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ABSTRACT: 

 
One of the most popular research areas is low-cost navigation and positioning systems for autonomous vehicles. Determining a 
vehicle's position within a lane is critical for achieving high automation. Vehicle navigation and positioning relied heavily on the 
Global Navigation Satellite System (GNSS) service in open-sky scenarios. Nonetheless, GNSS signals were easily degraded due to 
various environmental situations such as urban canyons caused by multi-path effects and Non-Line-of-Sight (NLOS) issues. To 
perform robustly in complex scenarios, sensor fusion is the most common solution. The following paper presents a radar visual 
odometry framework to improve the lack of scale factors for monocular cameras and poor angular resolution for radar. The framework 
is based on the characteristics of camera and radar sensors which have complementary advantages in each other. The results show that 

the proposed framework can be used to estimate general 2D motion in an indoor environment and correct the unknown scale factor of 
Monocular Visual Odometry in a real-world setting. 
 
 

1. INTRODU*CTION 

According to the prediction of Boston Consulting Group (BCG), 
the global self-driving vehicle market will reach US $42 billion 
in 2025, and autonomous vehicles will account for 12.4% of the 
overall vehicle market. Therefore, it can be seen that mapping 
and navigation technology have a certain market. By 2035, the 
market scale will double and grow. At present, GNSS has been 
highly relied on to obtain positioning and navigation services 

outdoors, but the positioning system based on GNSS has caused 
positioning errors due to the multipath effect caused by urban 
canyon, and signal cycle slips. To improve the robustness of 
positioning, the rapid development of multi-sensor integrated 
positioning systems not only improves the positioning accuracy 
but also gradually reduces the cost of mapping.  
 
To overcome the limitations of complex scenarios, multi-sensor 
platforms such as Inertial Navigation System (INS), Global 

Navigation Satellite System (GNSS), cameras, Light Detection 
and Ranging (LiDAR), and radar have become possible solutions. 
Among them, camera sensors had the characteristics of low-cost 
and widely studied in robotic and navigation fields. Camera 
sensors can provide vehicles relative pose change with Visual 
Odometry (VO) and Simultaneous Localization and Mapping 
(SLAM) techniques. In the simplest V-SLAM systems, a 
monocular camera is used to determine the ego-motion and build 

a map without true scale. For example, ORB-SLAM (Ra úl Mur-
Artal et al.,2015) is a feature-based monocular SLAM system 
that operates in small and large, indoor and outdoor environments. 
The system allows wide baseline loop closing and relocalization 
and includes full automatic initialization which performs a real-
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time and robust trajectory estimation. However, several 
drawbacks were noticed in different VO or VSLAM algorithms. 
Such as lack of scale factors for the monocular camera, low 
ranging accuracy for stereo camera due to short baseline, and 

sensitivity to environment interference (light, rain, fog). Radar 
sensors can provide stable ranging and velocity measurement 
with less susceptibility to environmental interference. 
RadarSLAM (Ziyang Hong, Yvan Petillot and Sen Wang, 2020) 
is a large-scale SLAM based on mechanical millimeter-wave  
(mmWave) radar. The algorithm demonstrates the reliability and 
localization accuracy in various adverse weather conditions, such 
as dark night, dense fog and heavy snowfall. However, the 

scanning radar is quite expensive and heavy. Therefore, several 
ego-motion estimation methods using doppler radar have been 
proposed (Dominik Kellner et al.,2013) which can use single-
chip mmWave radar to perform robust pose estimation.  
 
The aforementioned characteristics of camera and radar sensors 
show these two sensors have complementary advantages. It leads 
the potential to form a low-cost visual and radar base odometry. 
The aim of this work is to implement visual radar based odometry 

using low-cost mmWave radar and monocular camera. 
 

2. RELATED WORKS 

In the literature, several in-depth analyses have been presented 

that highlight advantages and limitations of single-chip mmWave 
sensor and visual sensor. 
 
