
Point Cloud Simulator for Space in-Orbit Close Range Autonomous Operations.

L.M. González-deSantos 1*, H. González-Jorge 1, M. Sanjurjo-Rivo 2, H. Michinel1.

1 Engineering Physics Group. School of Aerospace Engineering, University of Vigo, Campus Ourense, 32004 Ourense, Spain.
2 Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain.

Commission I, WG I/2

KEY WORDS: LIDAR, Point Cloud, Aerospace, Rendezvous operations, on-orbit services, Pose tracking.

ABSTRACT:

In recent years, many different in-orbit close-range autonomous operations have been developed for multiple purposes, such as
rendezvous and docking operations or ADR operations. In both cases, the systems have to calculate the relative position between the
spacecraft and the target in order to control the orbital manoeuvres and the physic interaction between both systems. One of the sensors
used for the pose calculation for these operations are LiDAR sensors, developing pose calculation algorithms that process the point
cloud acquired by these sensors. One of the main problems for the development and testing of these algorithms is the lack of real data
acquired in orbit and the difficulty of acquiring this data. This makes it fundamental to develop a simulator to generate realistic point
clouds that can be used to develop and test pose calculation algorithms. This work presents a simulator developed for this purpose, that
is the generation of realistic point clouds for algorithm development for pose calculation using LiDAR sensors for space in-orbit close
range autonomous operations. The simulator uses the LiDAR sensor specifications, in order to introduces measurement errors and the
scanning pattern, and 3D model of the satellite or object that is scanned.

1. INTRODUCTION

Nowadays, new systems for close-range autonomous operations
have been developed to perform many different operations where
the spacecraft have to interact with different targets. One example
of these operations are the rendezvous and docking (R&D)
operations, that consists of a series of orbital manoeuvres for
approaching to the target ending with the mating process. The
R&D operations are used for many different applications, such as
on-orbit servicing (OOS) and active debris removal (ADR). OOS
(Kaiser et al., 2008) basically consists of a R&D operation for
different service propose, such as refuelling or repairing tasks.
The objective of these operations is to enlarge operational
lifetime of satellites, which is especially interesting for
geostationary satellites. ADR operations (Liou, 2011) basically
consist of the removal of obsolete satellites in orbit, that suppose
a collision risks for other satellite and spacecrafts.

Two different targets can be considered in these R&D operations,
cooperative and uncooperative targets, depending on if they are
equipped or not with a dedicated communication link for make
its pose know by other satellites. The R&D operations with
uncooperative targets are especially challenging, since it is
necessary first to calculate its pose. Many different pose tracking
systems have been developed, using different kind of sensors,
some passive sensors, such as monocular cameras or stereo vision
systems, or active sensors, such as LiDAR (Light Detection and
Ranging) sensors. Different algorithms have been developed for
pose tracking operations. Most of them are model-based
algorithms (Opromolla et al., 2017), which uses the geometry of
the target, that is previously known, to calculate its pose. In recent
years, new deep learning and machine learning algorithms have
been developed for these pose tracking operations.

One of the main problems in the development of these algorithms
is the access to data (images or point clouds) from real cases of

* Corresponding author (luismgonzalez@uvigo.es)

study. The aim of this work is to create a simulator able to
generate point clouds from satellite models using the
specifications of different LiDAR sensors and the relative pose
between the sensor and the target. In this way, the system will be
able to generate the point cloud that a LiDAR sensor should
acquire for different trajectories. This simulator will take into
account the errors of the selected LiDAR sensor to generate the
most realistic point cloud possible.

There are two major reasons to create this point cloud generator:

• In the aerospace field, it is necessary a TRL (Technology
Readiness Levels) 8 at least for hardware and software
developments to be considered a “flight qualified” system. To
reach this level for algorithms, it is necessary an exhaustive
testing, which carries the use of a great amount of data, or in this
case, point clouds.
• For deep learning algorithms training, it is necessary a great
amount of classified data, which can be generated with the
simulator proposed.

