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ABSTRACT: 

 
Thanks to the latest technological developments LiDAR (Light Detection And Ranging) sensors are no longer an exclusive feature of 
manned airborne platforms but they are close to becoming a commercial solution in the UAS (Uncrewed Aerial Systems) domain. The 
release on the market of the Zenmuse L1 by DJI (Dà-Jiāng Innovations) is a step further in this direction, thanks also to a substantial 
work of enhancement made by the Chinese company not only on the hardware side, but also on the software one. The research presented 
in this work is focused on the use of the L1 LiDAR for the 3D survey of built heritage, analysing the results of different tests to 
highlight first considerations on its performances and the point cloud quality. Considering its recent release, this sensor is still yet to 
be thoroughly analysed and validated and its performances to be assessed. LiDAR data has been acquired on a selected test site, 
documented also with traditional Terrestrial Laser Scanner (TLS) and UAS photogrammetry. The latter techniques (supported also by 
a topographic survey) will thus be exploited to generate the ground reference and to assess the quality and accuracy of the L1 dataset. 
 
 
 

1. INTRODUCTION 

The use of LiDAR (Light Detection And Ranging) sensors for 
aerial acquisitions is generally related to manned aircraft and 
confined to acquisitions of large portions of land or urban areas. 
Airborne LiDAR data can be used in different scenarios, e.g. for 
the automatic extraction of buildings in urban areas (Li et al., 
2019), forestry inventory (Webster et al., 2020), and 
environmental monitoring (Görüm, 2019). Needless to say, 
acquisitions with this kind of sensors are generally expensive and 
are usually commissioned by public entities for the monitoring 
and management of large areas of the territory, and cartography 
update. 
However, in the last years, thanks to the development and 
diffusion of UAS (Uncrewed Aerial System), new emphasis has 
been put on the possibility of using LiDAR sensors as UAS 
payload (Guan et al., 2021; Lin et al., 2021; Troy et al., 2021). 
The advantages of this approach are evident from the operational 
point of view due to the intrinsic features of UAS: low-cost  
(traditional airborne acquisitions are generally expensive), 
flexibility (easier to transport and deploy on the field), the 
possibility of off-nadir acquisitions enabled by the gimbal 
system, possibility of operating in new scenarios (forestry 
inventory or night-time acquisitions), and finally accessibility to 
a wider spectrum of operators. 
The disadvantages of using LiDAR sensors on UAS are quite 
evident as well: these kinds of miniaturized LiDAR sensors were 
quite expensive (until today) with respect to other types of 
imaging sensors. Moreover, the operational range is shorter 
compared to the sensors used in airborne acquisitions, the area 
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surveyed with a single acquisition is smaller and the point cloud 
density is generally lower. 
 

2. MATERIALS AND METHODS 

Among the different hardware solutions developed in the last 
years (Esposito et al., 2014; Gottfried et al., 2015) it is of 
particular interest the new sensor presented by DJI in October 
2020, the Zenmuse L1 (main specifications are reported in Table 
1 and an image of the sensor is shown in Figure 1 -a). One of the 
most interesting features of this sensor is the integration between 
the LiDAR, the RGB camera and the IMU (Inertial Measurement 
Unit) module in one single hardware mounted on a 3-axis 
stabilized gimbal.  
 

LiDAR sensor 

Range 450 m @ 80% reflectivity, 0 klx 
190 m @ 10% reflectivity, 100 klx 

Point Rate Single return: max. 240,000 pts/s 
Multiple return: max. 480,000 pts/s 

Positional accuracy Horizontal: 10 cm @ 50 m 
Vertical: 5 cm @ 50 m 

Point Cloud 
Coloring 
 

Reflectivity, Height, Distance, RGB 

Ranging Accuracy 
 

3 cm @ 100 m 
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FoV Non-repetitive scanning pattern: 
70.4° (horizontal) × 77.2° (vertical) 
 
Repetitive scanning pattern: 70.4° 
(horizontal) × 4.5° (vertical) 

Yaw Accuracy 
 

Real-time: 0.3°, Post-processing: 
0.15° 

Pitch / Roll 
Accuracy 
 

Real-time: 0.05°, Post-processing: 
0.025° 

RGB sensor 

RGB camera 1” CMOS 
20 MP 

Focal Lenght 
8.8 mm / 24 mm (Equivalent) 

Table 1. DJI Zenmuse L1 main specifications. Full specifications 
available at:  https://www.dji.com/uk/zenmuse-l1/specs 
 

 
 (a)    (b) 

Figure 1. The Zenmuse L1 (a) and the system mounted as 
payload with the DJI Matrice 300 (b). 

