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ABSTRACT: 

 

In this paper, we present a method of mobile robot’s visual odometry using the visual feature tracking in the ground plane image 

generated from the fisheye image. In order to extract the feature information on the ground, we use a fisheye camera that has a larger 

FOV than a general pinhole camera, so that we can capture more information on the ground plane. However, due to the large 

distortion, it is difficult to extract the visual features in the fisheye image. The distortion can be eliminated, but various problems 

arise, such as a decrease in the resolution of an image or losing the wide angle of the fisheye camera. We propose the EUCM-

Cubemap projection model to convert the fisheye image into the cubemap image without losing the FOV of the fisheye image. And 

we create the Ground Plane Image, a virtual image that vertically looks at the ground from a cube map image. So, the ground plane 

image is generated so that it is captured from a virtual camera perpendicular to the ground. In the ground plane image, the motion 

vector obtained by feature tracking between previous and current frames is proportional to the actual robot’s motion in the 2D 

ground plane. Thus, if we know the actual scale of the motion vector, we can estimate the mobile robot’s velocity and steering angle 

on the virtual wheel generated by the ground plane image. The scale of the vector can be estimated using the position and focal 

length of the camera. Using these parameters, we estimate the mobile robot’s pose by applying the bicycle kinematic model. 

Experimental results show that the proposed method can replace other conventional odometry methods for mobile robots. And, in 

the future, it is expected to be used in a variety of fields such as visual-based control or path planning. 
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1. INTRODUCTION 

Today with the increased integration of chipsets and the 

development of efficient structures, the computing technology 

of mobile computers has made rapid progress compared with 

the past. This has led to the development of autonomous 

vehicles, service robots, and industrial robots. Because, in the 

past, technologies could not be applied due to limitations in 

hardware performance. And now, we can apply to such fields 

that require complex epistemological algorithms in miniaturized 

computers such as Robotics, Augmented Reality, and Virtual 

Reality. Computer vision technology has expanded its field 

further as the evolutionary leap of AI technology and so, it is 

being used in various fields, including manufacturing, national 

defense industry, and even service industries. Especially, in 

such fields as autonomous vehicles or mobile robots, it is 

important to minimize blind spots by expanding the perception 

range, so a lot of sensors should be installed. The camera 

sensors are usually used because cameras are cheap, readily 

available, and can be used for general purposes in a wide field. 

Moreover, by using a fisheye camera that has a large FOV, the 

perception range can be expanded with the minimum number of 

cameras. Because, in a fisheye camera, the amount of large 

information is entered in a single frame and it is effective to 

reduce costs. So, the importance of a fisheye camera is rapidly 

growing up. The localization of a mobile robot is an essential 

technology in autonomous driving. However, such as palette 

robots and cleaning robots, a camera is attached close to the 

ground. In these environments, camera-based localization is a 

challenging problem because feature tracking on random 

patterns in variable light environments with high-frequency 

vibrations results in less accuracy. Another solution is to use 

Wheel Odometry which estimates the mobile robot's location by 

attaching an encoder to the robot's wheel, but there are 

limitations such as the wheel's slip or backless and caused by 

different friction depending on what material the floor is. Also, 

the vibration causes the divergence of IMU which significantly 

lowers the accuracy depending on the specific environment. In 

this paper, we propose a method of applying the information on 

the ground obtained from the fisheye camera, we estimate the 

velocity and steering angle of the virtual wheel in the image and 

apply the kinematic model of the mobile robot to localization. 

The proposed method is largely composed of three parts. First, a 

fisheye image is conceived as a cubemap image, and a virtual 

image Ground Plane Image perpendicular to the floor surface is 

generated from the conceived cube image. And, as shown in Fig. 

1, in this image, feature points are Optical tracked to obtain a 

vector generated by movement in the image, and the location of 

the robot is estimated using the kinematic model of the mobile 

robot. The kinematic model used in this paper used the bicycle 

motion model. The structure of our paper is as follows. We 

provide five chapters: Chapter 2, briefly introduces similar 

studies related to this paper. And in Chapter 3, we explain how 

to make up each system of proposed methods. And Chapter 4 

shows the experiments. Finally, in Chapter 5, we describe the 

conclusions. 
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Figure 1. Belief illustration of our visual odometry system. 

 

2. RELATIVE WORK 

In this section, we briefly introduce the previous studies which 

are related to mobile vehicle a robot's visual odometry, using 

the features on the surface of the ground and a fisheye image. 

