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ABSTRACT:

The nighttime light (NTL) remote sensed imagery has been applied in monitoring human activities from many perspectives. As the
two most widely used NTL satellites, the Defense Meteorological Satellite Program (DMSP) Operational Linescan System and the
Suomi National Polar-orbiting Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) have different spatial and
radiometric resolutions. Thus, some long-time series analysis cannot be conducted without effective and accurate cross-calibration of
these two datasets. In this study, we proposed a deep-learning based model to simulate VIIRS-liked DMSP NTL data by integrating
the enhanced vegetation index (EVI) data product from MODIS. By evaluating the spatial pattern of the results, the modified Self-
Supervised Sparse-to-Dense networks delivered satisfying results of spatial resolution downscaling. The quantitative analysing of the
simulated VIIRS-liked DMSP NTL with original VIIRS NTL showed a good consistency at the pixel level of four selected sub datasets
with R? ranging from 0.64 to 0.76, and RMSE ranging from 3.96-9.55. Our method presents that the deep learning model can learn
from relatively raw data instead of fine processed data based on expert knowledge to cross-sensor calibration and simulation NTL data.

1. INTRODUCTION

Since 1992 the first spaceborne nighttime light sensor Defense
Meteorological Satellite Program (DMSP) Operational Linescan
System launched, with the development of nighttime light (NTL)
remote sensors, more NTL satellites have been launched such as
Suomi National Polar-orbiting Partnership (NPP)-Visible
Infrared Imaging Radiometer Suite (VIIRS) (Elvidge et al.,
2021), LuoJial-01 (Liu et al., 2020), and EROS-B (Levin et al.,
2014). The NTL remote sensed imagery has been widely used to
monitor human activities from many perspectives. Researchers
used NTL data in monitoring urbanization (Wang et al., 2021),
estimating and mapping gross domestic product (Elvidge et al.,
1997), mapping greenhouse gas emissions (Oda and Maksyutov,
2011), monitoring and predicting urban crime (Liu et al., 2020;
Yang et al., 2020), managing and monitoring disasters (Molthan
and Jedlovec, 2013) and regional armed conflicts (Roman and
Stokes, 2015). It is noteworthy that most of these studies were
used the DMSP and VIIRS NTL data.

DMSP NTL measures lights from cities, towns, and other
lighting areas at night, in digital numbers ranging from 0 to 63
(6-bit depth) (Li and Zhou, 2017). The annual DMSP product is
in 30 arc-second grids, which is approximate 1 km spatial
resolution at the equator (Li and Zhou, 2017). NPP-VIIRS
day/night band (DNB) started collecting data from April 2012.
Due to the lower radiometric resolution and recording the digital
number instead of radiance value, DMSP NTL data has saturation
and blooming problems in urban areas (Levin et al., 2020).
Similar to DMSP NTL, VIIRS NTL also spans the globe from -
180 to 180 degrees longitude and -65 to 75 degrees latitude
(Elvidge et al., 2017). The products are produced in 15 arc-
second geographic grids (approximate 500 m spatial resolution at

the equator) (Elvidge et al., 2017). The VIIRS NTL data unit is
nW/cm?/sr, and data is stored in a 14-bit depth (Elvidge et al.,
2017).

Due to DMSP and VIIRS two datasets having different spatial
and radiometric resolutions, some applications of NTL data are
limited to conduct a long-term time series analysis. For instance,
Zhou et al. presented a globe urban dynamic monitoring using
DMSP NTL which was limited to 1992-2013 (Zhou et al., 2018).
Chen and Nordhaus proposed a method of building a time series
VIIRS NTL and GPDs relationship, which is only limited to
2014-2016 (Chen and Nordhaus, 2019). Therefore, some studies
focus on extending NTL data by using both DMSP and VIIRS
NTL data to obtain a longer time series NTL dataset.

Zhu et al. (2017) employed a power function by using NPP-
VIIRS NTL intensity within each local region area in China to
generate simulated DMSP NTL intensity to construct a time
series dataset from 1992-2015 (Zhu et al., 2017). A similar study
was conducted by Li et al. (2017). The author applied the power
function from DMP annual data and VIIRS monthly data to
internal calibrate this dataset to analysis Syria’s regional armed
conflict (Li et al., 2017). While these methods highly rely on the
selected training sample and are limited to a regional scale. Zhao
et al. (2019) applied a sigmoid function model to construct
DMSP NTL liked data from 1992-2018 in Southeast Asia. Li et
al. (2020) proposed a globe DMSP liked dataset using a stepwise
calibration method to build a harmonized long time series NTL
dataset across the world (Li et al., 2020). Most of these studies
proposed methods either focus on a regional scale or simulated a
DMSP-like dataset which wastes the higher spatial and
radiometric resolution of VIIRS NTL. Therefore, simulating a
global extent time series of VIIRS liked NTL data could
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contribute to further analysis for all applications mentioned
before.

