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ABSTRACT: 
 
The multi-sensor fusion scheme has become more and more popular these days with its great potential to estimate reliable navigation 
information for the modern development in automated driving system (ADS) and mobile mapping systems (MMS). Since these 
systems are combined with numerous navigation sensors, thus their geometric relationship should be precisely known. This study 
focuses on practical aspects when calibrating LiDAR-IMU mounting parameters (lever-arms and bore-sight angles) in land-based 
MMS. This calibration model is based on expressing the mounting parameters within the direct georeferencing equation for each 
epoch time and conditioning a set of INS/GNSS and LiDAR navigation solutions to lie on it. There is no need for a required 
information about the planar features in the calibration field as part of the unknowns. Such conditions are only benefitable in the 
residential area where the presence of sufficient planes in form of building is abundant. We present an approach for recovery the 
mounting parameters by conditioning the high-definition (HD) point cloud map-based LiDAR information and INS/GNSS 
navigation solutions through the least-squares solutions. The presented results and discussion mainly focus on practical examples 
with data from land-based MMS. Preliminary results indicate that correct calibration parameters are not only capable to improve the 
performance of point cloud georeferencing but also dramatically provide reliable performance evaluation of navigation estimation. 
Moreover, these findings show that the studied method is not only applicable in the featureless environment but also in its 
practicality to the self-driving applications. 
 
 

1. INTRODUCTION 

To obtain an accurate georeferenced LiDAR scan of point 
clouds and navigation evaluation in MMS and ADS, LiDAR 
mounting parameters (i.e., lever-arm and bore-sight angles) 
need to be considerably estimated. There are several LiDAR 
calibration approaches have been proposed and developed over 
the past decade. For an example, the adopted approach (Skaloud 
and Schaer, 2007) based on the functional model for the 
recovery of calibration parameters through the automated 
detection and extraction of the planar section of the rooftops in 
airborne LiDAR system (ALS). This functional model is based 
on conditioning the georeferenced LiDAR target points to lie on 
surface planes (Skaloud and Lichti, 2006). Moreover, there is 
an approach that also followed an above functional model but 
adopted into their land-based mobile laser scanning system for 
estimating LiDAR mounting parameters (Tsai et al., 2018). As 
same as previously mentioned methods, most the existing 
strategies still relied on the specific planes (surface normal), key 
feature points (e.g., edges and cylinder object points) (Lv et al., 
2020; Liu and Li, 2019), and locally conducted in the preferable 
laboratory and indoor environment (Le Gentil et al., 2018; Liu, 
2017). Considering to such the procedures, LiDAR odometry 
(LO) is used to perform a single or multi-feature-based 
registration for LiDAR pose estimates and then formulate the 
calibration estimation model. For initialization in LO, only an 
Inertial Measurement Unit (IMU)-derived information is solely 

used to initialize LiDAR registration. In such a situation, LO 
accuracy may suffer from the features used (Liu et al., 2020), 
quality of initial pose, and prior point cloud map. Furthermore, 
another calibration framework is proposed in a structured 
environment using a specific plane to perform LO for parameter 
estimation (Li et al., 2021). To this end, the drawback of these 
existing methods for estimating the LiDAR-IMU mounting 
parameters are depend on the specific feature information, 
reliable navigation solutions, and its limit with practicality to 
ADS. To obtain more applicable calibration parameters for 
ADS, we propose the functional model for recovery the LiDAR-
IMU calibration parameters through direct georeferencing of 
LiDAR measurement with the INS/GNSS and HD point cloud 
map-based LiDAR navigation solutions. 
 
