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ABSTRACT: 

Extracting building footprints utilizing deep learning-based (DL-based) methods for high-resolution remote sensing images is one of 

the current research interest areas. However, the extraction results suffer from blurred edges, rounded corners and detail loss in 

general. Hence, this article presents a detail-oriented deep learning network named eU-Net (enhanced U-Net). The method adopted 

in this study, imagery send into the pre-module, which consists of the Canny edge detector, Principal Component Analysis (PCA) 

and the inter-band ratio operations, before feeding them into the network. Then, process skips connections used in the network to 

reduce the loss of details during edge and corner detection. The encoding and decoding modules, in this network, are redesigned to 

expand the perceptual field with shortcut connections and stacked layers. Finally, a Dropout module is added in the bottom layer of 

the network to avoid the over-fitting problem. The experimental results indicate that the methods used in this study outperform other 

commonly used and state-of-the-art methods of FCN-8s, U-net, DeepLabv3 and Fast SCNN. 

1. INTRODUCTION1

Building maps are an important task for urban planning, disaster 

monitoring, traffic management and scientific planning of the 

ecological environment (Wei and Liu, 2020). While traditional 

in-situ mapping and surveying can generate high accuracy maps, 

they tend to be inefficient. With the development of sensor 

technologies, remote sensing-based object extraction provides 

an efficient way to map buildings. Considering all remote 

sensing-based methods for building footprint extraction, deep 

learning-based methods (Xin et al., 2012) show a higher 

performance compared with visual interpretation and traditional 

machine learning based methods. For instance, He et al. (2020) 

utilized Mask R-CNN with the attention mechanism for 

building footprint extraction. The extraction results revealed 

that deep learning-based methods were better than traditional 

machine learning methods, such as Support Vector Machines 

(SVM) (Cortes and Vapnik, 1995). Therefore, the focus of 

research for extracting building footprints turned to deep 

learning-based methods. 

With the revival of deep learning techniques, various commonly 

used networks have been widely used in remote sensing 

applications and building footprint extraction. In 2015 ， 

Ronneberger. O (2015) proposed U-Net, which used an 

Encoder-Decoder structure. This structure was effective and 

many researchers chose the structure as a module combined 

with their existing works. Wang et al. (2020) proposed a 

network named Efficient Non-local Residual U-shape Network 

(ENRU-Net), which improved non-local block with U-net 
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structure to capture contextual information. This network also 

achieved better result compared to Fully Convolution Networks 

(FCN)-8s (Wu, 2015), U-Net, SegNet (Badrinarayanan et al., 

2017) and DeepLab v3(Chen et al., 2017). Xu et al. (2021) 

improved U-net combining with attention mechanism, and 

developed a loss function. They achieved higher F1-score of 

more than 10.78% compare to U-net. Liu et al. (2021) 

demonstrated the effectiveness of pyramid scene parsing and a 

residual connection in enabling U-net to catch global context 

information by the large-scale experimental. The DeepLab v3 

(Chen et al., 2017) architecture proposed by Chen et al. (2017) 

combined a Atrous Spatial Pyramid Pooling (ASPP) and an 

Encoder-Decoder, which achieved higher performance than that 

of ResNet-38 (He et al., 2016), and PSPNet (Zhao, 2016). In 

addition, Yang et al. (2020) utilized the DeepLabv3 architecture 

and the dilated convolution to extract building footprints, which 

proved that combining the DeepLabv3 and dilated convolution 

is more effective than using DeepLabv3 only. Zhang et al. 

(2020) used deep separable convolution to improve U-net, 

which proved the efficiency of XU-Net. Zhou et al. (2020) 

introduced encoder and decoder sub-networks and connected 

them via a series of nested, dense skip connection, which 

showed high performance as shown in their experiment. This 

network solved the disadvantage of the skip - connection, and 

used deep supervision to help network choose path by itself. 

Other modifications includes combining U-Net and Mask R-

CNN as an ensemble model(Vuola et al., 2019) and involving a 

pre-trained VGG-encoder in U-Net (Shvets, 2018) developed r 

to improve the U-Net. 

