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ABSTRACT: 

 

Initial global localization of a mobile robotic platform is the foundation for its navigation and mapping, especially when the platform 

enters into unknown environments. In GNSS-denied indoor scenes, LiDAR is widely used for robot localization, especially in indoor 

scenes with poor lighting. In most existing LiDAR-based initial global localization methods, it is necessary to build the point cloud 

reference map in advance, which costs a large quantity of manpower and time. For this reason, a LiDAR-based initial global 

localization method using imperfect architectural skeleton information is proposed in this work. Firstly, we propose a lightweight 

management scheme for collected imperfect architectural information, which is convenient for efficient registration with real scans. 

Secondly, we extract architectural skeletons (stable man-made structures such as walls and columns) from both architectural 

information and real scans, and design them as line pairs feature patterns like P-LP, V-LP and C-LP. Thirdly, we propose a matrix 

descriptor for line pairs feature patterns description and initial matching. Finally, we construct error equations to estimate the pose by 

initial matching line pairs, and acquire the optimal localization results with the highest hit ratio on architectural grid map. A mobile 

robotic platform with the 16 beam LiDAR is experimented in typical indoor scenes such as rooms, corridors and undergrounding 

parking lots. Experiments show that the success rate of initial global localization reaches 80%, the average position error is about 

0.10m and the running time is about 400ms per 1000 scans, which meet the requirements of indoor autonomous driving. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Since autonomous driving plays a more important role in public 

transportation, logistics and other services fields, robot 

localization has become a focused issue. Initial global 

localization is used to estimate the global pose of the mobile 

robotic platform, which is one of the key steps in robot 

navigation and mapping, especially in SLAM (Simultaneous 

Localization and Mapping). In GNSS-denied indoor scenes, the 

camera and LiDAR are two main reliable sensors for robot 

localization. Compared with the camera, LiDAR has many 

advantages such as applicable to poor lighting even dark scenes, 

wide viewing range and high precision, so that it has been 

widely used for robot global localization (Chan et al., 2021). 

Most existing LiDAR-based initial global localization methods 

are based on point cloud reference map built in advance, which 

needs expert operators spend lots of time to ensure the 

consistency and usability of the generated maps. Meanwhile, 

the reference map usually takes up a lot of memory space 

during the process of localization, especially in large-scale 

indoor scenes. These greatly limit the application scenarios of 

existing LiDAR-based initial global localization methods. 

 

With the development of digital cities, almost every building 

has equipped with its architectural skeleton information from 

CAD, BIM or architectural information of other sources (Lu et 

al., 2020). Architectural skeletons usually refer to stable man-

made structures like walls, columns, etc. Using architectural 

skeleton information in LiDAR-based initial global localization 

has its advantages in easier acquisition and lower cost than 

using the point cloud reference map. However, there are also 

two major difficulties in LiDAR-based initial global localization 

using architectural skeleton information. One is that this kind of 

localization method is based on the matching and registration of 

point cloud data and DLG (Digital Line Graphic). It belongs to 

the heterogeneous data registration, which is more challenging 

than using point cloud reference map. The other is that lots of 

ubiquitous architectural skeleton information has the problems 

such as scale inconsistency and information missing or error 

due to the interior decoration and reconstruction of buildings. 

Therefore, it is difficult for most existing matching and 

registration methods to use this kind of imperfect architectural 

skeleton information in robot localization. 

 

In this work, a novel LiDAR-based initial global localization 

method using imperfect architectural skeleton information is 

proposed. The architectural skeleton is extracted as line pairs 

feature patterns for the heterogeneous data registration, with 

line pairs matrix descriptor proposed for feature patterns 

matching and error equations constructed for pose solution. 

Without point cloud reference map, and only using the easily 

available imperfect architectural skeleton information, our 

method can still realize high-precision LiDAR-based initial 

global localization, which meets the requirements of indoor 

mobile robotic platform.  

 

2. RELATED WORK 

In GNSS-denied indoor scenes, LiDAR-based initial global 

localization has been widely studied for the mobile robotic 

platform, since there are many indoor scenes with poor lighting 

even dark situation which are not suitable for camera-based 
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methods. Existing indoor initial global localization methods for 

UGVs (unmanned ground vehicles) with LiDAR can be divided 

into the following two categories:  

 

Integrated with external sensors: The external sensors for 

indoor robot initial global localization are IMU (Inertial 

Measurement Unit) (Karam et al., 2021), WIFI devices, 

Bluetooth module and UWB (ultra-wideband) antenna (Zhou et 

al., 2021). However, localization based on IMU will result in 

large deviation accumulation and unreliable position in long-

term robot localization, while other external sensors need plenty 

of radiation sources and beacons layout in advance. Therefore, 

these methods usually have higher additional cost, which are 

only applicated in large venues like exhibition centres and 

difficult to be pervasive. 

