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ABSTRACT: 

In recent years, Unmanned Aerial Vehicles (UAVs) have become popular tools in mapping applications. In such applications, the 

image motion, bad lighting effects, and poor texture all directly affect the quality of the derived tie points, which in turn imposes 

constraints on image extraction and may lead to a low accuracy point cloud. This paper proposes a contrast enhancement technique to 

improve the accuracy of a photogrammetric model created using UAV images. The luminance component (Y) in the YIQ color space 

is normalized using the sigmoid function, and the low contrast images are enhanced using the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) on the luminosity component. To evaluate the proposed method, three-dimensional models were created using 

images acquired by the Phantom 4 Pro UAV in three distinct places and at altitudes of 20, 40, 60, 80, and 90 meters. The results showed 

that enhancing the contrast of images increased the number of tie points and reduced reprojection error by approximately 10%. It also 

improved the resolution of the digital elevation model by approximately 2cm/pixel while greatly improving the texture and quality 

with respect to that developed using the original images. 

1. INTRODUCTION

Today, given the relevance of three-dimensional models in a 

wide variety of computer vision applications, a large number of 

academics are studying the issues of reconstructing three-

dimensional models from two-dimensional images (Alasal et al., 

2018). Without a doubt, approaches for three-dimensional 

reconstructing using images have advanced beyond the shadow 

of laser scanning (Luhmann et al., 2020). Thus, by combining 

automated computer vision algorithms with trustworthy and 

precise photogrammetric methods, successful solutions for 

automatic and accurate three-dimensional reconstruction of 

picture data sets are created (Demetrescu et al., 2020; Pepe and 

Costantino, 2020; Qin and Gruen, 2021). Meanwhile, the rapid 

growth of unmanned aerial vehicles (UAVs) in recent years and 

their ability to provide high resolution and accuracy information 

has improved UAV photogrammetry projects. Moreover, their 

versatility in data acquisition, as well as the combination of 

different sensors and the use of three-dimensional model 

production algorithms such as Structure from Motion (SfM) and 

Multi View-Stereo (MVS) (Moons et al., 2009; Skarlatos and 

Kiparissi, 2012) has been used in a variety of applications such 

as surveying and forestry (Chang et al., 2020; Fakhri and Latifi, 

2021), archaeology (Jacq et al., 2021), civil engineering (Lv et 

al., 2021), and documentation (Godinho et al., 2020). These 

advancements have transformed drone systems into standard 

platforms for collecting three-dimensional data (Jarzabek-

Rychard and Karpina, 2016; Yao et al., 2019). 
To create a three-dimensional model of images, the scene's 

objects can be modelled as “active” or “passive” (Alasal et al., 

2018). Three-dimensional modelling was accomplished by using 
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the active technique by modifying illumination conditions, 

controlling camera angles, and also utilizing the camera’s 

predetermined calibration parameters (Fakhri and Fakhri, 2019). 

However, in passive techniques, the quality of the images may be 

compromised due to the lack of control over lighting conditions 

and the utilization of the solar energy source (Arroyo-Mora et al., 

2021; Revuelto et al., 2021). As a result, optimizing image 

acquisition quality prior to performing three-dimensional 

reconstruction operations becomes a critical requirement in 

autonomous three-dimensional reconstruction approaches. 

In general, extensive research has been conducted to improve the 

3D model's quality. The research conducted in this field can be 

classified into two broad categories. In the first view, pre-

processing is used on the images to remove any negative 

conditions that may affect the matching results (Ballabeni et al., 

2015; Bellavia et al., 2015; Gaiani et al., 2016; Maini and 

Aggarwal, 2010; Verhoeven et al., 2015). Researchers typically 

undertake pre-processing on the photos when reviewing the 

aforementioned methods, such as applying initial adjustments. 

Or, by employing more complex filters, the quality of the 3D 

model created by automated image-based methods can be 

improved. In comparison to the original images, these methods 

significantly improve the correlation quality and the external 

orientation accuracy of images and point clouds. However, this 

approach lacks control over the distribution and quality of 

selected tie points within the image, and it is incapable of 

extracting points from a large number of repeats, causing the 

other significant aspects to become uncontrollable. 