Other authors (He et al., 2017) have already used simulated point
clouds to test pose tracking algorithms, but in this case the point
cloud is generated without considering different important
parameters, such as occlusions, acquisition time, LIDAR
parameter (errors, point rate, range…), so the point cloud
generated is not as realistic as it should be. In recent years, new
deep learning algorithms (Sharma and D’Amico, 2020) have
been developed for pose tracking of satellites using monocular
camera systems, where synthetic images generated from the
satellite model are used, so something similar can be done but
using synthetic point clouds instead of images.

There are currently point cloud simulators, such as the Helios++
simulator (Winiwarter et al., 2022), from the University of
Heidelberg, but they are orientated to be used in other fields, such

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

23

as civil engineering, agroforestry applications, among others.
The presented point cloud simulator has been specifically
designed for space operations.

2. METHODOLOGY

The developed point cloud simulator has been tested with the
Envisat satellite (Figure 1) (ESA, n.d.), which is a satellite
developed by ESA (European Space Agency) in 2002. It was
developed for Earth Observations tasks and was equipped with
different sensors, such as radiometers, radar and multispectral
cameras.

Figure 1. Envisat satellite.

Figure 2 shows the workflow of the point cloud simulator
developed. It is composed of three main parts: the satellite
modelling, the LiDAR modelling and a raytracing algorithm. The
first part, that is the satellite modelling, consist of generate a 3D
model to be used by the raytracing algorithm. Then, the LiDAR
model is defined, using the datasheet of a commercial LiDAR to
extract its specifications. Both the LiDAR simulated and the
satellite model are positioned and orientated, and after that a ray
tracing algorithm is executed.

Figure 2. Workflow of the point cloud simulator

2.1 Satellite modelling and positioning.

The developed simulator uses a mesh of the satellite to generate
the point cloud, tracing multiple rays and calculating the
intersection point between the ray and the 3D model. In this case,
the STL format is used to capture the geometry of the satellite.
STL (Standard Triangle Language) is a format used by many
different CAD (Computer Aided Design) programs to describe
the surface geometry of an object or design using an unstructured
triangulated discretization, where the corners of each triangle are
points in the surface of the object modelled. Depending on the
accuracy of the surface described by the triangulated surface, the
number of triangles needed increase of decrease.

As was mentioned previously, for this work the satellite selected
was the Envisat, so a STL model of the satellite was used (Figure
3). This STL archive is basically composed of two matrices. The
first one contains the cartesian coordinates of the corners of each
triangle with a similar format of a point cloud, while the second
one contains the reference of the points that forms each triangle.

Figure 3. STL model of the Envisat satellite

For the satellite positioning, the position and orientation of the
satellite are defined, applying them using rigid body
transformations, that basically are three rotations (around X, Y
and Z axis) and one translation. As was mentioned before, the
first matrix of the STL model contains the cartesian coordinates
of the corners of each triangle, so these transformations are
applied to this matrix, without any modification over the second
matrix, that contains the reference of the points from the first
matrix that define each triangle.

2.2 LiDAR modelling and positioning.

In order to simulate a realistic point cloud, the specifications of
the LiDAR have to be taken into account, not only introducing
the errors of the specific sensor, but also the scanning pattern and
acquisition speed. For the LiDAR modelling, the specifications
of a commercial LiDAR are needed, introducing these data in the
point cloud simulator. The specifications used by the simulator
are:

• FoV (Field of View) type: this variable defines the type of
LiDAR used (mechanical or solid-state LiDAR), and also defines
the type of coverage of the LiDAR (usually 360º horizontal FOV
in the case of the mechanical LiDAR sensors and a smaller one

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

24

for the solid-state LiDAR sensors). This variable is used for the
scanning pattern definition.

• Horizontal and vertical FoV (in degrees).

• Maximum detection range (in meters).

• Range precision (in meters)

• Angular precision (in degrees).

•Point rate: acquisition speed (in points/s).

• Scanning pattern.

Figure 4 shows the workflow implemented for the LiDAR
modelling. Once the specifications of the sensor are defined, the
scanning pattern is simulated. Depending on the LiDAR selected
for the simulation, the scanning pattern can be different. This
process basically consists of the determination of the scanning
ray’s angles and its order.

