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ABSTRACT: 

Indoor mapping is gaining more interest in both research as well as in emerging applications. Building information systems (BIM) 

and indoor navigation are probably the driving force behind this trend. For accurate mapping, the platform trajectory reconstruction, 

or in other words sensor orientation, is essential to reduce or even eliminate for extensive ground control. Simultaneous localization 

and mapping (SLAM) is the computation problem of how to simultaneously estimate the platform/sensor trajectory while 

reconstructing the object space; usually, a real-time operation is assumed. Here we investigate the performance of two LiDAR 

SLAM tools based on using indoor data, acquired by a remotely controlled robot sensor platform. All comparisons were performed 

on similar datasets using appropriate metrics and encouraging results were obtained as a consequence of initial test studies yet 

further research is needed to analyse these tools and their accuracy comprehensively  

⁕ Corresponding author 

1. INTRODUCTION

To map unknown environments in real-time using different 

kinds of sensors while estimating the location of mobile robotic 

systems at the same time is known as Simultaneous Localization 

and Mapping (SLAM) (Leonard and Durrant-Whyte, 1991). In 

the past two decades, research and development of navigation 

system for autonomous robots and driverless vehicles have been 

at the forefront of countless research studies, where SLAM 

algorithms play a significant role. The most important 

requirement for the navigation of robots and autonomous 

vehicles is a good knowledge of their own location and a good 

perception of their surroundings (Kong and Lu, 2017). Today, 

GNSS systems are used as the most common positioning 

system, as they provide precise positioning opportunities for 

different user needs. Of course, these systems have some 

drawbacks depending on the environment, such as tunnels, 

indoors, and urban canyons (Lin et al., 2018) not mentioning 

intentional or unintentional RF interference. Therefore, as an 

alternative, SLAM methods are one of the most widely used 

techniques for accurately estimating poses and trajectories in 

relative sense and perceiving the environment in order to 

provide navigation for self-driving vehicles and mobile robots 

in different dynamic outdoors and indoor environments where 

there are many obstacles (Bresson et al., 2017). 

In order to solve the localization problem of driverless vehicles 

and mobile robots, different sensors can be used, such as 

LiDAR, RADAR, and monocular/stereo cameras. However, in 

general, camera and LiDAR are the most widely used sensors 

for this purpose. While a significant part of the SLAM research 

was devoted to passive visual sensors, LiDAR SLAM solution 

have received less attention, though LiDAR sensors have 

important practical advantages compared to passive cameras 

(Cadena et al., 2017). LiDAR systems, which are active sensors, 

can work independently of the light situation, perform better 

obstacle detection and tracking, and are increasingly becoming 

the basic measurement and positioning sensor for robotic 

studies (Cwian et al., 2021). For this reason, studies on the 

development of SLAM algorithms for LiDAR data and the 

examination of the performance of the developed methods are a 

hot topic among the scientific community. In this context, many 

LiDAR-based SLAM solution have been proposed, i.e., 

Cartographer (Hess et al., 2016), LOAM (Zhang and Singh, 

2014), Hector SLAM (Kohlbrecher et al., 2011), which nearly 

all of them implemented in robot operating system (ROS) and 

numerous studies comparing these algorithms are available in 

the literature (Filipenko and Afanasyev 2018, Zou et al., 2020). 

However, due to the complexity of the ROS program 

architecture, using and testing these platform-based methods 

require a certain amount of experience and expertise. This can 

create difficulties for users with insufficient experience (Mihalik 

et al. 2021). In addition, among the many SLAM algorithms 

developed for LiDAR data, graph-based approaches are 

generally used in 3D LiDAR SLAM studies, and apart from the 

ROS environment, there are different LiDAR-based SLAM 

algorithms and software implementations. (Li et al., 2020). 

Therefore, within the scope of this study, it is aimed to compare 

LiDAR-based SLAM methods by using different software 

opportunities such as Matlab and LidarView and to contribute 

to the literature on this subject. 

