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ABSTRACT: 
The nighttime light (NTL) remote sensed imagery has been applied in monitoring human activities from many perspectives. As the 
two most widely used NTL satellites, the Defense Meteorological Satellite Program (DMSP) Operational Linescan System and the 
Suomi National Polar-orbiting Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) have different spatial and 
radiometric resolutions. Thus, some long-time series analysis cannot be conducted without effective and accurate cross-calibration of 
these two datasets. In this study, we proposed a deep-learning based model to simulate VIIRS-liked DMSP NTL data by integrating 
the enhanced vegetation index (EVI) data product from MODIS. By evaluating the spatial pattern of the results, the modified Self-
Supervised Sparse-to-Dense networks delivered satisfying results of spatial resolution downscaling. The quantitative analysing of the 
simulated VIIRS-liked DMSP NTL with original VIIRS NTL showed a good consistency at the pixel level of four selected sub datasets 
with R2 ranging from 0.64 to 0.76, and RMSE ranging from 3.96-9.55. Our method presents that the deep learning model can learn 
from relatively raw data instead of fine processed data based on expert knowledge to cross-sensor calibration and simulation NTL data. 

1. INTRODUCTION

Since 1992 the first spaceborne nighttime light sensor Defense 
Meteorological Satellite Program (DMSP) Operational Linescan 
System launched, with the development of nighttime light (NTL) 
remote sensors, more NTL satellites have been launched such as 
Suomi National Polar-orbiting Partnership (NPP)-Visible 
Infrared Imaging Radiometer Suite (VIIRS) (Elvidge et al., 
2021), LuoJia1-01 (Liu et al., 2020), and EROS-B (Levin et al., 
2014). The NTL remote sensed imagery has been widely used to 
monitor human activities from many perspectives. Researchers 
used NTL data in monitoring urbanization (Wang et al., 2021), 
estimating and mapping gross domestic product (Elvidge et al., 
1997), mapping greenhouse gas emissions (Oda and Maksyutov, 
2011), monitoring and predicting urban crime  (Liu et al., 2020; 
Yang et al., 2020), managing and monitoring disasters (Molthan 
and Jedlovec, 2013) and regional armed conflicts (Román and 
Stokes, 2015). It is noteworthy that most of these studies were 
used the DMSP and VIIRS NTL data.  

DMSP NTL measures lights from cities, towns, and other 
lighting areas at night, in digital numbers ranging from 0 to 63 
(6-bit depth) (Li and Zhou, 2017). The annual DMSP product is 
in 30 arc-second grids, which is approximate 1 km spatial 
resolution at the equator (Li and Zhou, 2017). NPP-VIIRS 
day/night band (DNB) started collecting data from April 2012. 
Due to the lower radiometric resolution and recording the digital 
number instead of radiance value, DMSP NTL data has saturation 
and blooming problems in urban areas (Levin et al., 2020). 
Similar to DMSP NTL, VIIRS NTL also spans the globe from -
180 to 180 degrees longitude and -65 to 75 degrees latitude 
(Elvidge et al., 2017). The products are produced in 15 arc-
second geographic grids (approximate 500 m spatial resolution at 

the equator)  (Elvidge et al., 2017). The VIIRS NTL data unit is 
nW/cm2/sr, and data is stored in a 14-bit depth  (Elvidge et al., 
2017). 

Due to DMSP and VIIRS two datasets having different spatial 
and radiometric resolutions, some applications of NTL data are 
limited to conduct a long-term time series analysis. For instance, 
Zhou et al. presented a globe urban dynamic monitoring using 
DMSP NTL which was limited to 1992-2013  (Zhou et al., 2018). 
Chen and Nordhaus proposed a method of building a time series 
VIIRS NTL and GPDs relationship, which is only limited to 
2014-2016 (Chen and Nordhaus, 2019). Therefore, some studies 
focus on extending NTL data by using both DMSP and VIIRS 
NTL data to obtain a longer time series NTL dataset.  

