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ABSTRACT:

In this paper, we present a mapping system based on an autonomous mobile robot equipped with a LiDAR device and a camera,
that can deal with the presence of people. Thanks to a deep learning approach, the position of humans is identified and a new
surveying path is planned that brings the robot to scan occluded areas, so as to obtain a complete point cloud of the environment.
Experimental results are performed with a wheeled mobile robot in different crowded scenarios, showing the applicability of the
proposed approach to perform an autonomous survey avoiding occlusions and automatically removing from the map noisy and
spurious objects caused by people presence.

1. INTRODUCTION

The contamination between Photogrammetry and Computer Vis-
ion in surveying is a process that started at least a decade ago
and is now in a mature, though not yet complete, phase. We are
also currently witnessing the entry of techniques borrowed from
robotics into the field of surveying, as for instance portable Mo-
bile Mapping Systems (MMSs). In fact, the case of a vehicle
or a human operator equipped with laser sensors or cameras
moving in the environment with the aim of surveying is not at
all dissimilar to that of an autonomous vehicle (robot) moving
in an unknown environment with the aim of obtaining a spatial
representation (mapping). One difference is that the robot, in
order to move, must simultaneously solve the problem of local-
ization in that unknown environment, hence the problem known
as SLAM (Simultaneous Localisation And Mapping). In fact,
portable MMSs coupled with SLAM technology have recently
revolutionised modelling in global navigation satellite system
(GNSS)-denied environments, driven by the growing demand
for up-to-date, high-resolution 3D models of buildings and in-
frastructures (Maset et al., 2021).

Nowadays, a surveyor can simply carry the mapping device
while walking through the area of interest to obtain a point
cloud of the surrounding scene, which serves as a fundamental
starting point for the creation of digital twins and the as-built
Building Information Model (BIM) reconstruction (Rausch and
Haas, 2021).

A further step towards the automation of survey operations can
be made thanks to robotics and artificial intelligence. Mobile
robots, also known as Unmanned Ground Vehicles (UGVs),
equipped with mapping systems, indeed, are increasingly ap-
plied for the digitization of buildings (Adán et al., 2019, Maset
et al., 2022). Steered from remote or autonomously perform-
ing navigation, these solutions will represent in the near future
a fundamental aid for a more efficient, fast and accurate survey.
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Examples of applications of mapping systems based on mobile
robots are the indoor environment monitoring and control, as in
(Park and Hwang, 2020), and the robotic object search by lever-
aging metric-topological map, as in (Zhang et al., 2021). Other
applications include BIM-integrated collaborative robotics for
building construction and maintenance (Asadi et al., 2018), func-
tional support for occupancy analysis of building, and autonom-
ous disinfection in challenging situations, such as the COVID-
19 pandemic (Giusti et al., 2021).

Although many autonomous scanning systems have been pro-
posed in the literature, several problems still need to be ad-
dressed and significant improvements are required. Accord-
ing to (Adán et al., 2019), efforts should focus on implement-
ing computationally more efficient path planning algorithms,
providing quantitative evaluations on the accuracy of retrieved
3D models, and improving the degree of autonomy of mobile
robotic platforms in complex scenes. Moreover, the developed
robotic mapping platforms are mostly tested in indoor scenarios
which are usually empty, static, and where there are no people.
Indeed, during the scanning of a building or an indoor environ-
ment, one of the principal sources of uncertainty and data gaps
is occlusion, such as pieces of furniture, shelves, or even hu-
man beings, as in the case considered in this work. To avoid oc-
clusions, the operators usually manually scan the environment
from many different viewpoints and thus generate a fused point
cloud. This could be a serious limitation in the applicability of
the system, since in many situations the presence of people dur-
ing surveying operations cannot be avoided. For this reason, in
the context of autonomous mapping systems based on mobile
robots, it is convenient to develop techniques to avoid occlu-
sions and remove noisy and spurious objects from the resulting
map. As for instance, in (Hähnel et al., 2003), a probabilistic
approach is implemented to track multiple people and to incor-
porate the estimates of the tracking technique into the mapping
process, resulting in more accurate maps with a reduced num-
ber of spurious objects. However, to the best of our knowledge,
no examples of robotic systems capable of autonomously map-
ping an indoor crowded environment based on LiDAR SLAM

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-447-2022 | © Author(s) 2022. CC BY 4.0 License.