However, all methods mentioned above cannot fully overcome 

detailed information loss during edge and corner detection, 

which are important for building footprint extraction in terms of 

extraction accuracy. To address the issue, Salient object 
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detection is proposed which focuses on edge preserving. At 

present, binary label is more fashion in works compared with 

class activation map, and more benefit for segmentation 

application. There are mainstream researches like center-

surround difference (L. et al., 1998) and (T. et al., 2007), 

uniqueness prior (K et al., 2013) and (P et al., 2013) and 

backgrounds prior (Y. et al., 2012) and (W. et al., 2014). 

However, they haven't achieved considering context 

information and clear edge, therefore the accuracies are 

expected to be improved continued. Wang et al. (2016) 

proposed a method based on Fast R-CNN framework (Girshick, 

2015) to generate a saliency map both clear and context 

information. The imagery is segmented into super-pixel regions 

and edge regions to achieve state-of-the-art performance.  

 

This paper presents a new method called enhanced U-Net (eU-

Net), which is based on U-Net. For this method, the dilated 

convolution (Yu and Koltun, 2015), the dropout module 

(Hinton et al., 2013), the jump connection (Ronneberger. O, 

2015), the short-cut connection (He et al., 2016) and a pre-

module were applied to preserve detailed information of 

building footprints. The rest of the paper is organized as follows. 

Section 2 describes the pre-module and the eU-Net architecture. 

Section 3 presents the results of two experiments and 

demonstrates the performance of eU-Net. Section 4 concludes 

the paper. 

 

2. METHOD 

2.1 The pre-modules 

To preserve more detail information, a pre-module was inserted 

before passing the images to the deep learning network. The 

pre-module converted the original images to 6-band tensors via 

Principal Component Analysis (PCA) (Ke and Sukthankar, 

2004) (only the first component was kept), Canny edge 

detection operator (Canny and John, 1986) and the Red Green 

Index. The Canny edge detection was an edge detection 

operator that uses a multi-stage algorithm to detect a wide range 

of edges in images. The Red Green Index is like the Normalized 

Difference Vegetation Index (NDVI), which is an index to 

detect live green plant canopies in multispectral remote sensing 

data. 

 

The pre-modules were used for (1) emphasizing edges and (2) 

enhancing inter-band links. Deep neural networks can be seen 

as multi-layer matrix multiplication, which can only find 

multiplicative relationships between bands. In this study, the red 

and green bands were chosen to calculate Red Green Index 

because the buildings in the image were more obvious (Figure 

1).  

 

 
 

Figure 1. Ratio results of different bands 

 

The inter-band ratio, Red Green Index, can be calculated by the 

formula 1. 
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where (   ) represented the coordinates of the pixel points on the 

image, and    (   )  was the pixel value at point (    )  on the 

image. The   (   )was the pixel value at point (i, j) on the 

image of green band. The   (   )was the pixel value at point (i, j) 

on the image of red band. 

 

2.2 eU-Net network architecture 

U-Net was an effective network because of its jump connections, 

symmetric structure, and multi-scale feature extraction 

capability. The jump connection was useful to prevent the 

gradient explosion and the Vanishing Gradients; the 

symmetrical structure of the encoding and decoding not only 

eased the jump connection but it also facilitated end-to-end 

classification (Hao et al., 2020); the multi-scale feature 

extraction acquired both detailed information and high-level 

semantic information which made the network acquire more 

information from the images. However, the results of U-Net 

were commonly inaccurate with respect to building boundary 

detection.  

 

Figure 3 shows the architecture of eU-Net, the Dropout module 

was employed between the encoder and decoder to avoid over-

fitting (Hinton et al., 2013). Dropout not only improved the 

robustness of the network, but also reduced the training time to 

1-p of the original time (p is the probability of stopping units.). 

The Dropout strategy was frozen at the testing phase, which 

ensured a stable performance. 

 

Dilated convolution was used to increase the field size of the 

module. The increase in the size of the kernel was determined 

by the dilation rate. In this study, dilated convolution was 

applied after the pre-module. Feature maps, after the dilated 

convolutions with the dilation rates of 2, 3 and 5, respectively, 

were connected to three encoding modules (except the first 

module) via a jump connection. 