Since NTL radiance value highly depends on human settlements
and activities which corelate with vegetation distribution and
urban structures, some studies proposed methods to cross-sensor
calibrate the DMSP and VIIRS NTL by fusion vegetation indices
data. Liu et al. (2019) proposed a vegetation adjusted NTL urban
index (VANUI) based on the inverse correlation between
vegetation and urban surfaces (Liu et al., 2019). The results had
improved urban extent extraction by improving the DMSP
dataset. Zhou et al. (2015) presented an improvement index
named enhanced vegetation index adjusted NTL index
(EANTLI), and EANTLI’s similarity to VIIRS NTL data is
consistently higher than VANUI’s similarity to VIIRS NTL data
(Zhuo et al., 2015).

With deep learning techniques widely used in remote sensing,
researchers started applying these techniques to image processing
issues such as denoising, super-resolution, image fusion, and
registration (Ma et al., 2019). Downscaling the lower spatial
resolution DMSP can be treated as a single image super-
resolution problem. The single image super-resolution is by
giving a low-spatial-resolution (LR) image, and the SR algorithm
accurately estimates a high-spatial-resolution (HR) image (Yang
et al., 2015). In 2014, Dong et al. first proposed a convolutional
neural network based super-resolution method (SRCNN) (Dong,
et al. 2014), neural network has been widely adopted for super-
resolution techniques. Since then, many deep learning-based
super-resolution networks have been introduced, such as
FSRCNN (Dong et al., 2016), SRGAN (Ledig et al., 2017), and
RCAN (Zhang et al., 2018). These methods showed the
promising capability of deep learning models on the image
downscaling problem. However, improving DMSP NTL data
problems cannot be treated as a simple super-resolution problem
without other auxiliary data. It is not only downscaling the spatial
resolution but also needs to enhance the radiometric resolution,
which also has been verified by our prior experiment.

To improve the quality of DMSP data in both spatial and
radiometric resolution to the VIIRS-like DMSP datasets more
supplementary data are required. Vandal et al. (2017) introduced
the DeepSD model, a stacked SRCNN framework with auxiliary
data, to statistical downscale the daily precipitation data. By
integrating the DEM data into the training process, the deep
learning method performed better than traditional methods of
precipitation data downscaling (Vandal et al., 2017). Zhang et al.
(2021) proposed a spatial and spectral reconstruction network
(SSR-NET) to reconstruct an HR hyperspectral image by fusing
an LR hyperspectral image and its corresponding HR
multispectral image (Zhang et al., 2020). The experiment showed
that SSE-NET can deliver satisfying results in terms of super
resolve the spatial and spectral resolution of satellite imagery. Li
et al. (2022) presented a CNN-based relative radiometric
calibration method to acquire consistent satellite images from
different sensors, especially for the ones from long-term time
series (Li et al.,, 2021). This CNN-based regression model
performs quite outstanding to other methods (Li et al., 2021).
These studies demonstrated that the deep learning-based model
has the capability of enhancing the resolutions in different
perspectives.

Based on the previous studies, vegetation indices show a strong
correlation with NTL radiance distribution. Thus, Chen et al.
(2021) proposed a learning-based method to extend the VIIRS
time series from DMSP data by cross-sensor calibration (Chen et
al., 2021). They put the EANTLI into an auto-encoder-based

convolutional neural network (CNN) to simulate VIIRS-liked
DMSP NTL data. The results of this method are satisfactory in
terms of having a good spatial pattern and temporal consistency
at the pixel and city level (Chen et al., 2021). However, this
method needs to calculate EANTLI before using it as model input,
which inspired us to directly use EVI and DMSP NTL as the
input to train a deep learning-based model without additional
processing.

This study will present a deep learning-based model based on the
Self-Supervised Sparse-to-Dense networks (SSSD) (Ma et al.,
2019) to cross-sensor calibrate DMSP data and simulate a VIIRS-
like higher spatial and radiometric resolution NTL data to support
extending the annual NTL time series. The vegetation index and
DMSP data are directly input to the CNN based model.
Compared to other simulation or enhancement methods, our
model is easier to apply without additional image pre-processing.
The rest of this paper is structured as follows. The second section
will introduce the details of the used dataset, experiment
environment, and the methods of this study. Section 3 will
present the experimental results, evaluation, and discussions. The
last section will have a summarized conclusion of this paper.