 

Using reference information: For most existing LiDAR-based 

initial global localization methods, point cloud reference map is 

the main reference information used in robot localization with 

point cloud registration. Suitable feature patterns are beneficial 

to registration of real scans and point cloud reference map, 

which is the foundation of robot localization. Since there are 

many feature points and lines in most indoor scenes, corners 

and horizontal lines are used for point cloud matching and 

registration, which has improved the efficiency of initial global 

localization (Wang et al., 2018). Meanwhile, walls and columns 

are extracted as simplified structures from real scans and point 

cloud reference map, which is convenient for point cloud 

registration and LiDAR-based initial global localization (Shi et 

al., 2020). These mentioned LiDAR-based initial global 

localization methods using point cloud reference map all need 

robot mapping process in advance. Since unfamiliar indoor 

scenes usually without high-precision point cloud reference map, 

there are plenty of investigations using architectural information 

for initial global localization. Most researches have been done 

on indoor robot localization using monocular camera (Hile and 

Borriello, 2008), depth camera (Ito et al., 2014) and other 

optical cameras. As LiDAR becomes more widely used by 

indoor mobile robot, a novel LiDAR-based localization method 

is proposed (Boniardi et al., 2017), which has realized the 

registration of real scans and architectural floor plans. But it can 

only suit for the perfect architectural information which is 

accurate, complete and many just in the form of floor plans. 

However, the easily available architectural information of most 

buildings is usually imperfect as incomplete, inaccurate and 

cannot meet the demand of existing methods.  

 

In summary, in the indoor scenes without GNSS signal and any 

indoor radiation sources, LiDAR-based methods are widely 

used for robot initial global localization. Most existing methods 

either rely on point cloud reference map built in advance, or 

need accurate and perfect architectural information as reference. 

In this work, we use the imperfect architectural skeleton 

information, which is easily available, as reference for LiDAR-

based initial global localization. 

 

3. METHODOLOGY 

The process of most existing LiDAR-based initial global 

localization is to build the point cloud reference map, then 

estimate the pose by point cloud registration. On this basis, the 

steps of our method using imperfect architectural skeleton 

information are as follows: a) Architectural information 

processing; b) Real scans processing; c) Pose solution based on 

feature registration. 

 

 

3.1 Architectural information processing 

The common forms of architectural information can be divided 

into the following two types of files: a) model files. CAD, BIM 

and others in standard formats; b) blueprint files. Blueprints 

with specific instructions such as safety evacuation map, 

shopping guide map and others in raster form. Different 

methods are needed for architectural skeleton extraction from 

different forms of architectural information, as shown in Fig. 1. 

 

 

Figure 1. Two main forms of architectural information. 

 

Since the model files record the architectural information with 

its accurate coordinates and geometric attribute values, 

architectural skeletons can be easily extracted by geometric 

analysis. The blueprint files are usually in the form of raster 

images, so that digital image processing algorithms are used for 

architectural skeleton extraction, such as edge detection and key 

point extraction. 

 

In order to simplify the extracted architectural skeletons and 

improve the efficiency of initial global localization, a novel 

architectural information management scheme is designed. 

Since architectural skeletons are simple and regular in most 

indoor scenes, line features are usually used for their 

representation. In this work, the line constraint file is used to 

describe the architectural skeleton information as shown in Tab. 

1, where the number of lines and the geometry attribution 

values of each line (such as slope, intercept, coordinate of start 

point and end point) are included. Meanwhile, as shown in Fig. 

2, with a certain grid resolution as the line width, the 

architectural grid map is generated from different formats of the 

architectural information for the visualization of initial global 

localization and the final optimal pose solution. 

 

Number of lines: 137 

No. Slope Intercept Start point End point 

1 1.19238 -3.74563 
8.46525 

6.30291 

9.48023 

7.53011 

2 1.50625 -6.60470 
8.41135 

5.99533 

10.57124 

8.35461 

…  …  …  …  …  

Table 1. Line constraint file. 
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Figure 2. Architectural grid map.  