Figure 4. LiDAR modelling workflow

For this work, the LiDAR simulated is the Livox MID-70
(LIVOX, n.d.), which is a solid-state sensor designed for
autonomous driving applications and mobile robots. This sensor
uses a non-repetitive petal scanning pattern, which is defined
using polar coordinates, using Equation 1:

 𝑟𝑟 = 𝐴𝐴 ∗ sin(𝐵𝐵 ∗ 𝜑𝜑), (1)

where r = radius of each point of the pattern
 A = Variable defined by the FoV of the sensor
 B = number of petals of the scanning pattern
 𝜑𝜑 = angle of each point of the pattern

Each time the petal pattern completes a turn (𝜑𝜑 = 360°), a new
pattern starts, but with a small rotation of 5° around its central
axis, achieving in this way a complete coverage of the FoV.
Figure 5 shows the intersection between the rays defined in three
consecutive turns of the petal pattern and an orthogonal plane to
the sensor placed one meter away from it.

Figure 5. Three consecutive petal patterns.

The last step for the LiDAR modelling is the angular error
introduction, which is the angular difference between the
theorical direction of each scanning ray and the real direction of
that ray during the scanning process. This error usually has a
normal distribution and the value given in the datasheet of the
sensor is its 1σ value. In order to introduce this error in the ray’s
direction generated by the scanning pattern, two rotations around
the perpendicular axis of the ray are carried out, using a normal
distributed random number with the same distribution of the
angular error of the LiDAR. Figure 6 shows the histogram of the
angular error introduced to the rays defined by the scanning
pattern.

Figure 6. Normal distribution of the angular error introduced.

The last step of the LiDAR modelling is defining the pose
(position and orientation) of the sensor for the simulation. Once
the pose is defined, each ray of the scanning pattern is rotated and
translated using rigid body transformations.

2.3 Ray tracing algorithm

Once the LiDAR and the satellite are defined and positioned
(Figure 7), the next step is to carry out a ray tracing algorithm
with the rays of the scanning pattern, defined in the previous
section.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

25

Figure 7. Positioning of the LiDAR (red) and the Satellite.

This ray tracing algorithm basically consist of calculate the
intersection between each ray and 3D model of the satellite. As
was mentioned before, the format used to capture the surface
geometry of the satellite is STL, which is a 3D mesh composed
of triangles. Due to this, the algorithm has two main parts, the
first one is the identification of the tringles that are intersected by
a ray, and the second one is the calculation of the intersection
between the ray and the plane of the triangle.
The first part, that is the calculation of the triangles intersected
by the ray, is carried out using a library developed by Tuszynski
(Tuszynski, n.d.). This algorithm basically calculates which are

the triangles intersected by a line (Figure 8), in this case each ray
of the LiDAR, and returns their index. In some cases, the ray does
not intersect the 3D model, generating no points in the simulated
point cloud. As can be seen in the figure, in the mathematical
model one ray can intersect more than one triangle, which cannot
happen, since the ray would not reach beyond the first
intersection. To define where the real intersection is made, the
distance between the LiDAR and the intersections are calculated,
defining the real intersection as the one with the shortest distance,
which therefore is the first intersection between the ray and the
object.

Figure 8. Ray tracing algorithm. Intersection of one ray with the STL model (red: LiDAR and ray; purple: triangles that are not

intersected by the ray; yellow: triangles intersected by the ray).

Once the first intersection between the ray and the 3D model is
defined, the next step is to calculate the intersection between the
ray and the triangle, that basically is the intersection between a
line and a plane. The plane is defined by its parametric equations
(Equation 2), using the three corners of the triangle and the line
of the ray was defined in the previous section, as an origin and a
direction (Equation 3).