 
According to the information provided by the manufacturer, this 
system is capable of acquiring up to 2 km2  per single flight and 
can be used with the DJI Matrice 300 UAS (Figure 1 - b) that is 
provided with an RTK (Real Time Kinematic) module, enabling 
a direct georeferencing of the acquired data with a claimed 
accuracy of few centimetres1.  
The performances of this sensor, its metrical and geometrical 
accuracy, the best operational strategies for data acquisition and 
processing are still being analysed and validated by different 
research groups. A first contribution in this sense is reported in a 
recent work by Štroner et al. (Štroner et al., 2021) that performed 
different tests on the accuracy of the point cloud acquired with an 
L1 module and confirmed the potential of such sensor and the 
needs of further testing. This research group used as test site an 
area with different features (a building materials landfill) and 
performed flights at different elevation starting from 50 m a.g.l. 
(above ground level). The work presented here is focused on a 
single building and the acquisitions with the L1 were performed 
at a lower height (35 m a.g.l).  
The choice of selecting a single building was related to the aim 
of testing the performances of the L1 at an architectural scale and 
with respect to more consolidated survey approaches (TLS and 
UAS photogrammetry). 
The test site is represented by a building in the municipality of 
Oulx (Torino, North-west Italy) that will become a shelter for 
migrants. 
The building was surveyed during a two days campaign that 
involved the DIRECT Team (Disaster Recovery Team - 
https://www.g4ch.polito.it/wordpress/team-direct/), a team of 
students from the Bachelor and Master degree courses of 
Architecture and Engineering and that contributed to the data 

 
1 Main specifications here: https://www.dji.com/uk/matrice-

300?site=brandsite&from=nav  

processing phase and the design of the community spaces for the 
renovation of the building. 
 
2.1 Data acquisition and processing 

The fieldwork activities were planned and carried out according 
to consolidated approaches with the aim to achieve a multi-scale 
and multi-sensor documentation of the building and its 
appliances. 
First of all, a topographic network  was created and measured by 
means of traditional topographic techniques to georeference all 
the acquired datasets in the same coordinate system and to 
measure a series of Ground Control Points (GCPs) and Check 
Points (CPs) for the metric evaluation of the acquisitions and the 
different achieved analyses. The network was measured both 
with Total Station (TS) and Global Navigation Satellite System 
(GNSS) receivers; the GCPs/CPs were homogeneously 
distributed all over the surveyed area and were constituted by 
artificial targets as well as natural features. 
Therefore, the terrestrial LiDAR dataset was acquired with a Faro 
Focus3D X330 (main specifications in Table 2), ensuring a 
sufficient overlap between scans and a constant distance with 
respect to the building. The time needed for TLS acquisition was 
around 3 and an half hours. 
 

Faro Focus3D X330 

Range 0.6-330 m 
Measurement speed ~ 976.000 points/s 
Ranging error ± 2mm 

FoV (vertical/horizontal) 300°/360° 
Table 2. Faro Focus3D X330 main specifications. 

 
Scans were then registered using the dedicated software solution 
Faro SCENE, following a two-step registration approach: a 
Cloud to Cloud (C2C) registration via the Iterative Closest Point 
(ICP) algorithm followed by a georeferentiation of the data 
thanks to a set of GCPs measured by TS. The ICP registration has 
an error of few millimetres while the target-based one of a couple 
of centimetres. 
Finally the aerial acquisitions were carried out using the Matrice 
300 RTK erquipped by two different payloads: the Zenmuse P1 
and the Zenmuse L1.  
For both the data acquisitions were collected manually due to the 
conformation of the area, the environmental conditions and the 
close presence of other buildings; for all these reasons it was 
necessary to ensure a higher control of the operator over the 
acquisition and manual flights were preferred to the automatic 
ones.  
Nevertheless, standard guidelines for data acquisition were 
followed ensuring sufficient overlap (between images for the P1 
and between the various scanning lines for the L1), using 
different sensor’s orientations thanks to the 3-axis gimbal (nadir 
and oblique) and adopting different flight line orientations with 
respect to the object conformation. 
The Zenmuse P12 is a full-frame camera developed as payload 
for the Matrice 300, it has 45MP and a 4.4 μm pixel size: for these 
acquisitions the 35 mm lens was used and flights were performed 
at 35 m a.g.l., with an estimated Ground Sample Distance (GSD) 
of 1 cm/pixel. The total time needed for the flight with the P1 was 
20 minutes. 
Data were processed using the commercial software solution 
Agisoft Metashape, based on the standard Structure from Motion 
(SfM) pipeline, and the main results are reported in Table 3. 