 

3.2 Real scans processing 

For the architectural skeleton extraction from real scans, a set of 

point cloud feature patterns for indoor simplified structures 

have been proposed (Ye et al., 2020), which include lines and 

circles features. Due to the symmetrical layout and regular 

geometric shape of architectural skeleton, three kinds of line 

pairs feature patterns are designed in our method for the 

description of architectural skeletons in the indoor scenes, 

including parallel line pairs (P-LP), vertical line pairs (V-LP) 

and collinear line pairs (C-LP), as shown in Fig. 3. 

 

 

Figure 3. Line pairs feature patterns.  

 

Three steps of line pairs feature patterns extraction from real 

scans are as follows: 

 

Point cloud pre-processing: For the original point cloud data, 

firstly, the statistical filter with a local density threshold is used 

to filter out discrete points and some small targets which 

interference with the architectural skeleton extraction and 

matching. Then, with singular value decomposition (SVD) 

algorithm, three main orthogonal directions of real scan are 

adopted as the corrected coordinate axises ( , ,x y z ). Finally, 3D 

real scans are projected onto the horizontal plane ( xoy ). 

 

Line pairs extraction: RANSAC is used for line extraction 

from projected point cloud. Since existing line features 

extraction methods can only be suitable for rectifying structures, 

to ensure the extraction ability for some curve architectural 

skeletons, we propose a novel line pairs extraction method with 

line segmentation and merging. Long lines need segmented into 

limited-length lines to ensure the ability for fitting curve 

structures, and the linear equations are calculated by the least 

square algorithm. However, the line segmentation process 

above may lead to segmentation errors that the same line splits 

into several pieces. Therefore, with the slope difference 

threshold and the distance threshold of adjacent points set, the 

line pairs which are approximately parallel and close to each 

other are merged into the same line. Meanwhile, with this 

merging process, it can also solve the above problem that there 

are line segments caused by information missing or error in 

imperfect architectural skeletons and connect them. According 

to the angle and distance of line pairs, the feature patterns are 

extracted as P-LP, V-LP and C-LP. 

 

Feature patterns description: For the effective description of 

line pairs feature patterns, a symmetric line pairs matrix 

descriptor is proposed. In our matrix descriptor, non-diagonal 

elements reflect the line pairs feature patterns corresponding to 

their rows and columns, including 0, -1 and positive elements. 

As shown in Fig. 4, element 0 reflects C-LP, element -1 reflects 

V-LP and the positive elements reflect P-LP with its value the 

distance between parallel ones.  

 

 

Figure 4. Line pairs matrix descriptor.  

 

Meanwhile, for the scale inconsistency, there are different 

scales between imperfect architectural information and real 

scans. To solve this problem, the positive elements in our 

matrix descriptor are normalized by equation (1), which is 

conducive to the fast and accurate registration of heterogeneous 

data with different scales. 
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where ijD  = distance of parallel line pairs 

 
PN  = number of positive elements 

 ijD  = normalized distance 
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3.3 Pose solution 

Since most of the indoor scenes are nearly flat and sensors are 

tightly set on the ground mobile platform, the global pose of 

UGVs can be simplified from 6 DOF (Degree of Freedom) to 3 

DOF, the 2D position ( ,x y ) and the orientation ( ) included. 

With the registration of architectural information and real scans, 

main steps of the pose solution are as follows:  

 

Feature patterns matching: In section 3.2, the line pairs 

matrix descriptors are generated from the architectural skeleton 

of both architectural information and real scans. On this basis, 

the feature patterns matching process is to select the sub-

matrixes from the matrix descriptor of architectural information 

which seem to be similar with the matrix descriptor of real 

scans. With the same matrix size of the descriptor from real 

scans, potential matching sub-matrixes are selected by the 

distance between two matrixes which represents the matrix 

similarity. The Manhattan distance between matrixes is 

calculated by equation (2). 

 

   

,

a b
M ij ij

i j

D m m= −     (2) 

 

where MD  = Manhattan distance between matrixes 

 ,a b
ij ijm m  = elements in different matrixes 

 

The feature patterns are initially matched when the Manhattan 

distance is lower than the set threshold. As shown in Fig. 5, 

more than one potential matching results are obtained, since 

there are a large number of repeated scenes and imperfect 

architectural skeleton information may be incomplete. Among 

the matching feature patterns, the optimal pose can be obtained 

by following pose solution process. 