 
447



and deep learning-based people detection can be found in the
present literature. In this work, we propose a mapping system
based on an autonomous mobile robot equipped with a LiDAR
device and a RGB camera, that can deal with the presence of
people. Thanks to a deep learning approach, the position of
humans is identified and a new surveying path is planned that
brings the robot to scan occluded areas, so as to obtain a com-
plete point cloud of the environment. Experimental results car-
ried out with a wheeled mobile robot in different crowded scen-
arios show the applicability of the approach and the feasibility
of implementation.

The organization of the paper is the following: the proposed
framework is presented in Sect. 2, where the SLAM algorithm,
the exploration and navigation approach and the people detec-
tion technique are described. Sect. 3 reports the experimental
results and the discussion. Finally, Sect. 4 concludes the paper.

2. PROPOSED FRAMEWORK

To deal with the presence of people that can cause occlusions
and consequently data gaps in the point cloud of the environ-
ment, we propose a mapping procedure characterized by the
following three main steps (this process can be iterated until a
people-free point cloud is obtained):

1. Initial survey of the area. A first tentative LiDAR-based
model is acquired by the UGV that autonomously explores
the surroundings using a frontier search based algorithm,
and concurrently captures images of the crowded environ-
ment.

2. People detection. Contextually to the exploration, people
identification is performed on the RBG images exploiting
a Convolutional Neural Network (CNN) developed for ob-
ject detection. Following an approach similar to (Ayala-
Alfaro et al., 2021), we combine the bounding box provided
by the CNN, the range values recorded by the LiDAR, the
pose of the UGV retrieved through the SLAM algorithm,
and the known transformations between LiDAR, camera
and the UGV frames to estimate, with respect to a fixed
frame, the position of human bounding volumes. The latter
allow the developed algorithm (1) to automatically remove
points corresponding to people from the model, which can
result in unwanted noisy and spurious objects in the 3D
map, and (2) to define the positions that the robot has to
visit again.

3. Remapping of occluded surfaces. The UGV autonomously
navigates to the positions from which people were seen, in
order to map the regions of the environment previously
occluded by the people. The final model is obtained by
merging the point clouds acquired at different times.

An overview of the proposed framework is illustrated in Fig. 1.
In the flowchart, the main blocks of the framework and the re-
lative connections between them are explained. LiDAR data
are employed in the 3D SLAM blocks to retrieve the current
position of the robot and build the global map, whereas images
from the camera are used to detect people. The core algorithm is
people detection in which the map is cleaned by people and way
points for the second navigation stage are computed. The pos-
ition of the robot is used, together with the horizontal LiDAR
scan, by a 2D graph SLAM algorithm to update the occupancy
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Figure 1. Flowchart of the proposed framework.

grid. The frontier exploration algorithm, indeed, needs the oc-
cupancy grid to provide way points to the global path planner
during the first survey. The path computed by the global path
planner is modified based on the horizontal LiDAR scan to per-
form obstacle avoidance and send velocity command to the ro-
bot driver. Each section of the algorithm is explained more in
detail in the following.

To better appreciate the performance of the proposed method
and the autonomous mapping with the mobile robot, a video is
available online1.

2.1 3D SLAM algorithm

To localize the mobile robot and build a 3D reconstruction of
the surroundings, a LiDAR SLAM algorithm is required. In
particular, the SLAM method needs to meet the following re-
quisites to fit with the purposes of the proposed approach: it
should run in real time, provide a highly dense point cloud, and
retrieve an accurate estimate of the robot position. Light weight
and Ground Optimized LiDAR Odometry and Mapping (LeGO-
LOAM), proposed in (Shan and Englot, 2018), is a ground op-
timized six degrees of freedom SLAM algorithm that suits these
requirements, allowing also to take into account loops closing
to avoid drift in the computed trajectory. Moreover, it limits the
computational load usually required for scan-matching by per-
forming feature extraction and matching between subsequent
scans.