2 Main specifications here: https://www.dji.com/uk/zenmuse-p1  
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Images GCPSs (6)  

3D RMSe (m) 

CPs (5) 

3D RMSe (m) 

GSD  

423 0.007 0.018 1 
cm/pixel 

Table 3. Zenmuse P1 main processing results 
 
The acquisitions with the L1 were completed following the same 
scheme used for the flight with the P1. For this sensor, it was 
particularly useful to use the real-time visualization of the point 
cloud during the acquisition in order to ensure adequate coverage 
of the whole building and avoid areas of missing data. 
For the L1 acquisitions the direct georeferencing approach using 
the RTK capabilities of the Matrice 300 was employed, flights 
with the L1 were completed in around 10 minutes. 
Data were then processed inside the dedicated solution DJI Terra, 
however, the user’s intervention is quite limited and the 
processing is only partially customizable.  
An issue that emerged during the processing was related to the 
RGB quality of the L1 point cloud that, due to the environmental 
conditions during the acquisition, resulted quite dark. L1 point 
cloud is texturized with the images acquired simultaneously to 
the laser data and that were underexposed in this case (most 
probably due to the meteorological conditions and the presence 
of snow coverage). A workaround was used to solve this issue: 
images radiometry (mainly exposure and contrast) was corrected 
for each image in an external software and original images were 
substituted before the processing in DJI Terra. The impact on the 
RGB quality of the final point cloud is clearly visible in Figure 
2. 
 

 
Figure 2. Radiometric information enhancement. Point cloud 

processed with acquired images (a) and after image     
correction (b). 

2.2 Methodological approach for comparison analyses 

After the processing of the L1 data, different analyses were 
carried out on the point cloud using third part software solutions 
such as CloudCompare and Cyclone 3DR. The LiDAR point 
cloud was analysed following different criteria and adopting 
different methodologies, using 3D data acquired with other 
sensors and higher positional accuracies as ground reference in 
order to evaluate the 3D accuracy, the geometrical resolution and 
the level of detail. 
A Cloud to Cloud (C2C) distances analysis was performed on 
selected areas of the building: the roof and two of the four facades 
(north and west). The ground reference for the roof was 
represented by the point cloud of the Zenmuse P1, while for the 
two facades both the P1 and TLS datasets were used as 
references. 
Moreover, on some portions of the point cloud a density and 
roughness analysis were completed using the opensource 
solution CloudCompare. As regards the density analysis, the 
surface density and number of neighbors were estimated with a 
sphere of radius 0.04 m, corresponding to the accuracy for a final 
representation scale of 1:100 (according to commonly adopted 
Italian standards). In particular, an area on the west façade was 

chosen for the L1, P1 and TLS, while on the roof only the P1 and 
L1 were compared, due to the lack of data for the TLS (Figure 
3a). For the roughness a radius of 0.1 m was selected on roof 
pitches’ intersection and facades with windows (Figure 3b). 
 

 
(a) 

 
(b) 

Figure 3. Selected areas on the façade (a) and the roof (b) for 
the density analysis. 

 
Given the ever increasing trend on point cloud semantic 
segmentation, based on the use of 3D geometric features with ML 
algorithms (Grilli et al., 2021; Matrone et al., 2020), further tests 
also investigated whether the L1 point clouds could be 
appropriate for this task, computing a few 3D features, such as 
verticality (radius 0,1 m), omni-variance (radius 0,2 m) and 
surface variation (radius 0,1 m). The choice of the radius is 
determined by the ability of the feature to properly discriminate 
the various architectural elements (façades, windows, roofs and 
so on). 
 