 

 

Figure 5. Feature patterns matching.  

 

Pose parameters estimation: In the potential matched feature 

patterns, the relation between points from real scans and lines 

from architectural information has been established. The error 

equations of the distance between points and lines are 

constructed as the equation (3), and the pose parameters are 

calculated iteratively using least square algorithm. To improve 

the efficiency of error equation solution, the gradient descent 

method is used with an appropriate step length, which can also 

optimise the results of pose solution. 
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   (3) 

 

where 0 0,x y  = coordinate of points in real scans 

 , ,x y    = initial global pose parameters 

 1 1,x y  = global position of points in real scans 

 ,k b  = slope and intercept of lines 

 V  = error of initial global localization 

 X  = vector composed of , ,x y    

 ,B L  = coefficient matrix and constant vector 

 

Since architectural skeletons are usually symmetric in most 

indoor scenes, the orientation of mobile robotic platform is easy 

to misinterpret into the opposite direction. It leads to the fact 

that most of the existing LiDAR-based robot localization 

methods cannot obtain high-precision complete pose, only the 

robot positioning results, but the lack of orientation results. The 

covariance matrix is calculated to evaluate the uncertainty of 

three pose parameters. When the covariance of the orientation is 

much lower, the initial orientation needs updated into the 

opposite direction and estimate the pose parameters again. 

 

Optimal pose acquisition: Using the imperfect skeleton 

information as reference, it is difficult for existing localization 

methods based on registration to acquire the only optimal pose 

among potential matching results. To solve this problem and get 

the optimal pose solution results, the hit ratio of point clouds is 

used in this work. The hit ratio we used here is to describe the 

points of real scans on the architectural grid map generated in 

section 3.1, where points are only from the feature patterns and 

the map is in the form of raster. The pose with higher hit ratio 

means the better results obtained in the registration of both 

heterogeneous data and the more authentic pose of initial global 

localization. A threshold like 90% has been set to determine 

whether the initial global localization succeeds. Among all the 

cases of successful localization initialization, the pose 

parameters with the highest hit ratio are selected as the final 

results of initial global localization. 

 

4. EXPERIMENTAL RESULTS 

4.1 Experimental setup 

 

 

Figure 6. Experimental platform with a 16 beam LiDAR.  

 

Since there is usually no architectural information in public 

indoor point clouds benchmarks, we collect the experimental 

data in typical indoor scenes. As shown in Fig. 6, we use the 
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mobile robotic platform with a 16 beam LiDAR for our 

experimental point cloud data collection. Meanwhile, we collect 

the imperfect architectural information of our experimental 

scenes, with sources like CAD and safety evacuation map. A 

laptop with Intel Core i7-10750H CPU @ 2.60 GHz 5 GHz and 

a 16 GB of RAM has been applied in our experiment. 

 

4.1.1 Dataset 1-office building: The office building is a 

common scene for indoor robots. As shown in Fig. 7, the first 

floor covers an area of about 600 square meters and about 8000 

scans of point cloud are collected. There are rooms and long 

corridors in this scene, including rich architectural skeleton 

information such as walls, doors and windows. Long corridors 

are challenging for initial global localization. Meanwhile, there 

are also many interference targets, such as pedestrians, potted 

plants and furniture. The architectural skeleton information of 

this scene is extracted from the safety evacuation map of this 

building. 

 

 

Figure 7. Dataset 1-office building.  

 

4.1.2 Dataset 2-underground parking lots: As the typical 

large-scale indoor scene, underground parking lots is the 

focused issue for indoor robot mapping and navigation. As 

shown in Fig. 8, the underground parking lots covers an area of 

about 3000 square meters and about 10000 scans are collected. 

In this dataset, there are not only a large number of architectural 

skeletons like walls and square columns, but plenty of 

interference targets like cars and indicators. Meanwhile, the 

architectural skeleton information of this scene is provided from 

the floor plans. 

 

 

Figure 8. Dataset 2-underground parking lots.  

 

4.2 Results 

Limited by the paper length, only two real scans are sampled in 

each dataset for the presentation of initial global localization 

results (the 4500th and 7402nd scan sampled from dataset 1, the 

207th and 1300th scan sampled from dataset 2). Fig. 9 shows the 

process of initial global localization from dataset 1, where (a) 

and (b) show the two sampled real scans, (c) and (d) show the 

extracted feature patterns from the sampled real scans, (e) 

shows the feature patterns registration results and (f) shows the 

point clouds located in the architectural information. The same 

process of initial global localization of two sampled real scans 

from dataset 2 is shown in Fig. 10. A green circle with a red 

arrow is used to show the optimal pose of real scans, in Fig.9 (e) 

and Fig. 10 (e).  