In the second view, picture matching efficiency has been 

enhanced in the feature selection stage by identifying image 

characteristics with a stricter threshold. By examining the 
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methods available in this approach (Dymczyk et al., 2016; 

Hartmann et al., 2014; Wu, 2013), classifications can be made 

based on the identification of image features using a more 

stringent threshold, which increases computational speed when 

fewer features but higher contrast are used. These methods have 

several limitations, including the elimination of a large number 

of suitable points as the threshold is increased, the uncertainty of 

features with lower resolution in the location, the requirement for 

high-quality training data to teach classification algorithms, and 

a disregard for multiplicity. Highlighted features on the image, 

and so forth. Thus, by comparing the research conducted in the 

two approaches above, it can be concluded that in the methods 

used to improve image matching conditions, additional 

corrections such as image contrast enhancement, noise removal, 

image content enhancement, and color conversion to Grayscale 

are discussed, all of which can contribute significantly to 

improving image matching conditions by creating color balance 

in images and enhancing coherence.  

As a result, this study investigates the effect of contrast-enhanced 

images acquired by UAV platforms in low-light conditions prior 

to producing a three-dimensional model; thus, the primary 

objective of this research is to determine the effect of contrast-

enhanced images on the preparation of a three-dimensional 

model from the perspective of image matching and point cloud 

density, as well as the effect on triangulation accuracy, check 

point accuracy, digital elevation model accuracy and orthophoto 

mosaic quality. 
Section 2 details the suggested algorithm's method and flowchart. 

Section 3 presents the results and evaluations of the proposed 

algorithm's implementation, followed by a conclusion. 

 

 

2. PROPOSED METHOD 

Two tasks (Figure 1.) are accomplished in this paper: 

a) The proposed algorithm for image contrast enhancement 

and its comparison to existing approaches. 

b) Construction and evaluation of a three-dimensional 

model. 

 

 

Figure 1. The flowchart of the method. 

 

According to the flowchart above, in order to study the influence 

of image contrast enhancement on the three-dimensional model 

generated using UAV photogrammetry, it is necessary to first 

enhance the low-contrast images in the pre-processing stage 

using the proposed technique. The three-dimensional point cloud 

and other photogrammetric products such as the digital elevation 

model and orthophoto mosaic are then generated using contrast-

enhanced images. Finally, the relevant assessments will be 

reviewed in order to assess the suggested algorithm's 

effectiveness and the three-dimensional model generated using 

various criteria. 

2.1 The proposed algorithm for image contrast 

enhancement 

The proposed method for enhancing the contrast of images 

collected by UAV photogrammetry is based on research (Lal et 

al., 2015). To enhance the contrast of the images in the preceding 

research (Lal et al., 2015), the RGB color space was transformed 

to YIQ (Equation 1), a technique that requires two processing 

stages. The luminance component (Y) is normalized in the YIQ 

color space using the sigmoid function (Equation 2), and the 

resulting component (YP) is applied using the adaptive histogram 

equalization (AHE) method (Pizer et al., 1987). The images are 

then subjected to the auto-contrast enhancement method in the 

following stage. 

To develop the study's main idea (Lal et al., 2015), after 

normalizing the luminance component (Y) with the sigmoid 

function and in accordance with research results (Lestari and 

Luthfi, 2019), which indicate that the Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) (Zuiderveld, 1994) approach 

outperforms AHE. CLAHE is applied on the luminance 
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component (Y). The images are then enhanced using the auto-

contrast enhancement approach (Lal et al., 2015). On the images, 

a Bilateral filter (Tomasi and Manduchi, 1998) was employed to 

remove noise produced by the CLAHE approach. The Bilateral 

filter is a nonlinear filter that smooths the image's edges and 

reduces noise; it preserves the image's main edges and results in 

a smooth image with edges and noise reduction (Paris et al., 

2009; Tomasi and Manduchi, 1998).  

Equation 1: (Recommendation, 2005; Standard, 2003) and 

Equation 2: (Hertz et al., 2018). 