 

2.1 Cube SLAM: A Piecewise-Pinhole Monocular Fisheye 

SLAM System 

This work presents a novel CubemapSLAM system that 

incorporates the cubemap model into the ORB-SLAM which is 

a state-of-the-art feature-based SLAM system. The cubemap 

model utilizes a large FoV of the fisheye camera without 

affecting the performance of feature descriptors. In addition, 

CubemapSLAM is efficiently implemented and can run in real-

time. In this paper, despite the limited angular resolution of the 

sensor, CubemapSLAM shows better accuray than pinhole 

camera projection model. (Wang, Yahui et al., 2018) 

 

2.2 Localization using visual odometry and a single 

downward-pointing camera 

This work demonstrates the use of a single downward-pointing 

camera and visual odometry techniques for localization. The 

technique uses feature detection and optical flow measurements 

to provide sensor information to localization algorithms. In this 

paper, the application is specifically targeted to robotic 

platforms in unknown areas such as GPS-denied and barren 

environments. (Swank, Aaron J. et al., 2012) 

 

2.3 Robust monocular visual odometry for a ground vehicle 

in undulating terrain 

This work presents a robust method for monocular visual 

odometry capable of accurate position estimation even when 

operating in undulating terrain. In this paper, using a steering 

model to separately recover rotation and translation. And 

proposed method handles undulating terrain by approximating 

ground patches as locally flat but not necessarily level, and 

recovers the inclination angle of the local ground in motion 

estimation. In the field, experiments show an error of less than 

1%. (Zhang, Ji et al., 2014) 

2.4 Kinematic model based visual odometry for differential 

drive vehicles 

This paper presents the visual odometry of a vehicle that is 

working on the two-dimensional plane by applying a mobile 

robot’s kinematic model using a monocular camera that is 

facing the floor. The system is inexpensive and efficient enough 

to be used in real time on a single CPU. (Jordan, Julian et al., 

2017) 

 

3. APPROACHS 

3.1 System Overview 

A flow diagram of the proposed method is shown in Fig. 2. First, 

we convert the fisheye image into the cubemap image. From the 

cubemap image, we create a virtual camera image called 

Ground Plane Image (GPI) that captures the ground from the 

vertical direction from the camera. The GPI is generated from 

the cubemap’s Bottom-Face and Front-Face images as shown in 

Fig. 6. And as shown in Fig. 7, to find the robot’s motion, we 

track feature points in GPI using an optical flow algorithm. We 

use the KLT (Kanade-Lucas-Tomashi) algorithm to find the 

motion between consecutive two frames. After calculating the 

actual scale of the vector, the mobile robot’s velocity and 

steering angle are estimated. For accurate motion estimation, we 

exploit the robot’s kinematic model for odometry. In this paper, 

we use the bicycle motion model (Polack, Philip et al., 2017) 

for our mobile palette robot. This model represents a wheel-

based mobile robot’s motion. As shown in Fig. 9, we estimate 

the mobile robot’s odometry by applying the kinematic model.  

 

 

Figure 2. Proposed total system diagram. 
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Figure 3. Illustration of Enhanced Unified Camera Model. 

 

3.2 Calibration Fisheye Camera Using EUCM 

When using the fisheye image, applying the pinhole projection 

camera model causes serious distortion in the undistorted image. 

In addition, it causes serious raster distortions in the undistorted 

image. Therefore, instead of pin-hole model, we use a fisheye 

calibration method, EUCM (Enhanced Unified Camera Model) 

(Khomutenko et al., 2015) which is a nonlinear camera model 

that is generally used in omnidirectional camera such as 

catadioptric systems or fisheye cameras. Explaining the EUCM 

briefly, EUCM has more parameters than the pinhole model’s 

parameters. So, using these parameters the EUCM can represent 

the camera distortion without any undistortion process. As 

shown in Fig. 3 point X is projected on the curve plane P and 

then projecting it orthogonally into the M plane which is the 

normal plane. In this paper, to calibrate the fisheye camera, we 

used a calibration toolbox called Kalibr. It is a very useful tool 

for camera calibration. The Kalibr offers a variety of camera 

models including EUCM, Pinhole Model, Omnidirectional 

Model and Double Sphere Model. 

 

3.3 Mapping Fisheye Image to Cubemap Image 

After fisheye camera calibration, we convert the fisheye image 

to the cubemap image. As shown in Fig. 4, the cubemap model 

consists of five image planes generated by virtual pinhole 

projection model. Each virtual pinhole model has the same 

intrinsic parameters but has different extrinsic parameters to 

look in different directions, so it is possible to divide a large 

FOV image into multiple virtual pinhole cameras. As shown in 

Fig. 5, (b) fisheye image is mapped in a cube model that 

includes a virtual pinhole model on each face. 

