triangles that are not 

intersected by the ray; yellow: triangles intersected by the ray). 

 
Once the first intersection between the ray and the 3D model is 
defined, the next step is to calculate the intersection between the 
ray and the triangle, that basically is the intersection between a 
line and a plane. The plane is defined by its parametric equations 
(Equation 2), using the three corners of the triangle and the line 
of the ray was defined in the previous section, as an origin and a 
direction (Equation 3).   
 
 
 

  �
𝑥𝑥 = 𝑃𝑃𝑥𝑥 + 𝛾𝛾𝑢𝑢𝑥𝑥 + 𝜇𝜇𝑣𝑣𝑥𝑥
𝑦𝑦 = 𝑃𝑃𝑦𝑦 + 𝛾𝛾𝑢𝑢𝑦𝑦 + 𝜇𝜇𝑣𝑣𝑦𝑦
𝑧𝑧 = 𝑃𝑃𝑧𝑧 + 𝛾𝛾𝑢𝑢𝑧𝑧 + 𝜇𝜇𝑣𝑣𝑧𝑧

                     (2) 

 
where   

 
𝑢𝑢 =  (𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧)
𝑣𝑣 =  (𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦 ,𝑣𝑣𝑧𝑧)� Vectors parallel to the plane 

                   𝑃𝑃 = �𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦,𝑃𝑃𝑧𝑧�; Point on the plane 
                   𝛾𝛾, 𝜇𝜇 ∈ ℝ  
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  �
𝑥𝑥 = 𝑄𝑄𝑥𝑥 + 𝜆𝜆𝑣𝑣𝑥𝑥
𝑦𝑦 = 𝑄𝑄𝑦𝑦 + 𝜆𝜆𝑣𝑣𝑦𝑦
𝑧𝑧 = 𝑄𝑄𝑧𝑧 + 𝜆𝜆𝑣𝑣𝑧𝑧

                     (3) 

 
where  
                   𝑄𝑄 = �𝑄𝑄𝑥𝑥 ,𝑄𝑄𝑦𝑦 ,𝑄𝑄𝑧𝑧�; Point on the line 
                   𝑣𝑣 = �𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧�; Direct 
                   𝜆𝜆 ∈ ℝ 
 
As was mentioned in Section 2.2 LiDAR modelling and 
positioning, these sensors have two different error sources, which 
are the angular error, used in that section for the ray definition, 
and the range error, that basically is the error of the sensor for 
distance measurement. Once the theoretical intersection between 
the ray and the model is calculated, the range error is introduced. 
This error usually has a normal distribution defined by its 1σ 
deviation, given by the manufacturer in the datasheet of the 
sensors. In order to generate this error, a normal distributed 
random number with the same distribution of the range error of 
the LiDAR is used (Figure 9).  
 
 

 
Figure 9. Normal distribution of the range error introduced. 

 
To apply the range error, the theorical intersection and a unit 
vector parallel to the ray are used (Equation 4). Figure 10 shows 
both the theorical intersection and the intersection adding the 
range error. 
 

  𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡 + 𝑒𝑒𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑                      (4) 
 
where  
                   𝑃𝑃𝑟𝑟: Intersection point with the range error.  
                   𝑃𝑃𝑡𝑡: Theorical intersection. 
                   𝑒𝑒 ∶ Range error with a normal distribution. 
                   𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 ∶ Unit vector parallel to the ray. 
 

 

  
         a)   b) 

Figure 10. Intersection between the ray and the 3D model. a) Broad view of the intersection. b) Close view of the intersection. (red: 
ray; yellow and purple: 3D model; green: theorical intersection; blue: intersection adding the range error). 

 
3. RESULTS AND DISCUSSION 

This work presents a realistic point cloud simulator developed for 
space in-orbit close range autonomous operations. It was tested 
using the 3D model of the Envisat satellite and the specifications 
of the Livox MID 70 LiDAR sensor. In order to simulate a point 
cloud, the satellite and LiDAR pose have to be defined, as well 
as the scanning time. With this information, the system positions 
both components. Once them are positioned, the rays of the 
LiDAR sensor are defined, using his scanning pattern and 
introducing an angular error. With these rays, a ray tracing 
algorithm is used to calculate the theorical intersection between 
these rays and the 3D model of the satellite. One ray can have 

multiple intersections with the 3D model, so intersection closer 
to the LiDAR section is selected as the theorical intersection. 
Then, the range error is introduced, using the direction of the ray. 
This process is repeated for all the rays of the scanning pattern. 
As is shown in Figure 11, it is fundamental to add the sensor 
errors in order to obtain a realistic result for point cloud 
simulation. As can be seen in the example without adding errors, 
the point cloud generated is homogeneous and the scanning 
pattern is clearly shown. Also, in the areas of the 3D model that 
are plane, the points of the simulated point cloud are perfectly 
fitted to the plane.  
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a) 
 

b) 
Figure 11. Point clouds generated. a) Point cloud without adding angular and range error. b) Point cloud adding both angular and 

range error. 

  
a) b) 

Figure 12. Point cloud simulation. a) 3D model of the satellite. b) Point cloud generated for the given 3D model. 

All the algorithms of the presented point cloud simulator have 
been implemented in MATLAB 2021a. As was said before, the 
LiDAR sensor simulated in this work was the LIVOX MID-70, 
which is a solid-state sensor with a circular FOV of 70.4º, a point 

rate of 100.000 points/s, an angular precision (1σ) < 0.1º, a range 
error (1σ) ≤ 2cm and a detection range up to 130m (20% 
reflectivity). Figure 12 shows the point cloud obtained during the 
simulation. 
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4. CONCLUSSIONS 

This paper presents a point cloud simulator designed for space 
in-orbit close range autonomous operations. This simulator uses 
the 3D model of the satellite or object to be simulated and the 
LiDAR specifications. With this information and the position and 
orientation of the satellite and the LiDAR, the simulated point 
cloud is generated. The objective of this algorithm is to generate 
realistic point clouds that can be used for both test point-cloud 
processing algorithm and for deep learning algorithm training.  
 
As future work, the simulator will e improved, introducing the 
reflectivity and multiple returns effects. Also, the results will be 
compared with real data obtained in laboratory with a real LiDAR 
sensor, validating in this way the obtained results.  
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