The encoding and decoding units were aligned with the Y-

residual unit (Figure 2) of the short-cut connections to increase 

the robustness of the model. The receptive field with different 

sizes was helpful for analyzing the targets with different size, 

while concatenating the receptive field by increasing the size of 

the kernel will cause an increase in the number of parameters. 

Therefore, in the eU-Net, two 3x3 kernels are applied instead of 

one 5x5 kernel which resulted in the same receptive field but 

with fewer parameters (Szegedy et al., 2015). The concatenate 

algorithm is applied to merge the output from the 1x1 and the 

3x3 convolutions layers. 

 
 

Figure 2. The Y-residual unit 
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Figure 3. Architecture of eU-Net 

 

2.3 Evaluation metrics 

In this study, the metrics include Overall Accuracy (OA), Recall, 

Precision, F1-score, and Intersection over Union (IoU) were 

applied to evaluate the performance of building footprint 

extraction models. All metrics were calculated as follows:  
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Where the True Positive (TP) was the number of correctly 

predicted pixels indicating the positive classes; the False 

Positive (FP) was the number of predicted pixels wrongly 

indicating the negative classes; the False Negative (FN) was the 

number of predicted pixels wrongly indicating the positive 

classes; the True Negative (TN) was the number of predicted 

pixels correctly indicating the negative classes. 

 
2.4 Implementation Details 

In this experiment, a Rectified Linear Unit (ReLU) was selected 

as the activation function except for the output layer, which 

suppressed negative values and prevented the resulting gradient 

exploring and vanishing. Batch size, loss function, learning rate 

and epochs have been set to 4, binary cross-entropy loss, 1e-4 

and 100 respectively, which were same as the experimental 

setting of He et al. (2021). All algorithms were trained and 

tested on a GeForce RTX 2060 with CUDA 10.2. The 

experiments were performed using the Keras library with the 

TensorFlow framework.  

 

3. RESULTS AND DISCUSSION 

3.1 Experiment Data 

In this study, the eU-net model and other models were tested on 

the Waterloo Building Dataset, which was released by He et al. 

(2021) on Harvard Dataverse. The Waterloo Building Dataset 

(Figure 4) provided very-high-spatial-resolution aerial ortho-

imagery consisting of red, green and blue bands. It covers the 

Kitchener-Waterloo area in Ontario, Canada, contains 117,000 

manually labelled buildings, and extends over an area of 205.8 

km2. At a spatial resolution of 12 cm, it is the highest resolution 

publicly available building footprint extraction dataset in North 

America. This dataset covered variety types of building and 

other object like roads, trees, bare land et al. This dataset 

contains 69, 792 patches, including 42, 147, 20, 768 and 6, 877 

pairs of images and masks for training, validation and testing.  

 
Figure 4. The imagery diagram 

 

3.2 Ablation study 

In this section, the contribution of the pre-modules to the 

performance of the method using the Waterloo Building Dataset 

(He et al., 2021) supports, the mosaic results of eU-Net shown 

in Figure 6. The following five experiments were conducted: (1) 

an experiment without the pre-module (baseline), (2) an 

experiment without the PCA, but with the edge detection and 

inter-band ratio operation, (3) an experiment without custom 

ratios, but with the PCA and inter-band ratio operations, (4) an 
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experiment without edge detection, but with the inter-band ratio 

operations and PCA, and (5) an experiment with the pre-module. 

Table 2 presents the results and Figure 5 shows the training 

accuracy and loss.  

 

 
Figure 5. Training accuracy and loss  

 

  OA (%) IoU (%) mIoU (%) 
Precision 

(%) 
Recall (%) 

F1 -score 

(%) 
FPS (s) 

No pre-modules (1) 97.3 80.3 87.9 90.6 87.6 89.1 12.3 

No Canny (2) 97.1 85.3 90.9 91.6 92.5 92.0 9.5 

No PCA (3) 97.3 85.6 91.2 91.4 93.1 92.2 7.8 

No Inter-band (4) 96.6 82.1 89.0 85.5 95.3 90.2 8.7 

eU-Net (5) 97.8 87.9 92.6 87.5 93.1 93.5 8.5 

Table 2. Results of ablation experiments 

 

 
 

  Figure 6. Examples of eU-Net study mosaic results 

 

As shown ablation study results in Table 2 and Figure 7, the 

pre-module yielded a significant improvement in all the metrics 

compared to its baseline. The F1-score increased from 89.1% to 

93.5 %, which indicated that the pre-module can effectively 

promote deep learning networks to improve their accuracy. 