In this study, the performance of estimating mobile robot 

trajectories computed from 3D LiDAR-based graph SLAM 

using 3D LiDAR point cloud data is investigated. For this 

purpose, a mobile robot consisting of Velodyne VLP-16 LiDAR 

and different camera sensors was used. The data acquisition was 

conducted along a corridor on the second floor of the Bolz Hall 

at OSU. In post-processing mode, the trajectory of the mobile 

robot was estimated by using a Graph-based SLAM framework 

using the Matlab software and LidarView based SLAM 

technique. Several data acquisition sessions were done in the 
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study area and the results of the LiDAR SLAM were compared 

with ground truth. Note that reference measurements were 

obtained in some parts of the study area during the analysis, 

trajectory error and error rate were calculated. In addition, the 

results obtained with both software are examined in detail and 

their relative accuracy is estimated. 

 

 

2. LIDAR SLAM TECHNIQUES 

2.1 LidarView SLAM Algorithm 

To support this study, an open source version of the LidarView 

software developed by Kitware was used. This tool provides a 

large number of algorithms and features for visualization, 

processing, evaluation and recording of point cloud data. More 

importantly, LidarView has an embedded SLAM algorithm 

solution to process raw 3D LiDAR data. This algorithm was 

developed with inspiration from the LOAM method and can be 

adapted to LiDAR data obtained from different environments by 

changing parameter settings. Detailed information about how to 

SLAM with LidarView are available on the website given in 

reference section (LidarView SLAM, 2021) 

 

2.2  Matlab SLAM for 3D LiDAR Point Clouds 

The functions included in the Matlab software allow the 

implementation of 3D point cloud based SLAM. The 3D 

LiDAR SLAM method uses many libraries from the navigation 

and computer toolbox. The SLAM method implemented in 

Matlab consists of pre-processing point clouds, registering point 

clouds, detect loops, correcting drift, creating maps and 

localizing steps, Fig. 1 (Matlab, 2022). In order to prepare the 

point cloud data for the registration process, the first pre-

processing step is to reduce the number of points by filtering 

unwanted points, such as some object features that represent 

noise within a dataset from our perspective. In the next step, the 

registration process is carried out in order to estimate the 

trajectory. In this context, the Normal Distribution Transform 

(NDT) registration function was used (Biber and Straber, 2003). 

Note that Matlab allows for a different number of registration 

functions to be used for SLAM computation. In this context, 

these functions can be selected depending on the nature of the 

test area for various research purposes. In the final step, pose 

graph optimization technique is used to detect loop closures and 

correct drifts. 

 

3.   EXPERIMENTS AND DISCUSSION 

In this section, the evaluations of the results obtained by 3D 

LiDAR SLAM-based methods, embedded in Matlab and 

LidarView software are explained in detail. All data used in the 

study were collected with our own design unmanned ground 

vehicle (UGV) system in indoor environments.  

 

 

 

 
 

Figure 1. General workflow steps for Matlab LiDAR SLAM 

(Matlab 2022) 

 

3.1  System Configuration and Experimental Environment 

In this study, based on a Loomo system (Loomo, 2021), we 

prototyped a human operated UGV for our experiments. Loomo 

developed by Segway is a self-balancing vehicle (SBV) that 

includes many capabilities, such as visual perception and 

understanding, supported by computer vision and deep learning 

technologies. Fig. 2 presents system configuration of our UGV. 

This platform carries different types of sensors, such as 

Velodyne VLP-16 LiDAR, GoPro HERO5 Black, Casio EX-

H20G and Microsoft Kinect XBOX 360 camera. A laptop is 

used for recording Microsoft Kinect 360 data, Raspberry Pi is 

used to record LiDAR data and the all these systems are 

powered by a main power supply. For easier handling, the 

supporting hardware, including the laptop, Raspberry Pi, and 

power supply are placed on a pushcart next to the UGV and an 

operator drives the cart following the robot during data 

acquisition. In this study, the UGV was controlled remotely 

with the help of a mobile application which provided a 

waypoint list for a specific trajectory. During the acquisition, all 

the sensor data were recorded, though not all the sensor data 

streams are considered in this effort. In several sessions, the 

robot was moving in the pre-planned trajectory patterns. 
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Figure 2. Sensors: a) Velodyne VLP-16 LiDAR, b) Casio, c) 

GoPro, d) Microsoft XBOX Kinect 360 Sensor; Hardware: e) 

Laptop, g) Raspberry pi, (f) Power Source 

For the purpose of this study, only the data obtained from the 

LiDAR sensor was used. The Velodyne VLP-16 LiDAR 

supports 16 channels and has a maximum measurement range of 

100 m with a horizontal field of view 3600, with a skewed 

vertical field of view 400, with an accuracy of ± 3 cm and 

angular resolution of (horizontal/azimuth) 0.1 - 0.4 (Velodyne, 

2022). While it is not recent sensor, the Velodyne VLP-16 is 

adequate for the needs of this study.  Information about UGV 

hardware and software system configuration is provided in 

Table 1.  