 �
𝑥𝑥 = 𝑃𝑃𝑥𝑥 + 𝛾𝛾𝑢𝑢𝑥𝑥 + 𝜇𝜇𝑣𝑣𝑥𝑥
𝑦𝑦 = 𝑃𝑃𝑦𝑦 + 𝛾𝛾𝑢𝑢𝑦𝑦 + 𝜇𝜇𝑣𝑣𝑦𝑦
𝑧𝑧 = 𝑃𝑃𝑧𝑧 + 𝛾𝛾𝑢𝑢𝑧𝑧 + 𝜇𝜇𝑣𝑣𝑧𝑧

 (2)

where

𝑢𝑢 = (𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧)
𝑣𝑣 = (𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦 ,𝑣𝑣𝑧𝑧)� Vectors parallel to the plane

 𝑃𝑃 = �𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦,𝑃𝑃𝑧𝑧�; Point on the plane
 𝛾𝛾, 𝜇𝜇 ∈ ℝ

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

26

 �
𝑥𝑥 = 𝑄𝑄𝑥𝑥 + 𝜆𝜆𝑣𝑣𝑥𝑥
𝑦𝑦 = 𝑄𝑄𝑦𝑦 + 𝜆𝜆𝑣𝑣𝑦𝑦
𝑧𝑧 = 𝑄𝑄𝑧𝑧 + 𝜆𝜆𝑣𝑣𝑧𝑧

 (3)

where
 𝑄𝑄 = �𝑄𝑄𝑥𝑥 ,𝑄𝑄𝑦𝑦 ,𝑄𝑄𝑧𝑧�; Point on the line
 𝑣𝑣 = �𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, 𝑣𝑣𝑧𝑧�; Direct
 𝜆𝜆 ∈ ℝ

As was mentioned in Section 2.2 LiDAR modelling and
positioning, these sensors have two different error sources, which
are the angular error, used in that section for the ray definition,
and the range error, that basically is the error of the sensor for
distance measurement. Once the theoretical intersection between
the ray and the model is calculated, the range error is introduced.
This error usually has a normal distribution defined by its 1σ
deviation, given by the manufacturer in the datasheet of the
sensors. In order to generate this error, a normal distributed
random number with the same distribution of the range error of
the LiDAR is used (Figure 9).

Figure 9. Normal distribution of the range error introduced.

To apply the range error, the theorical intersection and a unit
vector parallel to the ray are used (Equation 4). Figure 10 shows
both the theorical intersection and the intersection adding the
range error.

 𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡 + 𝑒𝑒𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 (4)

where
 𝑃𝑃𝑟𝑟: Intersection point with the range error.
 𝑃𝑃𝑡𝑡: Theorical intersection.
 𝑒𝑒 ∶ Range error with a normal distribution.
 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 ∶ Unit vector parallel to the ray.

 a) b)

Figure 10. Intersection between the ray and the 3D model. a) Broad view of the intersection. b) Close view of the intersection. (red:
ray; yellow and purple: 3D model; green: theorical intersection; blue: intersection adding the range error).

3. RESULTS AND DISCUSSION

This work presents a realistic point cloud simulator developed for
space in-orbit close range autonomous operations. It was tested
using the 3D model of the Envisat satellite and the specifications
of the Livox MID 70 LiDAR sensor. In order to simulate a point
cloud, the satellite and LiDAR pose have to be defined, as well
as the scanning time. With this information, the system positions
both components. Once them are positioned, the rays of the
LiDAR sensor are defined, using his scanning pattern and
introducing an angular error. With these rays, a ray tracing
algorithm is used to calculate the theorical intersection between
these rays and the 3D model of the satellite. One ray can have

multiple intersections with the 3D model, so intersection closer
to the LiDAR section is selected as the theorical intersection.
Then, the range error is introduced, using the direction of the ray.
This process is repeated for all the rays of the scanning pattern.
As is shown in Figure 11, it is fundamental to add the sensor
errors in order to obtain a realistic result for point cloud
simulation. As can be seen in the example without adding errors,
the point cloud generated is homogeneous and the scanning
pattern is clearly shown. Also, in the areas of the 3D model that
are plane, the points of the simulated point cloud are perfectly
fitted to the plane.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

27

a)

b)
Figure 11. Point clouds generated. a) Point cloud without adding angular and range error. b) Point cloud adding both angular and

range error.

a) b)

Figure 12. Point cloud simulation. a) 3D model of the satellite. b) Point cloud generated for the given 3D model.