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵
𝐼 = 0.596𝑅 − 0.275𝐺 − 0.321𝐵
𝑄 = 0.212𝑅 − 0.523𝐺 − 0.311𝐵

 (1)  

𝑆𝑛(𝑥, 𝑦) =
1

(1 +√
(1 − 𝐼𝑛(𝑥, 𝑦)
𝐼𝑛(𝑥, 𝑦)

)

 

(2)  

 

Where In denotes the component of luminance (Y). 

 

2.2 Evaluation of the proposed algorithm for contrast 

enhancement 

To evaluate and compare the proposed contrast-enhancement 

algorithm's performance, several commonly used algorithms 

such as HE (Pizer et al., 1987), CLAHE, and AMCE (Lal et al., 

2015) are analyzed using a variety of evaluation criteria. These 

are the following criteria: 

Equation 3: Shannon entropy (Shannon, 1948). 

1

2
0

( ) log ( )
L

i i

i

E I p p
−

=

= −   (3)  

Where I is the original image (reduced), pi denotes the 

probability that the value of i occurs in image I, in other terms, 

the variable p is computed from the gray values of the image 

histogram (for example, Pi comprises the values of the i level), L 

= 2q denotes the number of various grayscale values, as well as 

q bits per pixel. 

Equation 4: Standard deviation (SD) (Román et al., 2017). 

𝑆𝐷(𝐼) = √∑𝑘=0
𝐿−1  (𝑘 − 𝐴(𝐼))2 × 𝑝(𝑘) (4)  

 

Where k denotes the numerical value of the pixel in the original 

image (reduced), I, L - 1 denotes the maximum grayscale, A (I) 

denotes the average grayscale intensity of the image, and p (k) 

denotes the probability of the value of k occurring. 

Equations 5 and 5-1: Peak signal-to-noise ratio (PSNR) and 

Mean Squared Error (MSE) (Hore and Ziou, 2010). 

𝑃𝑆𝑁𝑅⁡(𝐼, 𝐼𝐸) = 10 × 𝑙𝑜𝑔10⁡
(𝐿 − 1)2

𝑀𝑆𝐸⁡(𝐼, 𝐼𝐸)
 

(5)  

𝑀𝑆𝐸⁡(𝐼, 𝐼𝐸) =
1

𝑀 ×𝑁
∑𝑢=0𝑣=0
𝑀−𝑁−1  (𝐼(𝑢, 𝑣) − 𝐼𝐸𝑁(𝑢, 𝑣))

2 (5-1)  

 

The peak signal-to-noise ratio is defined as M × N according to 

the size of the original image (reduced) and enhanced image. 

Equation 6: Absolute Mean Brightness Error (AMBE) 

(Phanthuna, 2015). 

𝐴𝑀𝐵𝐸⁡(𝐼, 𝐼𝐸) = |𝐴(𝐼) − 𝐴(𝐼𝐸)| (6)  
 

Where I and IE represent the original image (reduced) and 

enhanced, respectively, A (I) and A (IE) represent the mean 

brightness of the aforementioned images. 

Equations 7 and 7-1: The linear blur index (Kaufmann, 1975). 

𝛾(𝐼) =
2

𝑀 × 𝑁
∑𝑣=1
𝑀  ∑𝑣=1

𝑁  𝑚𝑖𝑛{𝑝𝑢𝑣 , (1 − 𝑝𝑣𝑣)} (7)  

𝑝𝑢𝑣 = 𝑠𝑖𝑛⁡ [
𝜋

2
× (1 −

𝐼(𝑢, 𝑣)

𝐿 − 1
)] (7-1) 

Where M × N are the dimensions of the original image (reduced), 

I (u, v) are the grayscale values of the image pixels (u, v) and L - 

1 is the maximum grayscale value of the image I. 

Equation 8: Colorfulness (CM) (Susstrunk and Winkler, 2003). 

𝐶𝑀(𝐼) = √(𝜎𝛼
2 + 𝜎𝛽

2) + 0.3 ∗ √(𝜇𝛼
2 + 𝜇𝛽

2) (8)  

Where in the above equations σα and σβ are the standard 

deviations α and β, respectively, which are similarly their 

average, μα and μβ. 

Equation 9: Color enhancement factor (CEF) (Susstrunk and 

Winkler, 2003). 