Several research groups have proposed mmWave radars as a 
solution for various mobile robot tasks such as navigation, 
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localization and mapping. Several studies are proposed to 

investigate the imaging capabilities of the radars for environment 
representation (G. Brooker, 2015) and 2D/3D SLAM (M. 
Jaud,2014). However, these solutions involve bulky radar 
systems that provide dense measurements at the cost of increased 
physical size and price of the system. The mmWave radar has 
some limitations due to the beam being wider than the LIDAR 
sensor, which results in lower bearing resolution and cluttered 
measurements. The longer wavelength of radar causes the echo 

to be reflected off multiple objects on its return trip to the antenna, 
known as the multipath effect. This effect causes false range 
measurement, which produces lots of “ghost points” in one scan, 
which is even more challenging in indoor environments due to 
walls, ceiling and floor reflection (M. Adams and E. Jose, 2012). 
 
A thorough experimental evaluation of ego-motion estimation 
with low-cost mmWave sensor is described in (Yasin Almalioglu 
et al., 2021), where mmWave radar system attached on top of a 

moving platform is used for the indoor ego-motion estimation. 
The study points out the recent advances in the integrated circuit 
and packaging technologies, it is even possible to integrate a 
frequency-modulated continuous-wave (FMCW) radar system 
operating at a higher frequency band. The study proposed Milli-
RIO, an ego-motion estimation method based on single-chip low-
cost mmWave radar, complemented by an Inertial Measurement 
Unit (IMU) sensor.  The study uses a new point association 

technique to match the sparse measurements of low-cost 
mmWave radar and a model-free motion dynamics estimation 
technique for Unscented Kalman filter (UKF) using Recurrent 
Neural Network (RNN). The experiment takes place in a typical 
lab environment where it is tracked with a VICON tracking 
system that provides ground truth with sub-millimeter accuracy. 
As result, the successful implementation of mmWave radar 
odometry fused with IMU improves the reliability and versatility 

of mobile systems.  
 
Instantaneous ego-motion using Doppler radar (Dominik Kellner 
et al.,2013) uses doppler radar unlike scanning radars that only 
acquire range measurements. Doppler radars can measure the 
velocity of a target object. The study proposed instantly 
determining the velocity and yaw rate of a ground vehicle with a 
single Doppler radar. It used RANdom SAmple Consensus 

(RANSAC) to detect stationary targets and least square 
adjustment to estimate the linear velocity of the vehicle. 3D ego-
motion Estimation using low-Cost mmWave Radars via Radar 
Velocity Factor for Pose-Graph SLAM (Yeong Sang Park et 
al.,2021) designs a unique hardware configuration by combining 
two low-cost Doppler radars and estimating 3D instantaneous 
velocity. Furthermore, by applying RANSAC to this dual 
configuration followed by tangential motion refinement. They 
design a radar velocity factor for pose-graph SLAM and 

complete a 3D ego-motion in the integration with IMU. The radar 
provides instantaneous linear velocity and the relative positional 
difference between nodes. Leveraging the rotation from IMU, 
they complete a full 3D ego-motion estimation. The result shows 
that in a disaster environment with thick fog, where the camera 
and LiDAR revealed limited visibility. The system yielded 
reliable ego-motion inference in testing over both 2D and 3D 
motion. 

 
Visual SLAM is a camera-based SLAM algorithm. Compared 
with traditional lidar data, visual data has the characteristics of 
low cost and a large amount of information. Visual SLAM is 
mainly composed of sensor data, visual odometry (VO), back-
end optimization, and loop closure detection. There are three 
main types of visual sensors: monocular camera, stereo camera 
and RGB-D camera. In addition to image pre-processing, these 

three sensors may be equipped with sensors such as IMU, so time 

synchronization processing is also required.  
 
Visual odometry is used to estimate the camera motion and the 
position of local feature points between adjacent photos. The 
positioning methods are divided into direct method and feature-
based method. Based on the front end of feature points, it has 
long been considered as the mainstream method of visual 
odometry. Feature points are used to provide the basis to identify 

the environment. Feature point is composed of key point and 
descriptor. Key point refers to the position of the feature point in 
the image, and descriptor is the information describing the pixels 
around the key point. There are many feature point extraction 
methods, such as ORB, GFTT etc. 
 