 

 

Figure 4.  Illustration of Cubemap Model. 

 

Figure 5. (a)  Illustration of EUCM-Cubemap projection model. 

(b) Convert fisheye image to the cubemap Image. 

 

3.4 Generating Ground Plane Image from Cubemap Image 

As shown in Fig. 6, the Front and Bottom Faces in the cubemap 

image are used to generate the Ground Plane Image. In the 

Front-Face, a homography matrix warps the Front-Face image 

to the Ground Plane Image. And the Bottom-Face image in the 

cubemap image is used as it is because the Bottom-Face is 

already obtained by a virtual top view camera in the cubemap 

model as shown in Fig. 5 (a). We assume that this image is a 

virtual orthophoto, which looks vertically at the ground and 

called Ground Plane Image. 

 

3.5 Feature Tracking on Ground Plane Image 

In order to obtain a motion vector generated by the mobile 

robot’s movement, the vector is represented in the Ground 

Plane Image because it is a virtual image perpendicular to the 

floor surface generated by cubemap image. And then, perform 

the feature tracking between the previous image and the current 

image. In this paper, we used KLT (Kanade-Lucas-Tomasi) 

optical flow algorithm for the feature tracking on the Ground 

Plane Image. And, in order to obtain a reliable optical vector 

that represents the mobile robot's motion in the Ground Plane 

Image. As shown in Fig. 7, we calculate the median vector of 

motion vectors on the Ground Plane Image and assume that the 

median vector is reliable and calculate a median vector among 

the motion vectors.  

 

 

Figure 6. Generate Ground Plane Image from the cube image. 
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Figure 7. The motion vectors on the Ground Plane Image. 

 

 

Figure 8. Illustration of motion vector in Ground Plane Image 

and actual motion vector  

 

3.6 Motion Vector on Ground Plane Odometry 

As shown in Fig. 8, the motion vectors obtained from the 

Ground Plane Image are matched with the mobile robot’s 

motion with an unknown scale. Because the location of the 

camera is depending on the robot’s motion. Thus, if we know 

the real scale of the motion vector, we can estimate the actual 

motion of the robot in the Ground Plane Image. To estimate the 

scale of the motion vector, some assumptions are followed.  

Assuming that the Ground Plane Image is obtained by a virtual 

camera which is perfectly perpendicular to the flat ground, the 

scale of the motion vector is estimated using the height from the 

ground to the camera mounted on the mobile robot and the focal 

length of the camera. In this case, the motion vector obtained 

from the Ground Plane Image multiplied by the scale represents 

the mobile robot’s motion and the camera in two dimensions.  

 

3.7 Visual Odometry using the Bicycle Motion Model 

The velocity and the steering angle of the mobile robot's virtual 

wheel are calculated by using the scaled motion vector obtained 

from Ground Plane Image. Using these measurements, we apply 

the virtual wheel’s measurements to the mobile robot’s motion 

model. As shown in Fig. 9, the estimated values of Speed V and 

String Angle δ of the virtual wheel are measured by the scaling 

motion vector obtained from the Ground Plane Image, and 

wheel odometry can be performed by using visual information 

in a two-dimensional space. As shown in Fig. 9, the bicycle 

motion model is a Wheel-Based vehicle’s kinematic model that 

rotates and moves based on the center point IC (Instantaneous 

Centre) in a two-dimensional plane and estimates the mobile 

robot’s odometry. The L is the distance between the mobile 

robot’s rear-wheel axis and front-wheel axis, the lr is the 

distance between the rear-wheel axis and the center of mass of 

the mobile robot. The w is the angular velocity at which the 

mobile robot moves based on the center of the IC. 

 

Figure 9.  Motion vector on the Ground Plane Image applying 

to the mobile robot’s motion model 

 

4. EXPERIMENTS 

4.1 Configuration and environment 

The robot used in the experiment was performed by our ROS-

based pallet robot (Lee, Ung-Gyo et al., 2021) Table.1 shows 

the mobile robot’s hardware spec and as shown in Fig. 10 (b) 

the fisheye camera is mounted on the head of the Mobile Pallet 

Robot. In the experiment, the camera we used is Intel’s 

Tracking Camera T265. T265 is a fisheye stereo camera. It has 

two fisheye lenses with a combined amount of 163±5 Field of 

View, and it has (848x800) resolution for each camera lens and 

also, has an IMU because T265 performs localization based on 

VIO (Visual Initial Odometry). 