As indicated above, multiple data acquisition sessions were 

conducted along a corridor on the second floor of the Bolz Hall 

at OSU; an area of approximate size of 38m x 63m. This study 

area is large enough to investigate LiDAR SLAM techniques 

and yet provides a moderately challenging environment with 

few objects on both sides of the corridors. The ground truth of 

UGV trajectories was tracked by a robotic total station as well 

as measured manually. Within test area, the UGV follows L-

shape (A-B-C) and rectangle shape (C-D-E-F-G-C) trajectories 

as shown in Fig. 3. In addition, though this study focused on 

trajectory extraction, yet a loop closure was performed. 

Platform Loomo 

LiDAR 

Velodyne VLP-

16 

H/V: 

1.33º/0.2º 
Front bottom 20 Hz 

H/V: 30º, 

360º 

Casio EX-H20g 
1280 x 720 

Back right 

Back left 
30 Hz 72º x 57º 

GoPro HERO5 

Black 
3840 x 2160 Front right 30 Hz 102º x 70º 

Table 1. Sensor specification of the UGV system 

3.2 Accuracy Evaluation 

The accuracy assessment of the LiDAR SLAM techniques 

tested in this study was based on using a similar methodology 

proposed in (Zou et al., 2020). The evaluation was carried out 

based on the different test runs with the UGV system for the A-

B (straight line), A-B-C (L shape) trajectories. These points 

were marked manually on the floor and the distances between 

them were measured and determined as A-B = 40.5 m, B-C = 

9.5 m. For each trajectory, we considered the starting point as 

the origin of a local coordinate system. Since the results of the 

trajectory outputs of SLAM algorithms are independent and 

different in data rate, the positioning error was not analysed on 

a point basis. Instead, error (σ) and error rate (φ) values are 

estimated for the various trajectory locations.   

 
2

2( )i i j i jx x y y     (1) 

100%
L


   (2) 

Where σ is the error between generated trajectory position and 

reference position 

xi, yi  = reference trajectory position 

xj, yj  = LiDAR SLAM trajectory position 

L = total length of test area (Zou et al., 2020) 

However, since the reference measurement were not yet 

available in the C-D-E-F-G corridor segment of the study area, 

the results here were compared visually and the relative 

differences of the segments were examined. 

In addition to these analyses, some key places were selected 

along the A-B corridor segment for the detailed analysis of the 

localization performances of the LiDAR SLAM software used 

in our study. In this context, the width and height of the 

corridor, the width and depth of the door entrances, and the 

distances between the door edges were selected as key points 

and were manually measured to evaluate accuracy performance. 

Figure 3(b) illustrates selected key features for evaluating 

localization accuracy. Accordingly, 6 door distances, 6 door 

entrance features, and corridor width and height were measured 

and compared to SLAM-based position. 
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Figure 3. Layout for test corridor and image samples for these corridors (a) (Yuan, 2021), Key features selected for localization 

performance (arrows indicate corridor width and height and width of door entrances, dashed lines indicate depth of the door 

entrances and distances between door edges.) (b) 

. 

3.3 Results 

In Fig. 4 and Table 2, the SLAM results obtained with 

LidarView and Matlab are shown, both visually and 

numerically. Looking at the trajectories, it is seen that both 

methods produce relatively good results along the longer 

corridor line (A-B) and the shorter B-C line. When the two 

tools are compared based on their internal accuracy estimates, 

then it can be stated that the Matlab software has slightly lower 

accuracy than LidarView for B-C corridor, while higher 

accuracy is achieved for A-B corridor. Despite the fairly low 

error rates and visually both software show potential and is 

expected to be improved with proper configuration. In general, 

the corridor lines are detected well, but clearly, there is a scale 

problem in terms of length estimations in both software as 

illustrated in figure 4. In this context, more test studies are 

needed to determine the best parameter settings for these 

software tools. 