The organization of the paper is as follows. Firstly, we 
introduce the LiDAR-based navigation system with including 
INS/GNSS integration, direct georeferencing of LiDAR 
measurements, and the HD point cloud map-based LiDAR scan 
matching. Secondly, we propose the estimation model for 
recovery of calibration parameters. Thirdly, we describe an 
experiment including the sensor configuration and environment 
when applying this approach to land-based mobile mapping 
system vehicle. Next, the experimental results are presented and 
discussed. After that we conclude our practical experience. 
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2. LIDAR-BASED NAVIGATION SYSTEM 

In order to obtain an accurate navigation estimation based on 
LiDAR measurements, there are three remarkable steps: initial 
pose from INS/GNSS integration, point cloud georeferencing, 
and LiDAR scan matching techniques. The first step is to 
synchronize the time between the LiDAR data and INS/GNSS 
navigation solution to be the same time domain and then 
interpolate the navigation information. The output from this 
process is the initial pose of LiDAR measurements. For the 
second step, the direct georeferencing of LiDAR measurements 
is conducted regarding an initial pose obtained from previous 
step. The third step is to refine the LiDAR navigation solution. 
This process uses the HD point cloud map-based LiDAR scan 
matching with NDT algorithm. The output from this process is 
used to formulate the functional model for calibration parameter 
estimation. The following sections describe the INS/GNSS 
integration, point cloud georeferencing, and HD map-based 
LiDAR scan matching in details.  
 
2.1 INS/GNSS Integration 

The integration of an inertial navigation system (INS) and a 
global navigation satellite system (GNSS) through the Kalman 
filter (KF) algorithm is considerable as the most applicable 
approach over the stand-alone system. The INS/GNSS 
integration systems are categorized into two schemes; loosely 
coupled (LC) and tightly coupled (TC) schemes. However, 
applying such the TC-INS/GNSS integration system would 
generally provide better navigation estimation due to its 
complexity.  
 
The navigation state vector (

kx ) of the KF algorithm is 

expressed as follows: 
 

 
21 1

, , , , , ,
T

k a g a gx r v b b s s


    .   (1) 

 
where  , ,r v   = the integrated navigation solutions for 

position, velocity, and attitude, respectively 
,a gb b  = the biases of the accelerometers and 

gyroscopes, respectively 

,a gs s  = the scale factors of the accelerometers and 

gyroscopes, respectively. 
 
The state prediction (

| 1k kx 
) and measurement update (

kz ) of 

KF are written in the discrete-time forms as follows: 
 
 

| 1 | 1 1| 1k k k k k kx x      .    (2) 

 
| 1k k k kz H x   .     (3) 

 
where    = the state transition model 

kH  = the measurement matrix 

 
In addition to the outcome of TC-INS/GNSS integration system, 
the navigation solution was post-processed with the forward and 
backward smoothing process (Shin, 2005). 
 
2.2 Direct Georeferencing of LiDAR Measurements 

Figure 1 depicts the geometric relationship of navigation 
sensors on a land vehicular mobile mapping system (MMS). 
Using an arbitrary Cartesian mapping frame (m-frame), the  

 
(a) 

 
(b) 

Figure 1. Direct georeferencing of LiDAR measurement: (a) 
geometric relationship of navigation sensor on land vehicular 
platform, (b) the coordinates of LiDAR measurement in the l-
frame. 
 
direct georeferencing of LiDAR measurements at time (t) with 
INS/GNSS integration system on a land vehicular platform can 
be expressed as follows: 
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         (4) 
 

where  , ,
x y z

T
m m m m

i i i ir r r r   
  = the coordinates of LiDAR 

measurement i in the m-frame at time t 

  , ,
X Y Z

Tm m m m
b b b br t r r r   
 = the coordinates of IMU 

center in the m-frame obtained by INS/GNSS at time t 

 m
bR t  = the rotation matrix from the IMU in body 

frame (b) to the m-frame obtained by INS/GNSS at 
time t 

 , ,b
l x y zR f     = the rotation matrix from the 

LiDAR in LiDAR frame (l) to the b-frame 
parameterized by the bore-sight angles ,x y  and 

z  
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l
ir


 = the coordinates of the LiDAR measurement i in 

the l-frame at time t 
, ,D    = the LiDAR range, vertical and horizontal 

angles of the LiDAR measurement i in the l-frame at 
time t, respectively 

, ,
x y z

T
b b b b
l l l la a a a   
  = the lever-arm offset between 

the IMU and LiDAR centers expressed in the b-frame. 
 