 

The experimental results show that using the architectural 

skeleton registration as the common feature is conducive to the 

initial global localization of real scans. In the scenes with lots 

non-structure objects (Fang et al., 2021) or newbuilt stable 

structures not included in existing imperfect architectural 

skeleton information, our method can still obtain accurate 

localization results, as there are many cars in Fig. 10 (f) and the 

newbuilt stairs and stake in Fig.9 (f). 

 

 

Figure 9. The process of initial global localization with dataset 

1. (a), (b)-real scans; (c), (d)-extracted feature patterns; (e)-

architectural skeleton registration and the robot pose; (f)-the 

projected real scans located in architectural information. 
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Figure 10. The process of initial global localization with dataset 

2. (a), (b)-real scans; (c), (d)-extracted feature patterns; (e)-

architectural skeleton registration and the robot pose; (f)-the 

projected real scans located in architectural information. 

 

4.3 Precision analysis 

One of the classic LiDAR-based SLAM algorithms-LOAM 

(Lidar Odometry and Mapping) (Zhang and Singh, 2017) 

provides the true pose value for precision evaluation in our 

experiment. LOAM is currently the top three SLAM algorithm 

on KITTI benchmarks, with high-precision pose solution results. 

To obtain more accurate true values, an IMU is also installed on 

the mobile platform for precision evaluation in our experiment. 

And in order to ensure the accuracy of IMU positioning, the 

long-term collection of experimental data is avoided in our 

experiment. 

 

5000 scans are selected from our datasets for precision 

evaluation, including independent rooms from dataset 1 (855 

scans), corridors from both datasets (1534 scans) and 

underground parking lots from dataset 2 (2611 scans). The 

success rate of initial global localization, the RMSE (Root 

Mean Square Error) of localization (position and orientation) 

and the running time of our algorithm are counted, as shown in 

Tab. 2. 

 

Scene Success rate RMSE Time 

Rooms 80% 
0.08 m 

0.98 ° 
278 ms 

Corridors 86% 
0.15 m 

1.24 ° 
710 ms 

Underground 

Parking Lots 
73% 

0.05 m 

0.87 ° 
1196 ms 

Table 2. Precision evaluation of initial global localization. 

 

From the statistics, the success rate basically reaches 80%, the 

precision of initial global localization is about 0.10 m and 1.00 °, 

meanwhile, the running time of our algorithm is with 400 ms 

per 1000 scans. In the corridor scenes, the precision is lower 

than others but the success rate of initial global localization is 

the highest. And in the underground parking lots scenes, the 

success rate of initial global localization is lower than another 

two scenes, however, it shows the highest precision of the 

position and orientation. The reason of low success rate in 

underground parking lots scenes is that many architectural 

skeletons away from the platform are involved in the 

localization process, which are inaccurate and unreliable. Since 

there is difference between the number of real scans in the 

corridor scenes and underground parking lots scenes, 1000 

scans are sampled randomly from each scene in order to explore 

the influence on the precision by the scans number. As shown in 

Fig. 11, each point represents the error of initial global 

localization and the green line shows the mean precision of 

positioning. 

 

 

Figure 11. The position error statistics of two scenes with the 

same scans number. 
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With the same number of scans, the precision of initial global 

localization in underground parking lots scene is still 

significantly higher than corridor scene. Meanwhile, results 

from Fig. 11 are similar to the overall experimental results from 

Tab. 2, which means the difference on pose precision is not 

caused by the scans number. Also, it can be seen in Fig. 11 that 

the distribution of position error shows more concentrated in 

underground parking lots scene than corridors, and there are 

much more big errors in the corridor scene. 

 

Besides the scans number, there are significant differences with 

types and numbers of feature patterns in different scenes. 

Different from above experiments, to distinguish contributions 

of different feature patterns to initial global localization, we 

only use each single feature pattern (P-LP, V-LP or C-LP) to 

localize. The number of feature patterns, the success rate and 

the precision of position for initial global localization using 

single feature pattern are counted in Fig.12 and Fig. 13. 