3. VISUAL RADAR ODOMETRY FRAMEWORK 

In this section, we will introduce the visual radar odometry 
framework. This framework integrates the instantaneous linear 
velocity estimated by mmWave radar and the rotation estimated 
by monocular camera. The development of visual radar system 
can be divided into the following steps: 
 

1. Radar-based linear velocity estimation. 
2. Visual Odometry implementation. 
3. Visual Radar odometry integration. 

 
 
3.1 Radar-based linear velocity estimation 

The principle concept of the algorithm is to estimate the ego-
motion based on the doppler velocity and azimuth angle of the 
measured reflections (targets) in the field of view. In the literature 
discussion, two algorithms (Kellner et al., 2013 and Stahoviak 
and Carl C,2019) for solving the linear velocity of the platform 
using radar are mentioned respectively. The principles can be 

sorted out using Figure 1: 
 

 
 

Figure 1. Steps of the ego-motion estimation using doppler 
radar. 

 

For each measurement cycle, three steps are performed. First, the 
largest group of targets with the same movement is extracted. It 
is assumed that there is no group of targets with exactly the same 
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linear movement and a larger number of targets than all stationary 

targets in common. This allows classifying all targets of the 
largest group found as stationary targets. The movement of the 
radar sensor can be reconstructed by analyzing the returned radial 
velocity of all stationary targets with regard to their position in 
the azimuth angle. In the last step, the ego-motion of the vehicle 
is calculated from the sensor movement using the single-track 
model with the Ackerman condition.  
 

If a platform is moving, from the radar sensor point of view all 
stationary targets move in the opposite direction. Their relative 
velocity is exactly equal to the sensor’s velocity and heading 
direction. Nonetheless, it is hard to directly extract the velocity 
vectors of the vehicle as a Doppler radar can only measure the 
radial velocity component.  

 
Figure 2. Stationary targets (blue) the radial velocity(green 

arrow) of the relative velocity (blue arrow) is measured by the 
Doppler Radar. 

 
The key is that the radial velocity with respect to the angle of 

arrival (AoA) reveals the sinusoidal curve. The radial velocity 
and AoA have the relation illustrated in Figure 2. The relation 
can be shown as a mathematical problem as: 
 

[

𝑣𝑟,1
⋮

𝑣𝑟,𝑛
] = [

cos⁡(𝜃1) sin⁡(𝜃1)
⋮ ⋮

cos⁡(𝜃𝑛) sin⁡(𝜃𝑛)
] [
𝑣𝑥

′

𝑣𝑦
′]          (1) 

 

Where  𝑣𝑟,𝑖 = radial velocity of target i 

 𝜃𝑖 = angle of arrival of target i 

   𝑣𝑥
′ = relative velocity in x-direction 

   𝑣𝑦
′ = relative velocity in y-direction 

 

Stationary target detection uses RANSAC. It is mainly used to 
remove the outliers in the data, which has a good performance in 
the smoothing of gross errors in the data. For this study, when 
there is a moving object or gross error, it is seen as an outlier. 

After the non-stationary objects are filtered out, substitute the 
remaining stationary objects into the equation mentioned above, 
and then use the least square adjustment (LS) or orthogonal 
distance regression (ODR) to obtain the estimate of the linear 
velocity. Least squares is arguably the standard method for fitting 
data to a model when there are errors in the observations. This 
can be interpreted as minimizing the sum of the squares of the 
residual from the observations. ODR is a total least squares 
regression method for finding the maximum likelihood 

estimators of parameters in measurement error models in the case 
of normally distributed errors which considers the error of angle 
estimation of the radar. 
 

3.2 Visual Odometry implementation 

The front-end visual odometry can give a trajectory and map in a 
short time, but due to the inevitable error propagation, the long-
time and large-scale results are inaccurate. Therefore, the back-
end optimization is mainly to deal with the error in the SLAM 

process. Considering the balance between accuracy and 
performance, there are many different approaches, such as EKF. 
 
As the platform continues to move forward, the front-end VO is 
basically completed by the relationship between two adjacent 
frames. This algorithm relying on local constraints will inevitably 
lead to the accumulation of errors. Hence, it is necessary to select 
the key frame from the global perspective and determine whether 
the platform reaches the previous position. If a closed-loop is 

detected, it will send the message to the back-end, Pull the pose 
with cumulative error to the correct position. 
 
In this study, the VO implements the ORB-SLAM algorithm. 
ORB-SLAM is a feature-based visual SLAM algorithm. ORB-
SLAM adopts ORB feature, which is a combination and 
improvement of FAST feature points and BRIEF descriptor. 
ORB-SLAM includes map initialization, tracking, local mapping, 

and loop closure. Figure 3 shows the ORB-SLAM framework 
overview. 
 