2.3 HD Point Cloud Map-Based LiDAR Scan Matching 

In order to obtain an accurate position and orientation system 
(POS) of LiDAR sensor, the static map-based (i.e., scan-to-
map) approach is applied in this paper. As already reported in 
(Magnusson, 2009), the LiDAR scan matching with the normal 
distribution transform (NDT) provides more robust and better 
pose estimate than using the iterative closest point (ICP) 
variants. 
 
The proposed LiDAR scan matching algorithm follows the 
workflow depicted in Figure 2. As mentioned earlier, the need 
for LiDAR-based navigation estimation with scan-to-map 
approach arises from the LiDAR measurements and their 
corresponding transformation by the integrated INS/GNSS 
solution. To appropriately align a LiDAR scan to a prior map 
and prevent NDT algorithm from trapping into local minima, it 
needs the reliable navigation solutions to estimate an initial 
pose for LiDAR registration. It proceeds through the time 
synchronization and interpolation process. For simplicity, the 
proposed LiDAR scan matching algorithm proceeds in three 
main steps: pre-processing and georeferencing point cloud, map 
extraction, and NDT pose estimate. The outcome of this process 
is the LiDAR pose (i.e., translation vector and rotation matrix) 
with respect to the m-frame. More details on the NDT algorithm 
and its extension can be found in (Biber and Straßer, 2003; 
Magnusson, 2009). 
 

 
Figure 2. Workflow of proposed LiDAR scan matching 
algorithm. 
 

3. ESTIMATION MODEL 

3.1 Functional Model 

The development of the functional model is based on 
conditioning the NDT-estimated LiDAR’s POS and integrated 
INS/GNSS solution. When considering the use of a navigation 
grade INS and dual frequency GNSS receivers, the residual 
effects in TC-INS/GNSS navigation estimation should be lower 

than other cases in position and attitude. Regarding the better 
georeferencing, it is assumed that the LiDAR measurements are 
registered perfectly with a prior map by the NDT algorithm. As 
demonstrated by Figure 1, the lever-arm vector ( b

la ) and the 

rotation matrix ( b
lR ) can be formulated herein as: 
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where    , ,
x y z

T
m m m m

l l l lr t r r r   
  = the coordinates of LiDAR 

center in the m-frame obtained by NDT algorithm at 
time t 

 m
lR t  = the rotation matrix from the LiDAR in the l- 

frame to the m-frame obtained by NDT algorithm at 
time t. 

 
The observation equation at time t expressed by the LiDAR 
scan matching results and INS/GNSS navigation solutions on 
the geometric relationship of direct georeferencing: 
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The observations ( ( )l t


) at time t is a function expressed by the 

position and attitude of the INS/GNSS navigation solution and 
LiDAR scan matching results, respectively. While the 
calibration parameters ( x


) of LiDAR and IMU are represented 

by the lever-arm and bore-sight angles: 
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The functional model used for the parameter estimation: 
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where  

ijb  = the element in row i and column j of the rotation 

matrix from the LiDAR in l-frame to the b-frame 
parameterized by the bore-sight angles ,x y  and 

z  

 
ijc = the element in row i and column j of the rotation 

matrix from the m-frame to the b-frame parameterized 
by the angles ,

X Yb b  and 
Zb  

 
ijd = the element in row i and column j of the rotation 

matrix from the LiDAR in the l-frame to the m-frame 
parameterized by the angles ,

x yl l  and 
zl

 . 

 
3.2 Least Squares Solution 

Since the functional model are non-linear, the solution is 
derived using the traditional method of non-linear least-squares 
adjustment. The linearized system of equations takes the form: 
 
 

6 ,1 6 , ,1 6 ,1m m u u mV B x F   .   (12) 

 
where  V  = the residual vector 

B  = the design matrix of partial derivatives of the 
function (F) with respect to the calibration parameters 

x  = the vector of corrections to the appropriate 
calibration parameter values 
F  = the functional used for the calibration parameter 
estimation as derived in previous subsection 
m, u = the number of the epoch time t and unknowns, 
respectively. 
 

Following standard procedures, the final form of the normal 
equations used herein are: 
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.