Apart from the baseline, the lowest F1-score of 90.2% occur in 

Experiment (4), which removed the inter-band ratio compared 

to Experiment (5). This removal resulted in the decrease of F1-

score by 3.4%, which proved that the inter-band module is the 

most effectively module of the three modules for preprocessing. 

Experiment (3) showed the PCA components have a negligible 

contribution to the performance improvement in terms of F1-

score, which decreased by 1% when PCA components were 

removed from the pre-modules. 

3.3 Performance of eU-Net and Comparative Study 

As shown in Table 3, a comparative study was conducted 

between the eU-Net and the methods used in He et al. (2021) 

using the Waterloo Building Dataset. For a fair comparison, we 

used the same experiment settings as those in He et al. (2021). 

Specifically, the batch size, loss function, learning rate and  

epochs were set to 4, binary cross-entropy loss, 1e-4 and 100, 

respectively. eU-Net achieved higher values in terms of IoU, 

mIoU, Recall and F1-score produced results like all other 

methods. The result demonstrated that eU-Net performs well 

compared to state-of-the-art DL-based methods in building 

footprint extraction. There are the number of parameters for eU-

Net (ours) and Mask R-CNN (He et al., 2021), which are 

61,422,472 and 64,266,590. 

 

 

 OA (%) IoU (%) mIoU (%) Precision (%) Recall (%) F1-score (%) FPS (s) 

FCN-8s (Wu, 2015) 77.1 25.0 50.1 26.1 85.5 40.0 19.6 

U-Net (Ronneberger, 2015) 86.7 37.3 61.4 39.2 88.4 54.3 14.9 

DeepLab v3+ (Chen et al., 2017) 97.3 72.7 84.9 88.6 80.3 84.2 17.6 

Fast SCNN (Poudel et al., 2019) 77.3 23.0 49.3 24.8 76.1 37.4 24.0 

HRNet v2 (Sun et al., 2019) 97.8 76.6 87.1 92.5 81.7 86.8 18.2 

Mask R-CNN (ESRI) 96.6 64.6 80.5 89.2 70.1 78.5 - 

Mask R-CNN (He et al., 2021) 95.3 59.4 77.2 71.7 77.5 74.5 - 

eU-Net (ours) 97.8 87.9 92.6 87.5 93.1 93.5 8.5 

Table 3. Results of comparison experiments 
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    Figure 7. Examples of ablation study results 

 

4. CRITICAL ASSESSMENT 

The manual search for inter-band ratio relationships and edge 

enhancement generally has limited effectiveness. When 

changing targets, specific pre-processing needs to be adapted. 

Edge enhancement by manually selected features will 

significantly improve extraction accuracy, but in forest 

extraction it tends to cause a pepper noise. In future research, 

the pre-processing module of this paper is replaced by a deep 

learning network to do feature enhancement. Combining two 

deep learning networks, ensuring them carry special functions 

that one for feature enhancement as pre-processing and another 

one for extraction. Deep learning networks should be 

modularization, and then become more controllable and make 

the functions of each module recognizable. 

5. CONCLUSION 

 

The primary goal of this research was to extract the building 

footprints with precise edges. For this purpose, a new deep 

learning network named eU-Net was developed, which 

consisted of two components: the pre-modules and the deep 

learning neural network. The pre-modules were constructed 

using PCA, edge detection and the inter-band ratio results. The 

processed 6-band image set was transferred to the designed 

FCN. And the FCN employed dilated convolutions, jump 

connections, Y-residual units and U-type architecture. The 

comparative study demonstrated that method used in this study 

exhibited high performance in building footprint extraction 

compared to other commonly used and state-of-the-art methods 
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