The first stage implemented in LeGO-LOAM focuses on dis-
tinguishing between ground and other objects, that are sub-
sequently clustered, following the approach proposed in (Bo-
goslavskyi and Stachniss, 2016). More in detail, the point cloud
is first projected onto a range image, which allows to exploit
the cleanly defined neighborhood relation among points. Points
that may represent the ground are identified and the remaining
ones are grouped into clusters. Edge and planar features are
then extracted from ground and clustered points, instead from
a raw point clouds. By calculating a parameter c proportional
to the differences in range measures between a point and the
points in its local region, the point with high values of c are
selected as edge features, and point with low values of c are

1 https://youtu.be/nslraeiyeUM
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Figure 2. Occupancy grid and three dimensional map built by
LeGO-LOAM. The current local path for exploration is

displayed as a red line.

designated as planar features. The transformation between two
subsequent scans is performed by point-to-edge and point-to-
plane scan-matching. Correspondences are found only among
features with the same label, thus improving the matching ac-
curacy.

Instead of solving the non-linear expressions for the distances
between edge and planar features in a unique vectors, a two-step
Levenberg-Marquardt optimization method is introduced. The
translation tz along the z axis (normal to the ground) and the
rotations θroll and θpitch with respect to the longitudinal and
lateral axes of the mobile robot, respectively, are estimated by
matching the planar features and their correspondences. On the
other hand, the translations tx and ty on the x and y axis of the
ground plane, and the rotation θyaw of the robot with respect
to the ground normal are estimated using the edge feature and
their correspondences.

2.2 Exploration and navigation approach

The navigation approach adopted in this paper is based on a
classical path planner on a 2D flat surface, in the form of an oc-
cupancy grid, as shown in Fig. 2. An occupancy grid is similar
to an image with pixel values associated to a number that indic-
ates the likelihood the cell is occupied. If the likelihood is under
a user defined threshold, the cell is marked as free and, there-
fore, it is accessible by the UGV. For exploring purposes, paths
towards unexplored cells (marked in the map with −1 values)
can be considered feasible.

The navigation framework2 employs a pose graph SLAM al-
gorithm to provide the above mentioned map. Graph nodes
correspond to the poses of the robot, at different instants of
time, whereas edges represent constraints between the nodes,
as stated in (Grisetti et al., 2010). The bi-dimensional SLAM
algorithm requires: (1) odometry measurement that is provided
by LeGO-LOAM; and (2) perceptions of the environment, ob-
tained from the horizontal LiDAR scan.

2 http://wiki.ros.org/navigation

Figure 3. Trajectory of the robot performing a survey in the
second test case environment.

Generally, a map of the environment must be given in advance
to the robot to perform a navigation tasks. However, for autonom-
ous mapping purposes the robot should gather information about
the surrounding with a ”bootstrap” process. We define explora-
tion the act of moving through an unknown environment while
building a map that can be used for subsequent navigation. In
this context, the concept of frontier is useful: frontiers are re-
gions on the boundary between explored and unexplored space.
Starting from an occupancy grid, provided by the SLAM al-
gorithm, a method similar to edge detection in digital images
is used to find the frontiers (Yamauchi, 1997). Moving to suc-
cessive frontiers, the robot increases its knowledge of the world,
until no more frontiers are detected and the environment can be
considered explored. To provide the robot with autonomous ex-
ploration capability we used explore lite3, a ROS package that
performs a greedy frontier-based exploration.

To move across a series of way points, the robot uses the ROS
navigation framework, which comprises a global and a local
path planner to generate a safe path (without collisions with
static and dynamic obstacles) for the robot (Fig. 3). The oc-
cupancy grid is used to compute a cost function, proportional
to the risk of collision. The cost function is used to weight
edges into a graph: each pixel becomes a node and each adja-
cent nodes pair is connected by two oriented edges. The edge
takes the weight from the value of the end pixel. The global
planner uses the well known Dijkstra algorithm (Dijkstra, 1959)
for finding the shortest paths between nodes.