2. MATERIALS AND METHODS
2.1 Materials
This section is going to introduce all datasets used and related

preprocessing, the methods of this study, and the evaluation
metrics.

VIIRS 2013 annual average NTL

100 nW/cm?/sr

80.04°W 79.70°W 79.35°W 79.01'W

79.70°W 79.35°W 79.01'W

Figure 1. A comparison example of DMSP and VIIRS NTL data
within the same area.
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2.1.1 NTL Datasets: Two NTL datasets were used: the
annual global average visible stable lights DMSP NTL data and
the annual average global VIIRS NTL dataset. Both datasets were
retrieved from the Earth Observation Group (Elvidge et al., 2017;
NOAA, 2021). These datasets have a two-year overlap the 2012
and 2013. Since the VIIRS NTL annual average only composited
data from April to December 2012. this study chose the 2013 as
the training data to develop the model. The average masked
annual global VIIRS NTL dataset version 2 was produced by
several steps, including removing outliers, sunlit, moonlit, and
cloudy pixels, rough composites, filtering lights, fires, aurora,
and background (Elvidge et al., 2021). The geographical
coordinate system of both datasets is WGS84 (EPSG 4326). The
annual DMSP and VIIRS NTL product have an approximate 1
km and 500 m spatial resolution at the equator, respectively, as
shown in Figure 1. It is clearly to be noticed from Figure 1 that
the DMSP NTL data has severe saturation and blooming
problems as mentioned in the previous section. While the VIIRS
NTL provided more urban structural details.

2.1.2 MODIS Vegetation Indices Dataset: The MODIS
Terra MOD13A1 V6 16-Day Global 500 m products were used
to provide the EVI value on a per-pixel basis (Didan et al., 2015).
This EVI layer minimizes the variety of canopy backgrounds,
keeps the sensitivity over dense vegetation, and removes residual
atmosphere contamination. The MODI3A1 products were
produced from the atmospherically corrected surface reflectance
data. To alleviate the sensitivity to the seasonal and interannual
fluctuations, the annual average EVI datasets were produced
from MOD13A1 using the Google Earth Engine (GEE) platform.
The annual average EVI datasets were reprojected to EPSG 4326
to correspond with the NTL datasets, and the no data values were
assigned as nan.

2.1.3  Preparing Training Samples: To future train the deep
learning-based model, we preprocessed the two datasets into
training samples. Firstly, the method of this study requires the
input data to have the same spatial resolution as the target data,
so we first resampled the DMSP NTL to 500 m. Since there is no
improvement in the prediction accuracy of the input resampled
imagery by different interpolated methods such as nearest
neighbour and bilinear interpolation (Ma et al., 2019), in this
paper, we first resample the DMSP NTL by an easily
implemented method, cubic resampling to match the input 500 m
spatial resolution. Secondly, we aligned and retiled the global
coverage NTL datasets and EVI data into 256 by 256 pixels
paired data samples. Lastly, we remove the outliers in the data
samples by several strategies. VIIRS sensor detects the light
radiance from 1 nW/cm?/sr, and by examining the histogram of
radiance value, there are only few sites with radiances over 1000
nW/cm?/sr across the world. Thus, to avoid the influence of
skewed large values on the loss function, we assigned the pixel
value as 1000 if the VIIRS NTL data value is greater than 1000.
In addition, the ocean area usually has no radiance captured by
the sensor, and the oceans account for a large proportion of the
global area, which may cause the class imbalance problem during
the training process. Therefore, we filtered out the data pairs
which all the pixel values are 0 of the DMSP NTL or the VIIRS
NTL. Similarly, all the pixel values are nan values of the EVI, we
removed the data pairs. Finally, there are 8375 paired data
samples created.

2.2 Methods

To simulate the VIIRS-liked DMSP NTL data, we formulate the
problem as a deep regression learning problem. The network

adopted in this study is SSSD, initially proposed for depth
completion.