 

 

Figure 12. The feature patterns number and success rate with 

single feature pattern in two different scenes. 

 

 

Figure 13. The feature patterns number and position error with 

single feature pattern in two different scenes. 

Compared with corridors, there are much more feature patterns 

in underground parking lots, especially plenty of P-LP and V-

LP structures. For the success rate of initial global localization, 

P-LP shows the lowest rate with only 76% and 64% in both 

scenes, while V-LP and C-LP show higher success rate. For the 

precision of initial global localization, there are less position 

errors in V-LP and C-LP feature patterns, especially V-LP 

whose position errors are only 0.08 m and 0.03 m in two scenes. 

However, P-LP shows the lower position precision, with 0.21 m 

mean error in corridor scene. The reason for the difference in 

accuracy is that, compared with P-LP and C-LP only provides 

constraint in one parallel direction, a single V-LP feature pattern 

can provide constraints in both orthogonal directions, so it 

shows the largest contribution in high-precision localization. 

For the further analysis with the orientation of the architectural 

skeleton in experiment scenes, the reason that the localization 

precision of C-LP is slightly higher than P-LP can be that there 

are different directions of C-LP in the same scene, while PL has 

only a few fixed directions. 

 

In summary, the above experiments confirm that our method 

can obtain high-precision LiDAR-based initial global 

localization results, even using imperfect architectural skeleton 

information. Through experimental analysis, we can draw the 

following conclusions: 

 

 Experimental results show that, with our method, the success 

rate of initial global localization reaches 80%, the average 

pose error is about 0.10m and 1.00 °, meanwhile, the running 

time is about 400ms per 1000 scans, which meet the 

requirements of indoor autonomous driving. 

 

 The number of feature patterns are the critical factors for 

initial global localization in our method. It can reach higher 

success rate and position accuracy in the scenes with more 

architectural skeletons, so that our method is suitable for 

application in large-scale indoor scenes with rich 

architectural skeleton information. 

 

 Among line pairs feature patterns extracted in our method, V-

LP shows the highest localization precision, C-LP second and 

P-LP lowest. Meanwhile, V-LP and C-LP shows the higher 

success rate of localization initialization, while the success 

rate of P-LP is lower. Therefore, for indoor initial global 

localization, more V-LP feature patterns can improve the 

localization precision and success rate.  

 

4.4 Discussions 

Compared with existing LiDAR-based initial global localization 

method, the advantages of our method are as follows:  

 

No GNSS required. In GNSS-denied indoor scenes, our 

method can also obtain the high-precision initial global 

localization results. 

 

No radiation source and beacon required. Compared with 

localization based on Bluetooth, UWB and WIFI, our method 

can decrease the arrangement workload and cost of these 

radiation sources and beacons. 

 

No appropriate light required. Since there are many indoor 

scenes with poor illumination, localization using vision sensors 

like cameras in these scenes has poor effect. But our method is 

suitable for these scenes with weak illumination even darkness. 

 

No point cloud reference map required. Our method avoids 
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the dilemma that existing LiDAR-based initial global 

localization methods are based on point cloud reference map, 

while mapping needs the global localization which is usually 

provided by initial global localization. Using architectural 

skeleton as reference makes our method more suitable for initial 

global localization in many large-sale indoor scenes. 

 

5. CONCLUSIONS 

In this work, a novel LiDAR-based initial global localization 

method using imperfect architectural skeleton information has 

been proposed, providing the global position for perception and 

mapping of mobile robotic platform. An effective management 

scheme is proposed for architectural information from various 

sources. Since the foundation of our localization method is 

heterogeneous data registration, line pairs feature patterns and 

the line pairs matrix descriptor are designed for fast matching 

and registration. To solve the problems caused by using 

imperfect architectural information, the highest hit ratio on the 

architectural grid map is used to obtain the optimal localization 

results among potential matching feature patterns, and the 

iterative solution of updating the Initial orientation is propitious 

to overcome the orientation unreliability in symmetrical scenes. 

Experimental results show that our method can effectively 

obtain high-precision pose, even in some challenging scenes 

such as corridors and underground parking lots. 

 

Our future work will enrich the types of feature patterns for the 

application in some complex indoor scenes like stadiums and 

exhibition halls. Meanwhile, we will expand the application of 

our method into some outdoor scenes with poor GNSS signals, 

which are convenient for the seamless switching of indoor and 

outdoor localization and the modelling above LOD4 (Level of 

Detail). 
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