 
Figure 3. ORB-SLAM system overview, showing all the steps 

performed by the tracking, local mapping, and loop closing 
threads. (Ra úl Mur-Artal et al.,2015) 

 
3.3 Visual Radar odometry integration 

This study integrates the instantaneous linear velocity estimated 
by mmWave radar and leverages the rotation from V-SLAM by 

monocular camera. Figure 4. shows the system integration 
diagram of Visual Radar Odometry. 
 

 
Figure 4. The Visual Radar odometry integration framework  
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The framework can be divided into two parts: estimation of 
rotation from the visual sensor and velocity estimation of radar. 
The rotation estimation of the visual sensor refers to the 
algorithm of ORB-SLAM which is shown as blue in Figure 4. 
The linear velocity estimation algorithm has been discussed in 
section 3.1. First, the non-keyframe is interpolated into its current 
pose according to time. The reason for interpolation is that the 
non-keyframe mainly has no significant pose change, so it can be 

regarded as a uniform constant velocity movement. Second, due 
to the sampling frequency of the radar being 10Hz, which is 
larger than the pose estimation frequency of the ORB-SLAM 
about 5Hz, the linear velocity estimated by radar is interpolated 
into the frame at that time to obtain the instantaneous linear 
velocity of the frame. Third, using the optimization solution after 
loop closing, calculate the pose change between the previous 
frame and the current frame. Then we could simply integrate each 
frame using the formula below to calculate the position of the 

platform in local coordinate defined by the first frame of the 
image. Figure 5. illustrate the integrating process between two 
frame t-1 and t using the angle velocity estimate from ORB-
SLAM and linear velocity estimated by the mmWave radar. 

 
Figure 5. The displacement between t and t-1 can be calculated 

using the formula (2) and (3). 
 

𝑺𝒙 = 𝒗∆𝒕              (2) 

𝑺𝒚 = 𝒗𝝎(∆𝒕)𝟐     (3) 

 

Where 𝑺𝒙 = x-direction displacement 

 𝑺𝒚 = y-direction displacement 

 

4. EXPERIMENT  

4.1 Experiment setup 

The experimental setup of visual radar system in this study is 

shown in Figure 6. Single-chip mmWave radar (AWR1843 
BOOST, Texas Instrument) with Raspberry-pi camera module v2 
on a TurtleBot3 robot is used to develop the current Visual-Radar 
system. The TurtleBot3 provides the trajectory estimate by IMU 
and wheel encoder. And the mmWave radar provides 3-
dimensional points with range, azimuth, elevation, and velocity 
information. 

 
Figure 6. The experimental setup of visual radar system 

4.2 Experiment environment 

The experimental validation was performed on two types of 
environments. First, we mounted the radar on a mobile robot and 
moved in a straight line in the hallway. Second, we moved in a 

circle trajectory at the conference room. The experimental 
environment is shown in Figure 7. 
 

 
Figure 7. (a)Hallway (b)Conference room 

 

4.3 mmWave radar configuration 

Firstly, in order to find the radar parameter suitable for this study. 
Therefore, we refer to many empirical formulas of radar and the 
limitations of hardware and try to adjust the best settings of radial 
velocity resolution, range resolution and angle resolution. There 

are three transmitting antennas and four receiving antennas. The 
mmWave parameters used in the of this study are shown in Table 
1. 
 

Parameter Value 

Frequency 77GHz 

BandWidth 4GHz 

Max range 8.42(m) 

Range resolution 0.047(m) 

Range accuracy 0.032(m) 

Max AoA +-90 (deg) 

Angle resolution 14.32 (deg) 

Angle accuracy 2.81 (deg) 

Max radial velocity 0.64(m/s) 

Velocity resolution 0.04(m/s) 

Velocity accuracy 0.02(m/s) 

Table 1. The radar parameters in this study 
 
4.4 Linear velocity estimation 

Figure 8. shows the comparison between velocity estimation by 
radar and IMU.  The time series of velocity in x and y directions 
analyzed by using Least Square (LS) and Orthogonal Distance 
Regression (ODR) are in good agreement with IMU in Figure 8. 
Statistic comparison between Instantaneous velocity estimated 
by LS and ODR in scenario 1(hallway) is depicted in Table 2.  It 
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shows LS method has a smaller mean velocity difference from 

IMU in x-direction which is the forward direction. Therefore, LS 
method is applied in current study. 
 