T T
k k k k k

k k k

k k k
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   

  (13) 

 
Once the normal equations are formed, the corrections of 
calibration parameters are computed from an above equation. 
The parameter estimates are then improved iteratively. To start 
the iteration solution, the approximate calibration parameters 
can be set to the on-site measures and zero for the lever-arm and 
bore-sight angles, respectively. The principal advantage of 
proposed method are its computational efficiency, reliability, 
and practicality particularly during the alignment procedures 
with MMS or automated driving systems. 
 

4. EXPERIMENT 

4.1 Configuration Description 

A land vehicle-based mobile mapping system is adopted in our 
case for calibration parameter estimates. As shown in Figure 3, 
the experimental platform used in this study includes a 
navigation grade-IMU (iNAV-RQH), GNSS receiver and 
antenna (PwrPak7), and LiDAR (Velodyne VLP-16). 
Considering the calibration parameters, only a LiDAR mounted 
on the horizontal plane is investigated in our study. 
 
As mentioned earlier, the navigation solution was post-
processed using the TC scheme with forward and backward 
smoothing process through the commercial INS/GNSS software 
(Inertial Explorer, IE). Table 1 and Table 2 show the 
specification and performance characteristics of iNAV-RQH 
IMU and LiDAR, respectively. 
 

 
Figure 3. Experimental platform with navigation sensor 
configuration. 
 
 Accelerometer Gyroscope 
Bias Instability 15 g  0.002 / hr   
Random Walk Noise 8 /g Hz  0.0018 / hr  

Table 1. Specification of iNAV-RQH IMU. 
 
 VLP-16  
Max. Measurement Range 100 m 
Accuracy  3 cm 
Field of View: 
- Vertical 
- Horizontal 

 
30  ( 15   to 15  ) 

360   
Angular Resolution: 
- Vertical 
- Horizontal 

 
2  

0.1  to 0.4  
Table 2. Performance characteristics of Velodyne LiDAR. 
 
4.2 Environmental Description 

Regarding the calibration field, we only make use of a single 
test field depicted in Figure 4. As will become apparent, the 
calibration field is essentially the flat terrain of the road with 
regular trees, lighting poles, and some buildings. The principal 
advantage of this calibration field is not only its practicality but 
also demonstration the effect of road geometry and components 
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on the quality of the calibrated parameters when applying the 
proposed method. 
 
In addition to the GNSS conditions, they were almost optimal 
for this calibration field (indicated by the green-dashed circle in 
Figure 4) with favourable satellite geometry and satellite 
observation number. As a result, GNSS position and velocity 
are well observable and estimable. These facts, together with the 
navigation grade-IMU, contributed to the good estimation of the 
INS/GNSS solutions. 
 

 
(a) 

 
(b) 

Figure 4. The experimental area: (a) bird’s eye view of the 
INS/GNSS trajectory and calibration field, (b) real world 
environment of calibration field. 
 

5. RESULTS AND DISCUSSION 

To evaluate the proposed calibration method, the results are 
divided into three parts: calibration parameters, georeferenced 
point clouds, and HD map-aided LiDAR navigation estimation. 
For the first results, the parameters before and after calibration 
are presented. The second results depict the georeferenced 
LiDAR scan of point clouds with different calibration 
parameters. For the third results, the positioning differences of 
proposed LiDAR scan matching algorithm with different 
calibration parameters are analyzed. The following subsection 
describes the aforementioned results in details. 
 

5.1 Calibration Parameters 

As already mentioned, this study adopts the kinematic 
calibration model involving the INS/GNSS and NDT pose 
information through the direct georeferencing to construct the 
functional calibration model. Table 3 shows the estimated 
parameters before and after calibration including the lever-arm 
and bore-sight angles. As a result, it is clear that the calibration 
parameters totally differ from the initial values (i.e., before 
calibration) particularly a lever-arm in z-axis and all the bore-
sight angles. Regarding the poor calibration parameters, this 
kind of error source would directly affect to the georeferenced 
point clouds and significantly lead to the wrong evaluation 
results especially in automated driving systems. In some case, 
the bore-sight angles can have a very small value but there 
should not be perfectly equal to zero. To this end, the 
preliminary results of proposed model seems to precisely 
estimate those unknowns and more practically bridge the gap of 
unreliable calibration parameters from manual measures. 
 