𝐶𝐸𝐹 =
 colorfu 𝑙𝑛⁡ 𝑒𝑠𝑠(𝐶𝑀) of output image 

 colorfu 𝑙𝑛⁡ 𝑒𝑠𝑠⁡(𝐶𝑀) of input image 
 (9)  

This criterion is used to distinguish the original (reduced) image 

from the enhanced image. 

2.3 Construction and evaluation of a three-dimensional 

model 

After applying the proposed contrast enhancement method to the 

images, it is necessary to perform aerial triangulation and 

calculate the camera's interior orientation parameters after 

generating a sparse point cloud. The constructed model is 

evaluated in this stage by selecting a set of points as a control 

point and another set as a check point. The check points are used 

to compare the accuracy of models generated in vertical and 

horizontal modes. 

We calculated the error using relations (10) and (11) by 

comparing the difference between the horizontal coordinates of 

the check points and the three-dimensional points produced by 

the model via the two-dimensional Euclidean distance, as well as 

the difference between the vertical coordinates of the model 

points and the height of the check points (17). 

𝐸𝑃𝑙 = √(𝑥𝑚 − 𝑥𝑐ℎ)
2 + (𝑦𝑚 − 𝑦𝑐ℎ)

2 (10)  

 

𝐸𝐴𝑙 = 𝑎𝑏𝑠(𝑧𝑚 − 𝑧𝑐ℎ) (11)  

Where xm, ym, and zm represent the three-dimensional coordinates 

of the model's points, xch, ych, and zch represent the three-

dimensional coordinates of the check points, and EPl and EAl 

represent the horizontal and vertical errors, respectively. 

Additionally, various photogrammetric outputs are analyzed and 

evaluated by constructing and comparing quantitatively and 

qualitatively the digital elevation model and orthophoto mosaic 

to modes with contrast reduction. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

To evaluate the effect of the proposed algorithm, images taken 

by multi-rotor drones in various parts of Iran (Figure 2.) were 

evaluated. These images were taken at altitudes of 60 m and 90 

m in the northwest of Qazvin at latitude 36.2337 and longitude 

49.5118. We also took images at altitudes of 20 m and 40 m in 

the southern area of Sakineh Paradise in Karaj city at latitude 

35.5322 and longitude 50.5244 (Fakhri et al., 2021). Moreover, 

we took images  at altitudes of 80 m with latitude 35.1336 and 

longitude 46.4877 in the city of Helwan.

A. Northwest of Qazvin city  B. South area of Sakineh Paradise in Karaj 

city  
C. City of Helwan  

Figure 2. Study areas. 

Additionally, images were captured using DJI's Phantom 4 Pro 

UAV (Figure 3.). As stated in Table 1, this UAV is controlled by 

a controller and equipped with a non-metric camera (Fakhri et al., 

2021). 

 
Figure 3. Phantom 4 Pro UAV. 

 

Phantom 4 Pro Camera specifications 
8.8 mm Focal length 

70.0 Degree FOV 
5472×3648 Image Size 

13.2×8.8 mm Sensor size 
 

Table 1. Specifications for drone cameras. 

To begin with data analysis, a 3D model of low contrast images 

must be constructed. Thus, considering the high contrast of the 

images of the Qazvin and Karaj regions, a contrast reduction 

method was applied. Ultimately, using Halvan data with low 

image contrast, a 3D model was constructed. A 3D model was 

constructed using the proposed contrast-enhancement algorithm 

on the aforementioned images in the second stage. Figure 4 

illustrates a sample of low-contrast, original and improved 

images are taken from a height of 90 m, together with their 

histogram.

   

   
Low contrast Original Enhanced 

Figure 4. A histogram and images with reduced contrast and enhanced. 

As illustrated in the Figure 4, the proposed algorithm enhances 

the image histogram and enhances the contrast of the images. 

Triangulation and the construction of a 3D model were 

performed using Agisoft Metashape v1.5.5 software offered by 

Agisoft LLC. Additionally, the Python 3.10.1 programming 

language was utilized to implement the proposed algorithm and 

reduce the contrast of reference images. 
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3.1.1 Evaluation of results 

The evaluation and interpretation of the obtained results are 

divided into two stages. The first section compares the proposed 

method for enhancing the contrast of images to current methods 

using assessment criteria. The second portion will analyse and 

assess the effect of enhancing the contrast of images on the 

accuracy of three-dimensional modelling when compared to the 

low contrast mode. 