3. RESULTS 

3.1 C2C analyses 

The first C2C analysis was completed on the roof of the building, 
where P1 point cloud was used as reference. Results are reported 
in Figure 4 and Table 4. 
 

 
Figure 4. C2C analyses of the roof. P1 is used as ground 

reference and L1 as compared dataset. 

What emerged from this analysis, confirmed by other tests 
reported hereafter, is that the L1 point cloud is affected by a 
higher noise if compared with the P1 dataset. This issue is evident 
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also in the false colours representation, where the sharpest 
geometric features of the building (e.g. the ridgeline) are the areas 
where the higher deviation between the two datasets is 
observable.  
 

C2C analyses for the roof (deviation expressed in m) 

C2C 0<%<0,04 0,04<%<0,08 %>0,08 

P1-L1 64,3 30,5 5,2% 

Table 4. C2C analyses roof dataset. For each dataset values are 
reported as percentages in a selection of ranges. 

 
Nevertheless, the distribution of the deviations as reported in 
Table 4 confirms an overall good performance of the L1 with 
more than 64 percent of points with a deviation lower than 0,04 
m and around 95 percent of points with a deviation lower than 
0,08 m.  It needs also to be reported that these errors can be 
related to the presence of snow on the roof and thus further tests 
are needed in other scenarios with similar environmental 
conditions. The results of the C2C analysis for the two facades 
provided slightly different results. For the west façade, different 
observations can be underlined for the C2C analysis that used the 
TLS as ground reference and the one using the P1 as ground 
reference. In this case, the façade is characterised by several 
windows whose geometry was only partially described from both 
the terrestrial and aerial acquisitions. The upper part of windows 
frames was acquired by the TLS, while the lower part from the 
UAS acquisitions depending on the acquisition geometry. For 
this reason, these areas are the ones with the higher deviation 
between the L1 dataset and the reference models (Figure 5).   
 

 
Figure 5. C2C analyses of the west facade. TLS (a) and P1 (b) 

are used as ground reference and L1 as compared dataset. 

Data reported in Table 5 confirms that the C2C analysis using 
different datasets as ground reference provides comparable 
results. It is observable a slightly higher number of points with 

deviation lower than 0,04 meters in the case of P1-L1 analysis; 
this can be ascribed again at the acquisition geometry (both are 
aerial acquisitions) and thus the sensors’ position and orientation 
with respect to the building. Nevertheless, for both the dataset 
more than 90% of points present deviations lower than 0.08 
meters.  
 

C2C analyses for the west façade 

 (deviation expressed in m) 

C2C 0<%<0,04 0,04<%<0,08 %>0,08 

TLS-L1(a) 68,5 21,9 9,6 

P1-L1 (b) 75,6 20,1 4,3 

Table 5. C2C analyses of the west facade. For each dataset 
values are reported as percentages in a selection of ranges. 

 
The same analysis has been carried out on the north wall: results 
are reported in Figure 6 and Table 6. Compared to the other 
datasets, the one of the north façade presents a higher percentage 
of points with a deviation bigger than 0,08 m: however, the 
localization of these points is clearly visible in the false colours 
representation. The error is located on the floor in front of the 
façade that was a crossing point during the acquisitions and that 
was covered by snow. Due to the modifications derived from 
people’s walking on the snow between the different acquisitions 
this area is affected by higher deviations. On the façade it is 
possible to remark the same issue encountered for the roof 
concerning the noise. Also in this case, due to the noise of the L1 
dataset, sharper geometry presents a higher deviation with 
respect to the reference dataset. 
 

 
Figure 6. C2C analyses of the north façade. TLS (a) and P1 (b) 

are used as ground reference and L1 as compared dataset. 
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C2C analyses for the north façade  

(deviation expressed in m) 

C2C 0<%<0,04 0,04<%<0,08 %>0,08 

TLS-L1(a) 38,7 22,9 38,4 

P1-L1 (b) 39,1 19,7 41,2 

Table 6. C2C analyses of the north facade. For each dataset 
values are reported as percentages in a selection of ranges. 

 
3.2 Density analyses 

The first density and neighbors analyses were performed on a part 
of the west façade, where TLS point cloud was used as reference. 
As shown in Figure 7 and Table 7 the TLS and P1 point clouds 
are respectively denser than the L1 one. Approximately 50% of 
the points has the number of neighbors lower than 48 points for 
the TLS, 31 points for the P1 and 13 points for the L1. 
 