Estimated Parameters Before Calibration  After Calibration 

x

b
la (m) 0.190 0.186 

y

b
la (m) 0.970 0.936 

z

b
la (m) 1.170 1.330 

x (deg.) 0.000 0.889 

y (deg.) 0.000 -0.060 

z (deg.) 0.000 0.408 

Table 3. Comparison of parameter estimates before and after 
calibration. 
 
5.2 Georeferenced Point Clouds 

In terms of LiDAR scan matching (i.e., registration), LiDAR-
IMU calibration parameters take an important role for the direct 
georeferencing. Therefore, we can make use of the 
georeferenced point clouds before and after calibration to 
visually evaluate the calibration parameters. Figure 5 illustrates 
that the georeferenced LiDAR scan of point cloud (indicated by 
the red points) with the initial values (before calibration) has a 
large amount of mis-alignment particularly in the height and all 
the bore-sight angles compared to the HD point cloud map 
(indicated by the grey points). On the contrary, Figure 6 
indicates that the georeferenced LiDAR scan of point clouds 
(indicated by the green points) with our parameters (after 
calibration) perfectly aligned with the HD point cloud map. It is 
clear that our calibration model can precisely estimate and 
improve the LiDAR-IMU parameters.  
 
5.3 HD Map-Aided LiDAR Navigation Estimation 

As previously described, this study makes use of the HD point 
cloud map-based LiDAR navigation system to estimate the 
LiDAR navigation state (i.e., position, velocity and attitude) and 
formulate the LiDAR calibration model at the same time. Table 
4 shows the statistical information of positioning differences 
before and after calibration with the proposed LiDAR 
navigation algorithm at the calibration field. As a result, it is 
clear that the poor LiDAR mounting parameters (before 
calibration) lead to wrong performance evaluation in terms of 
positioning differences compared to TC-INS/GNSS solution. 
The RMS of positioning differences can reach up to 0.040, 
0.019, and 0.160 meters in the east, north, and height 
components, respectively.  
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(a) 

 
(b) 

 
(c) 

Figure 5. Georeferenced points before calibration (red points): 
(a) xy-plane (top-view), (b) xz-plane (side-view), and (c) yz-
plane (front-view). 
 
On the other hand, it is worth mentioning that there is a great 
amount of improvement with making use of our mounting 
parameters (after calibration). The RMS of positioning 
differences are only about 0.020, 0.018, and 0.056 meters in the 
east, north, and height components, respectively. Furthermore, 
the improvement is up to 50%, 5%, and 65% increases after 
calibration in the east, north, and height components, 
respectively.  
 
Positioning 
Differences (m) 

Before Calibration  After Calibration 
E N U E N U 

Mean 0.036 0.011 0.150 0.011 0.011 0.049 
STD 0.040 0.019 0.160 0.020 0.018 0.056 
RMS 0.040 0.019 0.160 0.020 0.018 0.056 
Improvement - - - 50% 5% 65% 
Table 4. Statistical information of positioning differences 
before and after calibration with the proposed LiDAR 
navigation algorithm. 

(a) 

(b) 

 
(c) 

Figure 6. Georeferenced points after calibration (green points): 
(a) xy-plane (top-view), (b) xz-plane (side-view), and (c) yz-
plane (front-view). 
 

6. CONCLUSIONS 

As publicly well-known, the multi-sensor fusion scheme has a 
great potential to be the core navigation estimator for the 
modern development in automated driving or self-driving 
systems. To accurately obtain the best performance with low-
cost LiDAR sensor to such a system, this paper proposes the 
calibration model to estimate the LiDAR mounting parameters 
using the TC-INS/GNSS and HD map-aided LiDAR navigation 
solutions.  
 
As a preliminary result, accurate calibration parameters can 
improve the performance of point cloud georeferencing and 
navigation evaluation dramatically. Considering the positioning 
difference results in the calibration field, the experimental 
results show that the positioning differences has a small amount 
based on the parameters after calibration. Hence, the benefit of 
the studied method is not only applicable in the featureless 
environment (surface normal) but also in its practicality and 
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suitability to the self-driving applications since they usually 
make use of HD map and integrated INS/GNSS information. 
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