3.1.2 Evaluating the performance of a method for 

enhancing the contrast of images 

To assess the performance of the image contrast improvement 

method in the first stage, the effect of the proposed method is 

compared to that of the original and reduced modes using a 

variety of evaluation criteria (Table 2). 

CEF CM γ AMBE PNSR SD E Dataset 

- 10.1122 0.7237 - - 25.8475 5.6998 Original 

Sakineh Paradise 0.6221 6.0003 0.7185 53.1455 10.1139 13.8547 5.0099 Reduced 

3.7709 26.3608 0.3901 12.1186 20.4598 76.9027 7.9256 Enhanced 

- 10.3145 0.7155   22.314 5.6245 Original 

Qazvin 0.5857 7.0993 0.7273 49.3874 10.2792 14.1731 5.0147 Reduced 

3.7643 26.3710 0.3946 12.2148 20.4668 76.9040 7.9332 Enhanced 

- 11.3189 0.7321 - - 27.145 5.5321 Original 

Helwan - - - - - - - Reduced 

3.6778 26.1151 0.4001 12.1511 20.4514 76.9215 7.9358 Enhanced 

As demonstrated in the Table 2, applying the proposed method to 

improve the contrast of images on the data set used resulted in a 

significant improvement in image quality when compared to the 

reduced and original modes. As a result, the proposed method 

will be evaluated and compared to several existing methods in 

the following step. 50 frames from various data sets will be 

chosen for this purpose, and the results will be presented in Table 

3 . 

CEF CM γ AMBE PNSR SD E Methods 

- - 0.4063 16.4611 12.0922 73.6543 5.7591 HE 

- - 0.6631 13.0904 22.3057 29.3949 6.9114 CLAHE 

1.6411 11.4620 0.3921 12.0873 12.0413 75.2166 7.9599 AMCE 

3.7743 26.3610 0.3911 12.1138 20.4663 76.9011 7.9358 Proposed method 
 

Table 3. Comparison of the proposed method's performance to that of other commonly used contrast enhancement methods. 

Based on the evaluations contained in Table 3, the following 

conclusions are drawn: 

▪ Entropy criterion: Because the criterion above 

quantifies the content of image information and 

indicates the degree of uncertainty or unpredictability 

associated with the information included in an image, 

the more image information present, the higher the 

numerical value of the output and the greater its 

quality. The proposed approach and AMCE have 

demonstrated superior performance to alternative 

methods. 

▪ Standard Deviation Criterion: Given that the criterion 

above quantifies the image information if the 

numerical value of the criterion above is greater in the 

enhanced image than in the low contrast image, the 

contrast enhancement algorithm performed better. Due 

to the image's low contrast of 14.1731, the proposed 

approaches of HE and AMCE enhanced the image's 

contrast. 

▪ Peak Signal-to-Noise Ratio Criterion: Due to the fact 

that the preceding criterion checks an image's signal-

to-noise ratio, the lower the image noise, the higher the 

result of this criterion. As a result, the proposed 

method and CLAHE result in the least amount of 

distortion in enhanced images. 

▪ Absolute Mean Brightness Error Criterion: Because 

the aforementioned criterion quantifies the average 

brightness of the processed image, a low numerical 

value indicates that the image's average brightness is 

preserved. As a result, the proposed method and 

AMCE perform the best. 

▪ Linear Blur Index Criterion: This criterion (γ) is used 

to evaluate the performance of contrast enhancement 

images, with a lower numerical output value indicating 

a higher performance of the contrast enhancement 

algorithm. According to the proposed method, AMCE 

and HE exhibit the best opacity. 

▪ Colorfulness Criterion: As noted previously, CM and 

CEF criteria are only applicable to color images 

(RGB); thus, they cannot be employed in the HE and 

CLAHE approaches, which utilize images in the form 

of a grayscale band. This metric quantifies the quantity 

of color in an image, with a bigger numerical output 

value indicating more color detail. As a result, the 

proposed method is the most efficient. 