 
          (a) TLS               (b) P1                (c) L1 
Figure 7. Density analyses of a west façade section. The color 

scale on the right of each image is proportional to the number of 
neighbors, while the image represents the density visualization.. 
 
 

Number of neighbors for a sample of the west façade 

 (radius 0,04 m) 

 Nr. of points Mean St. deviation 

TLS 270.645 47,42 7,22 

P1 179.357 29,87 3,32 

L1 162.506 21,12 20,69 

Surface density* for a sample of the west façade 

(radius 0,04 m) 
 Nr. of points Mean St. deviation 

TLS 270.645 9433,14 1436,84 

P1 179.357 5943,61 661,39 

L1 162.506 4202,12 4116,67 

Table 7. Density analyses of the west façade section. 
*number of neighbors (N) divided by the neighborhood surface: 

N/(πr2) 
 
Opposite behaviour is encountered for the roof area analysed. 
In this case, the TLS point cloud was not considered for the 
obvious lack of data, nevertheless the P1 constitutes a proper 
reference for the comparison.  
As it is possible to notice from Figure 8 and Table 8, the number 
of points of the selection of L1 point cloud is almost 3 times the 
one of the P1. However, the mean of the L1 surface density is not 
heavily higher if compared to the P1. This result could be due to 
the inhomogeneity of the points’ distribution, namely their 

roughness; for this reason, it was considered appropriate to carry 
out the test described in paragraph 3.3.  

 
   (a) P1 

 
   (b) L1 

Figure 8. Density analyses of a roof section. The color scale on 
the right of each image shows the number of neighbors, while the 
image represents the density visualization. P1 (a) is used as 
ground reference and L1 (b) as compared dataset. 
 

Number of neighbors for a sample of the roof 

 (radius 0,04 m) 

 Nr. of points Mean St. deviation 

P1 257.450 22,47 2,82 

L1 716.252 28,68 12,22 

Surface density* for a sample of the roof 

(radius 0,04 m) 
 Nr. of points Mean St. deviation 

P1 257.450 4471,31 560,41 

L1 716.252 5706,39 2430,57 

Table 8. Density analyses of the roof section. 
*number of neighbors (N) divided by the neighborhood surface: 

N/(πr2) 
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3.3 Roughness analyses 

Based on the results of the previous section, an in depth analysis 
of the point cloud roughness on a sample of the roof was 
performed. In particular, the intersection between the roof 
pitches, including also the chimneys and dormers, was firstly 
selected. The roughness represents the surface complexity 
(Milenković et al., 2013) and it corresponds to the distance 
between the considered point and the best fitting plane computed 
on its nearest neighbors (cloudcompare.org). 
Figure 9 and Table 9 clearly confirm how L1 presents a higher 
number of points, but also a higher value both for the roughness 
mean and standard deviation. This outcome points out that the 
greater number of points could be due to the L1 sensor noise, as 
clearly visible in Figure 10 where it is compared to the P1 point 
cloud (with a distinctly lower noise, despite the snow coverage). 
 

 
   (a) P1  

 
   (b) L1 

 

 
   (c) 

Figure 9. Roughness analyses of a roof area, computed with a 
radius of 0,1 m. P1 (a) is used as ground reference and L1 (b) as 
compared dataset. On the bottom (c), the gaussian distribution 

for P1 on the left and L1 on the right. 

Roughness for a sample of the roof 

(radius 0,1 m) 
 Nr. of points Mean (m) St. deviation (m) 

P1 671.500 0,005 0,007 

L1 1.821.304 0,018 0,012 

Table 9. Roughness analyses of the roof section. 
 

 
Figure 10. Comparison between P1 (on the left) and L1 (on the 

right). 
 
Similar results were obtained for the façade, where also the 
emergency stairs have been included. Figure 11, b clearly depicts 
how the P1 has some weaknesses on the stairs and the 
discontinuity planes (e.g. windows and gutters), while the L1 
Figure 11, c) mixes all the elements without an effective 
distinction. 
 

 
   (a) TLS 

 
   (b) P1 
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   (c) L1 

 
      (d) 

Figure 11. Roughness analyses of the façade section, computed 
with a radius of 0,1 m. TLS (a) and P1 (b) are used as ground 
reference and L1 (c) as compared dataset. On the bottom (d), 
the gaussian distribution for TLS on the top left, P1 on the top 

right and L1 in the centre. 
 