In addition, since the robot is supposed to move in a unknown
and dynamic environment with people moving inside it, a local
planner for obstacle avoidance is also needed. For this purpose,
the Dynamic Window Approach (DWA) (Fox et al., 1997) is
employed, which relies on a local cost map that is generated
and continuously updated using range measurements provided
by LiDAR scans. For each iteration of the planner, the al-
gorithm generates multiple tentative linear and angular velocit-
ies of the robot. For each of these velocities, the corresponding
path of the robot is simulated. Paths resulting in a collision with
obstacles are discarded. The remaining collision-free ones are
evaluated in terms of proximity to obstacles, to the goal, and to
the global path. Once the best local path is chosen, the associ-
ated velocity command is sent to the driver of the robot.

2.3 People Detection

While the process of building the map with the UGV relies
on the LiDAR point cloud data only, the available methods of
object detection from raw point-cloud data are faced with the

3 http://wiki.ros.org/explore\_lite
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Figure 4. People detected by the YOLOv3 framework on the
image acquired by the camera.

problem of the irregular structure of the data format and large
search space for geometric features. This consequently reduces
the performance for simultaneous processing of people detec-
tion to remove resulting occlusions and map building. To over-
come this problem, we implement a method that effectively
combines image and point-cloud data acquired by the camera
sensor and the LiDAR scan, respectively. We exploit the image-
based object detection method implemented by (Redmon and
Farhadi, 2018) and trained on the COCO dataset, which is pop-
ularly known as YOLOv3 (Fig. 4). This CNN allows the pro-
cessing of high frame rate and guarantees accuracy and robust-
ness to objects scaling on image frame, thus it is particularly
suited for our application. With this framework, we can retrieve
people position in real-time from the point cloud data by pro-
jecting predicted points of each bounding box from the camera
frame to the LiDAR frame. This approach follows two main
steps: (1) obtaining the transformation function of the LiDAR
to the camera frame, and (2) locating the 3D points correspond-
ing to the vertices of a 2D bounding box in the image frame.

To obtain the LiDAR-to-camera transformation, the knowledge
of the extrinsic parameters of the sensors is required. These
parameters express the relative pose of the LiDAR and camera
sensor, which can be achieved through a calibration process.
Thanks to OpenCV Perspective-n-Point (PnP) pose computa-
tion, the rotation and translation transform between the sensors
is determined from a set of manually picked corresponding 2D
and 3D points in the individual sensor frame, in addition to the
camera intrinsic matrix and the distortion coefficients. With the
LiDAR-camera extrinsic parameters, a perspective projection is
computed to obtain the corresponding 2D projection of the 3D
point cloud data. People’s positions in the LiDAR reference
frame are retrieved by taking the corresponding 3D coordinates
of the projected LiDAR point closest to the bounding box center
(Fig. 5).

Whenever a detection occurs, the most recent available pose of
the robot, with respect to the fixed reference frame is used to
transform people coordinates from the LiDAR to the fixed ref-
erence frame. The so retrieved positions are stored in a buffer
and used at the end of the exploration stage to clean the map.
When no more frontiers are detected (or after a user defined
period of time) the exploration is considered complete and the
cleaning process starts. People positions are employed as cen-
ters of three dimensional bounding boxes, of fixed dimension,
in the global map built by LeGO-LOAM. Thus, points inside
boxes are sequentially removed from the map. After this oper-

Figure 5. People positions in the LiDAR reference frame. The
red marker represent the center of the three dimensional

bounding box.

Figure 6. Mobile robotic platform equipped with 3D laser
scanner, RGB camera and onboard computer.

ation, the second navigation stage begins and the robot comes
back to previous positions, from which people were seen, to fill
possible occlusions and data gaps in the point cloud.