Trajectory (A-B) Error (m) Error Rate 

Matlab 0.4 0.9 % 

LidarView 0.85 2 % 

Trajectory (B-C) 

Matlab 0.2 2.1 % 

LidarView 0.15 1.6 % 

Table 2. Error values for both trajectories 

Figure 4. Trajectory for A-B-C corridor section, Blue line: 

Matlab trajectory, Red Line: LidarView (Left Side), Trajectory 

data matched with the underlying floor plan (Right Side) 

(a) (b) 
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The results obtained for the C-E-F-G corridor segment were 

examined in relative terms as stated earlier. The trajectories 

obtained by both software, shown in Fig. 5 are very similar to 

each other in terms of shape, but there is a difference in 

rotation. There is a small noticeable difference in the two 

trajectories, favouring the shape obtained by Matlab, which is 

visually better than LidarView in terms of consistency. In 

addition, trajectory length obtained in Matlab and LidarView 

for each segment were calculated and the differences between 

them were examined, see Table 3, which shows that the 

differences between the distances obtained from both systems 

are not to big, and in fact, both systems were able to effectively 

extract the trajectory in this narrow and long corridor. 

 

 
 

Figure 5. Trajectory for C-D-E-F-G corridor section, Blue line: 

Matlab trajectory, Red Line: LidarView (Top View), Trajectory 

data matched with the underlying floor plan (Bottom View) 

 

 

Trajectory (m) Matlab LidarView Difference (m) 

C-D 3.3 3.3 0 

D-E 11.2 10.6 0.6 

E-F 7.8 8.4 0.6 

F-G 11.3 10.7 0.6 

Table 3. Trajectory lengths obtained from both software for C-

D-E-F corridor segment 

 

 

 

 

Furthermore, as stated in the previous section, some key 

features were selected and measured in the A-B corridor section 

to evaluate the localization accuracy of both software. These 

key features include the distances between the door corners, the 

width and height of the corridor, and the dimensions of the 

doorway, as illustrated in figure 3(b). Table 4 shows the relative 

positions of these features and localization errors obtained from 

both software. Since the corridor width and height were 

measured more than once at different locations of the SLAM 

maps, they were averaged. Similarly, the averages of the 

dimensions of a large number of similar door entrances were 

taken. When the results were examined, it was seen that the 

distances obtained from both systems were close to each other, 

and the average localization error was found to be 0.24 m for 

Matlab-SLAM and 0.3 m for LidarView. This has shown that 

both systems produce results that are consistent with the 

environment. 

 

 

 
Ground 

Truth 

Matlab 

SLAM 

LidarView 

SLAM 

DDE1 (Distance 

between doors) 
7.90 m 7.75 m 7.85m 

DDE2 8.06 m 7.6 m 7.55m 

DDE3 8.29 m 8.05 m 7.76m 

DDE4 13.94 m 13.60 m 13.42m 

DDE5 8.35 m 7.62 m 7.72m 

DDE6 7.89 m 7.33 m 7.55 m 

  Average Average 

Corridor Width 2.54 m 2.70 m 2.60 m 

Corridor Height 2.38 m 2.40 m 2.45 m 

Door 

Entrance 

Width 1.02 m 1 m 0.90 m 

Depth 0.76 m 0.71 m 0.72 m 

Table 4. Comparison of the localization error for different key 

features 

 

 

Fig. 6a below shows 3D point cloud data generated by 

LidarView SLAM with red dots marking trajectory. Fig. 6b 

depicts point cloud obtained from Matlab SLAM with blue dots 

marking trajectory. Comparing the figures, the LidarView 

generated data appear to be smooth and stable for the L-shape 

corridor section. In contrast, the map obtained with Matlab 

SLAM is not as smooth and consistent as that of the LidarView, 

and in fact, it shows noticeable amount of distortion. Obviously, 

trajectories and point clouds are consistent within each 

software. 
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          (a) 

 
(b) 

 

Figure 6. 3D Point Cloud Map; a) LidarView (Red dots 

trajectory) and b) Matlab (Blue dots trajectory) 

 

 

 

4. CONCLUSION 

In this study, the performance of two different SLAM 

algorithms based on Matlab and LidarView has been evaluated 

based on experimental indoor data. The initial results show 

higher error rates than expected; note that most of the similar 

studies come from the robotics community, using systems built 

around ROS environment. The visual evaluation showed 

moderate and thus encouraging performance. Clearly, more 

investigations are needed, including additional sensors and test 

areas as well as various methods in multiple configurations.  
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