Roughness for a sample of the west façade (radius 0,1 m) 

 Nr. of points Mean (m) St. deviation (m) 

TLS 4.503.236 0,004 0,006 

P1 842.924 0,010 0,011 

L1 369.293 0,017 0.12 

Table 10. Roughness analyses of the façade section. 
 

 
3.4 Qualitative analysis and 3D features extraction 

To test the effectiveness of the use of the L1 sensor also for the 
point cloud classification and semantic segmentation tasks (based 
on Machine Learning -ML alghoritms), some 3D features have 
been computed. This analysis has been carried out as a qualitative 
test and is not to be intended as exhaustive. 
In particular, the verticality, the omnivariance and the surface 
variation have been selected both for the P1 and the L1 sensors.  
As it can be noticed from Figure 12, to obtain comparable results 
for similar inputs to the ML algorithms, it has been necessary to 
vary the computation radii for the L1-based inputs. Thanks to this 
change the final L1 features can discriminate likewise those of 
the P1. 

 
                    (a) P1               (b) L1 

Figure 12. Geometric features computed for the P1 (on the left) 
and L1 (on the right) point clouds. Verticality (top, a), 

omnivariance (centre, b) and surface variation (bottom, c). 
 

 
             (a)   (b)      (c) 

Figure 13. Emergency stairs detail on the south façade. TLS 
(a), P1 (b), L1 (c). 

 
Finally, Figure 13 depicts the emergency stairs of the south 
façade. In this case, it results clear the noise of the L1 point cloud 
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and its limits in achieving a satisfactory level of detail for this 
kind of element. 
 

4. DISCUSSION AND CONCLUSIONS 

The test and analyses presented in this work allow to confirm the 
overall good performances of the Zenmuse L1 for the survey of 
the built heritage. The first aspect that can be underlined is 
connected to the rapidity and easiness of data acquisition. The L1 
can be easily deployed in the field together with the Matrice 300 
and data acquisition can be performed in few minutes. Compared 
with other surveys techniques the cost-benefit ratio is definitely 
low. However, the quality of the collected data needs to be 
accounted for as well. In this sense, the L1 has the lowest 
performances in terms of level of detail of the 3D data and related 
noise. The analysis achieved confirmed that TLS and aerial 
photogrammetry have still the upper hand in the definition of the 
object’s geometries.  
Another issue that must be accounted for is related to the quality 
of the visible images acquired by the L1 sensor. In case of 
unfavourable environmental conditions or error in the setup of 
camera parameters during the acquisition, a pre-processing of the 
images is feasible and can improve the final radiometric content 
of the point cloud. 
Concerning the processing, the L1 dataset was the fastest one in 
terms of processing time. The P1 dataset requires more 
computational time while the TLS required both more human 
effort and processing time (for point cloud registration, filtering, 
and segmentation). 
The aforementioned considerations need to be carefully assessed 
in relation to the nominal scale requested from the survey. 
Nevertheless, the resolution and precision of the L1 point cloud 
are generally sufficient to cover the requirements of the standard 
architectural representation (1:100/1:200). Results are 
particularly interesting considering the operative condition 
during the acquisition on the test site (e.g. the presence of snow). 
A missing step in the DJI Terra processing is related to the 
possibility to import and use GCPs as independent elements to 
metrically validate the L1 dataset. In this sense, further tests on 
the use of specific targets with high reflectivity can be planned to 
streamline the identification of GCPs in the point cloud. 
An interesting feature of the L1 is connected with the availability 
of 3 different returns signals that can be exploited especially for 
forestry inventory or landscape survey activities and that will 
need further investigation (including the possible impact when 
surveying snow-covered areas) 
The density and roughness analyses highlighted some criticalities 
of the L1, when dealing with architectural details or discontinuity 
areas. Moreover, the higher number of points on the roof did not 
implied a higher accuracy: on the contrary, it was demonstrated 
how this outcome was related to the noise of the point cloud. 
Nevertheless, the effective results of the 3D features computation 
make L1 point clouds suitable for the classification and semantic 
segmentation tasks, proving that this sensor can be properly used 
for urban and architectural applications. 
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