The modified model architecture is shown in Figure 2. The
resampled 500 m DMSP and the EVI are processed by the initial
convolutional block (Conv). Then a total of four residual (Res.)
blocks of ResNet-34 were used as the encoder, which are
sequentially increasing the filter size and downsampling the
feature spatial resolutions. The decoder has a reversed structure
with four transposed (Transp.) convolutional blocks. Output from
each encoding layer is passed to the corresponding decoding
layers by skip connections. Finally, the predicted VIIRS-liked
DMSP will be produced with the same spatial resolution as the
network input. Except for the last Conv, each Conv is followed
by batch normalization and ReLU.

The pixel values of the input data, including the DMSP NTL, EVI
and VIIRS NTL images, are scaled to 0-1 according to the
possible minimum and maximum values. During prediction, to
mitigate the blooming effect of DMSP NTL images, the nan
values in the EVI images were used as a mask to mask out water
bodies.

256x256 @500m
DMSP NTL and EVI

256x256 @500m
Prediction VIIRS-like DMSP

Conv Conv
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A
{ "Q
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A
! "Q
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A

Figure 2. The proposed deep regression network with DMSP and
EVI as input. The dashed lines denote skip
connections and circles denote concatenation of
channels. F represents the number of channels.

2.3 Accuracy Evaluation Metrics

To conduct the quality evaluation of the simulated VIIRS-liked
DMSP data, the Root Mean Square Error (RMSE) and the
coefficient of determination R? between the results and VIIRS
NTL data will be used (Chen et al., 2021; Li et al., 2017). Given
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the observed image (here denoted the VIIRS NTL imagery) and
its corresponded predicted image (here denoted the VIIRS-liked
DMSP imagery), the RMSE is defined as:

RMSE = J%Z?’:l(obseﬂ]edi — predicted;)?, (1)

where  observed; = the radiance of the VIIRS NTL imagery
predicted; = the predicted radiance value of the
VIIRS-liked NTL imagery

N = the sample size

The R? is defined as:
R?>=1

YN (observed;—predicted;)?
YN . (observed;—predicted;)?’

@

where  predicted, = the mean value of the predicted radiance
of the VIIRS-liked NTL imagery

3. EXPERIMENTAL RESULTS AND DISCUSSIONS
3.1 Experiment Setting

Among the 8375 pairs of data samples, 98% were randomly
selected as the training set, while the rest 2% was used as the
validation set. To train the proposed deep regression network for
simulating NTL data, the learning rate was initialized at 0.0001
and optimized by the ADAM optimizer. The learning rate was
reduced by 10% if validation loss reached a plateau. The L2 loss
was chosen to better reconstruct high-intensity areas.

The experiments were implemented in PyTorch 1.6 with Python
3.7 on a workstation with an Intel Core 19-9900K CPU
@3.60GHz, 32GB RAM, and an NVIDIA RTX 2080Ti GPU,
under Ubuntu 20.04.

3.2 Experimental Result

The deep regression network was trained using data pairs in 2013,
and it was tested to reconstruct higher-resolution NTL images
using DMSP NTL and EVI image pairs in 2012. Figure 3
illustrates the comparison between the resampled DMSP NTL
data, VIIRS NTL data, and the predicted VIIRS-like NTL data in
2012 in four major metropolitan areas, including Cape Town,
South Africa, the Greater Toronto Area (GTA), Canada, Los
Angeles, USA and Shanghai (extended to the Yangtze River
Delta area), China.

Compared with the DMSP NTL which suffers saturation and
blooming effects, the reconstructed VIIRS-like NTL images
resemble the higher-resolution VIIRS NTL images with better
representations of urban spatial structures in all tested areas. The
reconstructed NTL images have better spatial details of the
blooming areas in DMSP data. For instance, the DMSP dataset
of the GTA has a significantly blooming problem, especially in
the shoreline area of Lake Ontario. However, the reconstructed
VIIRS-liked DMSP data eliminated most blooming areas and
delivered the spatial variations which highly corresponded to the
original VIIRS imagery. Similarly, the Yangtze River Delta area
consists of many towns and cities of different levels. In the
DMSP image, due to high light radiance, the whole region is
connected without spatial details. But our predicted VIIRS-liked
DMSP demonstrated the clearer different hierarchic urban
structures in this area. In addition, some main road networks were
successfully reconstructed. Thus, it demonstrates that the fusion
of lower-resolution DMSP NTL with higher-resolution EVI
images could significantly improve the interpretability of the

DMSP NTL images in saturated regions, with the potential of
reconstructing higher-resolution NTL images from historical

records to extend the NTL time series.
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Figure 3. Visual comparison between predicted VIIRS-liked
NTL images and DMSP and VIIRS NTL images in
2012.
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Figure 4. Comparison of pixel values between predicted VIIRS-
liked NTL and VIIRS NTL images in four
metropolitan areas. The solid line represents the 1:1
line.