▪ Color Enhancement Factor Coefficient: This criterion 

is a spectral component related to color saturation 

change; the higher the output's numerical value, the 

better. As a result, the proposed method is the most 

efficient.  

In general, it is impossible to say which of the other methods 

presented performs better in all evaluation criteria, but the 

proposed method performs well in the majority of them; thus, it 

can be concluded that the proposed method provides more detail 

than UAV-based images and also better preserves the image's 

brightness. 
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3.1.3 Evaluating the effect of enhancing image contrast on 

the accuracy of modeling 

Target targets were selected to assess the modeling's accuracy 

and their 3D coordinates measured prior to imaging operations in 

the research locations. As a result, 50% of the points primarily 

positioned in the project's corners were designated as check 

points. It should be noted that Agisoft Metashape software was 

used to generate a sparse point cloud and perform other steps 

associated with the construction of a 3D model. Images taken at 

20 m, 40 m, 60 m, 80 m, and 90 m were used to generate the 

sparse point cloud and perform other steps associated with the 

construction of a 3D model. Thus, to generate a sparse point 

cloud, software-changeable parameters, in this case, the 

maximum tie and key points, as well as a search for key points, 

were done pixel by pixel. Figure 5 illustrates a sparse point cloud 

generated by the software in both low-contrast and enhanced 

modes from heights of 80 and 90 m. 

 

    
D. Images with enhanced contrast C. Images with reduced contrast B. Images with enhanced contrast A. Images with a low contrast 

Point cloud produced from Qazvin area at an altitude of 90 m Point cloud produced from Helwan area at an altitude of 80 m 
Figure 5. A sparse point cloud obtained at an altitude of 80 and 90 m. 

 

By comparing the density of tie and key points extracted from 

low contrast and enhanced contrast images, it was discovered that 

the density of points in the enhanced contrast images is greater 

than the density of points in the low contrast images. Figure 6 

illustrates how the algorithms extracted the tie and key points 

from a contrast-enhanced image taken at an altitude of 90 m. 

  
A. Image with reduced contrast B. Image with enhanced contrast 

Figure 6. An illustration of the tie points extracted from a 90-meter-altitude image. 

When utilizing contrast-enhanced images, as seen in the red 

boxes above, the density and increase of tie points are greater 

than when using low-contrast images. As a result, a comparison 

was made based on determining the number of tie points and the 

amount of reprojection error in each of the models produced in 

the above two cases, and it was discovered that after contrast 

enhancement and the average reprojection error, tie points in each 

model increased by about 6 to 10%. It has decreased by 

approximately 8% to 11%. Figure 7 depicts the number of tie 

points and reprojection error in models with five distinct flying 

altitudes in two modes with low contrast images and contrast 

enhancement. The number of tie points and the horizontal axis 

show the types of models generated in the vertical axis A 

diagram, and the amount of reprojection error and the horizontal 

axis indicate the types of models produced in the vertical axis B 

diagram. 

B. Reprojection error diagram  A. The number of tie points diagram  
Figure 7. At different flying altitudes and in low contrast and enhanced modes, the number of tie points and reprojection error 

is shown in a diagram. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-389-2022 | © Author(s) 2022. CC BY 4.0 License.

 
394



 

 

There is an increase of around 10% in the number of tie points 

and a reprojection of about 10% in all models built from contrast-

enhanced images (orange axis) compared to models made from 

lower contrast images (blue axis) as can be seen in the graphs 

above. Control points and check points were also added to the 

generated points cloud in order to study the effect of increasing 

image contrast on modelling accuracy. Calculations will be 

made. Figure 8 depicts the horizontal and vertical error acquired 

on the check points at five different flight altitudes and two low 

contrast modes and contrast enhancement. The horizontal axis 

and the error values of the check points indicate the types of 

models produced in the two ways of utilizing low-contrast 

images and enhancing contrast in the vertical sub-axis diagram.

B. The amount of horizontal error  A. The amount of vertical error 
Figure 8. Diagram depicting the amount of error obtained on the check points at five different flight altitudes and two modes 

(low contrast and enhanced contrast). 