 

Component Hardware 

Embedded Board NVIDIA Jetson-Nano 

Wheel Encoder PHIDGET Optical Rotary Encoder 

Motor PHIDGET NEMA-17 Bipolar Stepper 

Motor Controller PHIDGET Stepper Bipolar HC 

LiDAR SLAMTEC RPLIDAR-S1 

Camera Intel RealSense T265 Tracking Camera  

Battery NEXT-408PB-UPS(40800maAh) 

Table 1. Pallet robot’s hardware spec sheet 

 

Figure 10. (a) Our pallet robot (b) A camera attached in front of 

the robot 
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4.2 Experiment  

A camera is placed on a mobile robot that is attached to the 

floor as shown below, and when looking at the image, an image 

in which the floor occupies more than half of the image is 

obtained. The real-world experiments are performed using a 

mobile palette robot which is equipped with Intel Tracking 

Camera T265 as shown in Fig. 10 (b). In the experiment, Fig. 

11 (a) shows unfiltered motion vectors that a representative 

measurements of optical flow on Ground Plane Image. Fig. 11 

(b) represented the distribution of motion vectors and (c) shows 

a histogram generated by the motion vector’s angles in the 

Ground Plane Image.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. (a) Unfiltered motion vectors obtained from the 

Ground Plane Image (b) An x-y plot of motion vectors. (c) The 

histogram on angles of motion vector 

 

Figure 12. (a) Compare odometry (b) Trajectory of proposed 

method 

 

Fig. 12 (a) shows a comparison of wheel odometry using the 

mobile robot’s wheel encoder, T265 odometry, and the 

proposed visual odometry called Ground Plane Odometry using 

the T265 fisheye image. Fig. 12 (b) represents the trajectory of 

the proposed method by using the EKF(Extended Kalman 

Filter) to fuse Ground Plane Odometry and T265 Odometry, it 

is expected that robust VIO localization even in an environment 

with sparse features and high frequency vibrations. 

 

5. CONCLUSIONS 

In this paper, we propose an efficient method of mobile robot’s 

visual odometry with a fisheye camera which is a large FOV 

camera. In order to use the fisheye image, we mapped a fisheye 

image to the cubemap image using EUCM and Cubemap Model. 

Using the cubemap image generate a virtual orthophoto image 

called Ground Plane Image. Then, the motion vector 

representing the movement of the robot is obtained from the 

Ground Plane Image and assumes that it is the measurement of 

a virtual wheel to apply the mobile robot’s motion model and 

estimate the mobile robot’s odometry. In the future, it will be 

expected that even robots without wheel encoders will be able 

to wheel odometry using only image information. Furthermore, 

it is also expected to be used in the field of visual-based control 

or path planning in the future. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-431-2022 | © Author(s) 2022. CC BY 4.0 License.

 
435



 

ACKNOWLEDGEMENTS 

This work was supported by the Commercializations Promotion 

Agency for R&D Outcomes(COMPA) grant funded by the 

Korean Government(Miinistery of Science and ICT)" (R&D 

procject No. 1711139487). 

 

REFERENCES 

Wang, Yahui, et al. "Cubemapslam: A piecewise-pinhole 

monocular fisheye slam system." Asian Conference on 

Computer Vision. Springer, Cham, 2018. 

 

Khomutenko, Bogdan, Gaëtan Garcia, and Philippe Martinet. 

"An enhanced unified camera model." IEEE Robotics and 

Automation Letters 1.1 (2015): 137-144. 

 

Polack, Philip, et al. "The kinematic bicycle model: A 

consistent model for planning feasible trajectories for 

autonomous vehicles?." 2017 IEEE intelligent vehicles 

symposium (IV). IEEE, 2017. 

 

Swank, Aaron J. Localization using visual odometry and a 

single downward-pointing camera. No. NASA/TM-2012-

216043. 2012. 

 

Jordan, Julian, and Andreas Zell. "Kinematic model based 

visual odometry for differential drive vehicles." 2017 European 

Conference on Mobile Robots (ECMR). IEEE, 2017. 

 

Lee, Ung-Gyo, Kyung-Jea Choi, and Soon-Yong Park. "The 

Design and Implementation of Autonomous Driving Pallet 

Robot System using ROS." 2021 Twelfth International 

Conference on Ubiquitous and Future Networks (ICUFN). 

IEEE, 2021. 

 

Zhang, Ji, Sanjiv Singh, and George Kantor. "Robust 

monocular visual odometry for a ground vehicle in undulating 

terrain." Field and service robotics. Springer, Berlin, 

Heidelberg, 2014. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-431-2022 | © Author(s) 2022. CC BY 4.0 License.

 
436