All the algorithms of the presented point cloud simulator have
been implemented in MATLAB 2021a. As was said before, the
LiDAR sensor simulated in this work was the LIVOX MID-70,
which is a solid-state sensor with a circular FOV of 70.4º, a point

rate of 100.000 points/s, an angular precision (1σ) < 0.1º, a range
error (1σ) ≤ 2cm and a detection range up to 130m (20%
reflectivity). Figure 12 shows the point cloud obtained during the
simulation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

28

4. CONCLUSSIONS

This paper presents a point cloud simulator designed for space
in-orbit close range autonomous operations. This simulator uses
the 3D model of the satellite or object to be simulated and the
LiDAR specifications. With this information and the position and
orientation of the satellite and the LiDAR, the simulated point
cloud is generated. The objective of this algorithm is to generate
realistic point clouds that can be used for both test point-cloud
processing algorithm and for deep learning algorithm training.

As future work, the simulator will e improved, introducing the
reflectivity and multiple returns effects. Also, the results will be
compared with real data obtained in laboratory with a real LiDAR
sensor, validating in this way the obtained results.

ACKNOWLEDGEMENTS

L.M.G.-d. was funded by the Recovery, Transformation, and
Resilience Plan of the European Union–Next Generation EU
(University of Vigo grant ref. 585507).

REFERENCES

ESA, n.d. Envisat [WWW Document]. URL
https://www.esa.int/SPECIALS/Eduspace_ES/SEM306E
3GXF_0.html (accessed 1.14.22).

He, Y., Liang, B., He, J., Li, S., 2017. Non-cooperative spacecraft
pose tracking based on point cloud feature. Acta
Astronaut. 139.
https://doi.org/10.1016/j.actaastro.2017.06.021

Kaiser, C., Sjöberg, F., Delcura, J.M., Eilertsen, B., 2008.
SMART-OLEV-An orbital life extension vehicle for
servicing commercial spacecrafts in GEO. Acta Astronaut.
63. https://doi.org/10.1016/j.actaastro.2007.12.053

Liou, J.C., 2011. An active debris removal parametric study for
LEO environment remediation. Adv. Sp. Res. 47.
https://doi.org/10.1016/j.asr.2011.02.003

LIVOX, n.d. MID-70 [WWW Document]. URL
https://www.livoxtech.com/mid-70 (accessed 3.16.22).

Opromolla, R., Fasano, G., Rufino, G., Grassi, M., 2017. Pose
estimation for spacecraft relative navigation using model-
based algorithms. IEEE Trans. Aerosp. Electron. Syst. 53.
https://doi.org/10.1109/TAES.2017.2650785

Sharma, S., D’Amico, S., 2020. Neural Network-Based Pose
Estimation for Noncooperative Spacecraft Rendezvous.
IEEE Trans. Aerosp. Electron. Syst. 56.
https://doi.org/10.1109/TAES.2020.2999148

Tuszynski, J., n.d. Triangle/Ray Intersection.
Winiwarter, L., Esmorís Pena, A.M., Weiser, H., Anders, K.,

Martínez Sánchez, J., Searle, M., Höfle, B., 2022. Virtual
laser scanning with HELIOS++: A novel take on ray
tracing-based simulation of topographic full-waveform 3D
laser scanning. Remote Sens. Environ. 269.
https://doi.org/10.1016/j.rse.2021.112772

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

29

	Point Cloud Simulator for Space in-Orbit Close Range Autonomous Operations.
	1. Introduction
	2. methodology
	2.1 Satellite modelling and positioning.
	2.2 LiDAR modelling and positioning.
	2.3 Ray tracing algorithm
	𝑃=,,𝑃-𝑥.,,𝑃-𝑦.,,𝑃-𝑧..;Point on the plane
	𝑄=,,𝑄-𝑥.,,𝑄-𝑦.,,𝑄-𝑧..;Point on the line
	𝑣=,,𝑣-𝑥.,,𝑣-𝑦.,,𝑣-𝑧..;Direct
	𝜆 ∈ℝ
	,𝑃-𝑟.:Intersection point with the range error.
	,𝑃-𝑡.:Theorical intersection.
	𝑒 :Range error with a normal distribution.
	,𝑣-𝑑𝑖𝑟. :Unit vector parallel to the ray.

	3. Results and discussion
	4. Conclussions
	Acknowledgements
	References