3. EXPERIMENTAL RESULTS

Experimental tests were carried out implementing the proposed
framework on a Scout Mini UGV by AgileX Robotics. This
mobile robot, shown in Fig. 6, is equipped with a Velodyne
VLP-16 laser scanner, an Intel Realsense D435 stereo depth
camera, and a NVIDIA Xavier computer. The laser measure-
ment range is up to 100 m with a precision of ±3 cm. Its vertical
field of view is 30◦ (±15◦), and the horizontal field of view is
360◦. Moreover, it provides a vertical angular resolution of 2◦

and a horizontal resolution of 0.2◦, as the rotation rate is set to
10 Hz. The Intel Realsense camera has a maximum RGB resol-
ution of 1920 x 1080 and a lower maximum range (10 m) with
respect to that of the LiDAR. The camera depth measurements
resulted to be noisy, thus they were not used to detect people’s
position in this work. Finally, the NVIDIA Jetson AGX Xavier
board is equipped with a graphics card powered by 512 Tensor
cores, 32 GB of RAM and a 8-Core ARM v8.2 64-bit CPU,
and runs Ubuntu 18.04 with the Robot Operating System (ROS
Melodic).

The proposed method was tested to map two areas of a building
that hosts the robotics laboratory, within the scientific campus
of the University of Udine (Italy). The two test cases that were
surveyed in the presence of people consist in (1) a single closed
office (Fig. 7(a)), and (2) a conference room comprising a long
and narrow corridor (Fig. 8(a)).
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(a)

(b)

(c)

(d)

Figure 7. Test case (1): scanned environment (a); people
detected (b); point cloud with data gaps (c); final point cloud (d).

(a)

(b)

(c)

(d)

Figure 8. Test case (2): scanned environment (a); people
detected (b); point cloud with data gaps (c); final point cloud (d).
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The first environment is characterized by the presence of tables,
chairs and furniture, representing static obstacles for the UGV.
Moreover, during the survey, a person was moving inside the of-
fice. The robot took approximately two minutes to perform the
first exploration and to remap the previously occluded areas.
Fig. 7(b)-7(d) illustrate the result for test case (1), where the
first point cloud is characterized by noisy and spurious points
associated to the presence of people, that are automatically re-
moved, as shown in Fig. 7(c). On the other hand, the removal
causes square holes in the point cloud that are filled during the
subsequent survey, as it can be seen in Fig. 7(d).

The second test case was performed in a wider and more un-
structured space, with half of the area occluded by chairs. As
shown in Fig. 3, the robot succeeded in finding a safe path to
explore even this challenging environment, with three moving
people. The overall required time to perform the mapping op-
eration was about five minutes. Final results obtained with the
proposed workflow are presented in Fig. 8(b)-8(d). Please note
that all the people were correctly identified in the images by the
CNN and removed from the point cloud (Fig. 8(c)). However, a
more robust implementation of the position retrieval method in
the LiDAR frame should be used to avoid the incorrect removal
of points not belonging to people. This may be caused by the
wrong positioning of the volume bounding boxes in the fixed
reference frame.

4. CONCLUSION

In this paper, we presented a mapping system based on a mobile
robot equipped with a LiDAR device and a RGB camera, that
can deal with the presence of people. Thanks to a deep learning
approach, the position of humans is identified and a new survey-
ing path is planned that brings the robot to scan occluded areas,
so as to obtain a complete point cloud of the environment. Ex-
perimental results were performed with a wheeled mobile robot
in different crowded scenarios, showing the applicability of the
proposed approach to perform an autonomous survey avoiding
occlusions and removing noisy and spurious objects caused by
people presence from the map.

In future developments of this work, we plan to further investig-
ate the problem of mapping of crowded environments by means
of mobile robots. In particular, we will consider alternative
SLAM algorithms, as well as other path planning strategies for
the navigation of the robot in an unknown environment. Fur-
thermore, we will test the proposed framework in more complex
scenarios, such as outdoor areas and cluttered environments.
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