Quantitative comparisons between the reconstructed VIIRS-like
NTL images and the true VIIRS NTL images in the four sample
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metropolitan areas are shown in Figure 4. In the scatter plots,
each dot represents one corresponding pixel in the prediction and
the ground truth, and the green line represents the 1:1 line. The
overall RMSE is relatively low considering the total range of data,
and the R? values showed that the points generally follow the 1:1
line. The GTA has the highest accuracy with R? 0.76, and Cape
Town followed with R? 0.74. Shanghai and Los Angeles have the
accuracy of R? 0.68 and 0.64, respectively. In particular, the
RMSE of Cape Town, the GTA, and the Yangtze River Delta
area (Shanghai) are very close from 3.96 to 4.84. In contrast, the
RMSE of Los Angeles is relatively large at 9.55. There are many
scatter points alone with the 0 value of VIIRS imagery
significantly not predicted well in this case. Meanwhile, in Figure
3 and Figure 4, the predicted values do not reconstruct the high
radiance values well, with maximum radiances significantly
smaller than the actual VIIRS NTL images.

3.3 Discussions

The predicted VIIRS-liked DMSP imagery evaluations showed
that it is possible to directly use DMSP NTL data and EVI to
simulate the VIIRS-liked NTL data. However, there are still have
some places that need to be further investigated. Firstly, as
Figure 5 shown, the blue rectangle area has a high radiance
value, while the predicted NTL data was not shown the high
radiance of light. By further examining this blue rectangle area,
the underestimated area is where the California State Prison, Los
Angeles County located. This facility may produce more light
than other similar land cover facilities. Thus, the prediction failed
to estimate. On the contrary, the red rectangle areas were
overestimated light radiance. Most of these areas are in the sub-
rural and rural area of Los Angeles. The landscape of these areas
is human settlements within the area covered by barren soil and
desert, and less vegetation covered. Since this study only used
EVI as the supplementary data to estimate VIIRS-liked DMSP
NTL data, it may cause this type of error. The land cover and land
used data may improve the under- and overestimated issues.

VIIRS NTL

VIIRS-liked DMSP NTL

- - " R - F
—a ——— -~

Figure 5. A zoomed-in c.;)mparison between VIIRS NTL and
VIIRS-liked DMSP NTL data.

DMSP NTL intensity frequency VIIRS NTL intensity frequency

4e+05
3e+05
3e+05

2e+05
2e+05

le+05 1e+05

0e+00 0e+00
0 10 20 30 40 50 60 0 200 400 600 800 1000

Figure 6. Distributions of two NTL datasets with value < 1
removed.

Secondly, skewed data distribution has been observed in both the
DMSP and the VIIRS NTL datasets, due to most pixels do not
have valid radiance values. Over 92% and 98% of pixels are
observed in the DMSP and the VIIRS NTL datasets, respectively.

Moreover, high radiance values are seldomly observed, so the
intensity distributions are still significantly skewed even with
low values removed, especially in the VIIRS NTL dataset as
observed in Figure 6. The skewed distribution may significantly
constrain the performance of the deep regression network.
Further improvements to the network can be made in future work
to better address this issue, including data normalization with log
scaling, and masked losses.

In addition, although using the higher-resolution EVI images
could significantly improve the spatial details, such as road
networks, of DMSP NTL data in the saturated regions, while it
still cannot provide as clear as VIIRS NTL data in the urban area.
Considering the light radiance is highly corresponding to the
development of human settlement status, here we suggest that in
the future it is worthy of trying using new supporting datasets
such as MODIS land surface reflectance data or other optical
daytime datasets to improve the spatial details of the VIIRS-liked
DMSP NTL data.

4. CONCLUSIONS

This study proposed a deep regression model that simulated a
higher spatial and radiometric resolution VIIRS-liked NTL data
by inputting a lower resolution DMSP NTL and corresponded
EVI data. The results demonstrated that the reconstructed VIIRS-
liked DMSP NTL data have similar spatial patterns as the original
VIIRS NTL data. Further works can be conducted by integrated
more supplementary datasets and a refined network. Meanwhile,
it is worth adding more pre-and post-processing of the whole
framework to produce more accurate VIIRS-liked DMSP NTL
data. The extended time series VIIRS-liked NTL data could be
used to monitor urbanization and the socioeconomic related
applications.
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