According to the schematics above, image enhancement contrast 

has no significant effect on the accuracy of check points in the 

horizontal and vertical directions. Other photogrammetry 

products were also produced to examine the effect of 

enhancing image contrast on the DEM and orthophoto mosaic. 

At 80 m and 90 m, Figure 9 illustrates an example of a DEM and 

orthophoto mosaic.

    

  
  

D. Contrast enhancement images C. Contrast reduction images B. Contrast enhancement images A. Low contrast images 
DEM and orthophoto mosaic 90 m DEM and orthophoto mosaic 80 m 

Figure 9. A DEM and orthophoto mosaic generated at the height of 90 meters. 
 

The orthophoto mosaic generated by the enhanced images has a 

better texture than the lower contrast mode, as shown in the 

Figure 9, which can improve the cartograph's accuracy in 

sketching numerous features in more detail. On two samples of 

Halvan images, the effect of enhancing image contrast on 

increasing the quality and accuracy of the orthophoto mosaic 

produced to execute the feature drawings is demonstrated in 

Figure 10.
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B. Low contrast images A. Enhanced contrast images 

Figure10. Two examples of the effect of enhancing image contrast on the quality and accuracy of 

orthophoto mosaic produced from an altitude of 80 meters. 

 

Drawing features on orthophoto mosaic generated from contrast-

enhanced images can be done with more precision and detail, as 

shown in the Figure 10. The outputs related to the evaluations 

completed in this research are displayed in Table 4 on three study 

areas from five different flying altitudes.

 

Dataset 
Reprojection error 

Tie points 
Check points RMSE(m) DEM resolution  

(px) XY  Z  (cm/px) 
Reduce Enh. Reduce Enh. Reduce Enh. Red. Enh. Reduce Enh. 

H 20 0.71 0.64 303,709 328,006 0.018 0.017 0.023 0.023 1.35 1.23 

H 40 0.92 0.85 291,301 308,780 0.021 0.021 0.020 0.019 6.95 6.47 

H 60 1.55 1.42 242,007 254,768 0.035 0.034 0.041 0.041 32.7 30.1 

H 80 2.49 2.31 188,242 202,021 0.072 0.072 0.071 0.070 39.5 38.2 

H 90 1.18 1.09 122,918 136,322 0.029 0.029 0.024 0.023 61.3 58.4 

Table 4. The results of UAV products for different dataset. 

 

The number of tie points in all models produced using images 

with enhanced contrast is approximately 10% higher than the low 

contrast mode, and the reprojection error is reduced by around 

10%, as shown in Table 4. In the generated of DTM models, there 

is also resolution enhancement approximately 2cm/pixel. Of 

course, the amount of horizontal and vertical error between. 

4. CONCLUSION 

Due to the variety of applications for UAV photogrammetry, 

such as mapping and the construction of three-dimensional 

models, we are occasionally required to acquire images in low-

light settings. Due to the scope of UAV-assisted projects, these 

conditions may not be applicable to the entire region. 

As a result of the shadow, one section of the object will receive 

more light while another will receive less. This disturbs the point 

cloud generation process and results in an inadequate texture for 

the overall model produced. As a result, the influence of contrast 

enhancement on images in dark and low contrast areas has been 

investigated in this article. Because many techniques are offered 

in histogram equalization methods in order to increase the 

grayscale range of the image. 

To illustrate the proposed algorithm, the conventional contrast-

enhancement algorithms with the greatest performance on 

various images were used in this research. However, multiple 

error criteria were used to illustrate the proposed method's 

performance to show that the new algorithm provided 

significantly higher accuracy. Thus, by applying the proposed 

technique to low contrast images from three different study 

locations and five different flight altitudes, photogrammetric 

products such as dense and sparse point clouds, digital elevation 

models, and orthophoto mosaic were generated in both cases. 

The results indicated that the number of tie points extracted after 

using the proposed contrast-enhancement technique to low-

contrast images increased by approximately 10%, increasing the 

density of the point cloud. Contrast enhancement of the images 

also results in a relative gain of approximately 2 cm/px in the 

resolution of the digital elevation model. Additionally, 

reprojection error was reduced by approximately 10%, although 

calibration parameters and check point error did not differ 

significantly between images with low contrast and images 

enhanced by the algorithm. 
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