 
Figure 8. Comparison between Instantaneous velocity 

estimation using mmWave radar and IMU+encoder in scenario 
1 (Hallway). 

Scenario 1: Hallway 

Velocity diff. 

Unit: m/s 

LS ODR 

x mean -0.0065 -0.0187 

y mean -0.0017 0.0008 

x Std 0.0265 0.0269 

y Std 0.0232 0.0204 

Table 2. Statistic comparison between Instantaneous velocity 
estimation using mmWave radar and IMU-encoder in scenario 1 

(hallway) 
 
4.5 Visual Radar odometry estimated trajectory 

At last, the performance of visual radar odometry was verified in 
two different scenarios (hallway and conference room). The 
comparison of Radar aided VO and pure VO is shown in Figure 
9. and Figure 10. And the comparison of trajectory between 
Visual Radar Odometry and IMU+encoder is shown in Figure 11 
and Figure 12. 

 

 
Figure 9. The comparison of trajectory between Radar Aided 

VO and pure VO in scenario 1 (Hallway) 
 

 
Figure 10. The comparison of trajectory between Radar Aided 

VO and pure VO in scenario 2 (Conference room) 
 

In Figure 9, pure VO trajectory travels only 5 m. But with the 
linear velocity estimated by the radar, the travel distance is about 

18 m, which is closer to the length of the hallway. In Figure 10, 

pure VO travel through the area for about 1 × 1.5⁡m, and the area 

expand to 3 × 3.5⁡m with the aid of Radar. These result clearly 
shown the Radar aided VO is cabable of recovering the scale of 
true world for Monocular VO.  

 
Figure 11. The comparison of trajectory between Visual Radar 

Odometry and IMU in scenario 1 (Hallway) 
 

 
Figure 12. The comparison of trajectory between Visual Radar 

Odometry and IMU in scenario 2 (Conference room). The 
Green box indicates the boundaries of the room. 
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In scenario 1 (Figure 11.), Visual Radar Odometry and 
IMU+encoder trajectory shows good agreement. However, in 
scenario 2 (Figure 12.), the trajectory between Visual Radar 
Odometry and IMU+encoder shows substantial discrepancy due 
to the drift of IMU and wheel encoder after integral, causing error 
propagation on the pose estimation. The size of the experiment 
scenarios was measured using a laser rangefinder. The left 
boundary of scenario 2 is at x=2.07 m, and the top boundary is at 

4.07 m, which can be confirmed Visual Radar Odometry shows 
a closer trajectory to the boundary. 
 

5. CONCLUSION 

This study mainly uses the characteristics of low-cost single-chip 

mmWave  radar to apply to mapping and odometry. From the 
mapping results, there is more noise on the point cloud when 
using mmWave  radar alone. Although this study uses mmWave  
radar velocity information, reflection intensity information and 
incident angle to filter the noise, it cannot effectively eliminate 
the noise, so using mmWave radar alone in high-precision 
mapping will require further effort. At present, the reason why 
radar point cloud cannot use lidar related SLAM algorithm is that 

its accuracy is low and its quantity is scarce, so it cannot describe 
the texture features in the environment, and use Normal 
Distribution Transformation (NDT), Iterative Closest Point (ICP) 
and other algorithms for positioning. At present, the main 
functions of low-cost single-chip radar are object detection and 
assisted driving. It is very difficult to achieve positioning and 
mapping. Limited by the angular resolution of single-chip radar, 
there are already imaging radars on the market. The main method 

is to increase the number of receiving antennas to achieve better 
angular resolution. However, increasing the number of antennas 
also increases its volume and power. In order to achieve 360-
degree scanning, adding a mechanical rotating system is also the 
design method of high-resolution mmWave  radar on the market, 
such as Navtech's terran360. However, this study mainly focuses 
on the characteristics of radar with velocity and angle 
information. Therefore, we choose to integrate the attitude 

estimation of a monocular camera into the Visual Radar 
Odometry system architecture, and it is proved that the scale 
factor of ORB-SLAM can be effectively corrected without great 
deviation. 
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