Zhu et al. (2017) employed a power function by using NPP-
VIIRS NTL intensity within each local region area in China to 
generate simulated DMSP NTL intensity to construct a time 
series dataset from 1992-2015 (Zhu et al., 2017). A similar study 
was conducted by Li et al. (2017). The author applied the power 
function from DMP annual data and VIIRS monthly data to 
internal calibrate this dataset to analysis Syria’s regional armed 
conflict (Li et al., 2017). While these methods highly rely on the 
selected training sample and are limited to a regional scale.  Zhao 
et al. (2019) applied a sigmoid function model to construct 
DMSP NTL liked data from 1992-2018 in Southeast Asia. Li et 
al. (2020) proposed a globe DMSP liked dataset using a stepwise 
calibration method to build a harmonized long time series NTL 
dataset across the world (Li et al., 2020). Most of these studies 
proposed methods either focus on a regional scale or simulated a 
DMSP-like dataset which wastes the higher spatial and 
radiometric resolution of VIIRS NTL. Therefore, simulating a 
global extent time series of VIIRS liked NTL data could 
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contribute to further analysis for all applications mentioned 
before.  
 
Since NTL radiance value highly depends on human settlements 
and activities which corelate with vegetation distribution and 
urban structures, some studies proposed methods to cross-sensor 
calibrate the DMSP and VIIRS NTL by fusion vegetation indices 
data. Liu et al. (2019) proposed a vegetation adjusted NTL urban 
index (VANUI) based on the inverse correlation between 
vegetation and urban surfaces (Liu et al., 2019). The results had 
improved urban extent extraction by improving the DMSP 
dataset. Zhou et al. (2015) presented an improvement index 
named enhanced vegetation index adjusted NTL index 
(EANTLI), and EANTLI’s similarity to VIIRS NTL data is 
consistently higher than VANUI’s similarity to VIIRS NTL data 
(Zhuo et al., 2015).  
 
With deep learning techniques widely used in remote sensing, 
researchers started applying these techniques to image processing 
issues such as denoising, super-resolution, image fusion, and 
registration (Ma et al., 2019). Downscaling the lower spatial 
resolution DMSP can be treated as a single image super-
resolution problem. The single image super-resolution is by 
giving a low-spatial-resolution (LR) image, and the SR algorithm 
accurately estimates a high-spatial-resolution (HR) image (Yang 
et al., 2015). In 2014, Dong et al. first proposed a convolutional 
neural network based super-resolution method (SRCNN)  (Dong, 
et al. 2014), neural network has been widely adopted for super-
resolution techniques. Since then, many deep learning-based 
super-resolution networks have been introduced, such as 
FSRCNN (Dong et al., 2016), SRGAN (Ledig et al., 2017), and 
RCAN (Zhang et al., 2018). These methods showed the 
promising capability of deep learning models on the image 
downscaling problem. However, improving DMSP NTL data 
problems cannot be treated as a simple super-resolution problem 
without other auxiliary data. It is not only downscaling the spatial 
resolution but also needs to enhance the radiometric resolution, 
which also has been verified by our prior experiment.  
 
To improve the quality of DMSP data in both spatial and 
radiometric resolution to the VIIRS-like DMSP datasets more 
supplementary data are required. Vandal et al. (2017) introduced 
the DeepSD model, a stacked SRCNN framework with auxiliary 
data, to statistical downscale the daily precipitation data. By 
integrating the DEM data into the training process, the deep 
learning method performed better than traditional methods of 
precipitation data downscaling (Vandal et al., 2017). Zhang et al. 
(2021) proposed a spatial and spectral reconstruction network 
(SSR-NET) to reconstruct an HR hyperspectral image by fusing 
an LR hyperspectral image and its corresponding HR 
multispectral image (Zhang et al., 2020). The experiment showed 
that SSE-NET can deliver satisfying results in terms of super 
resolve the spatial and spectral resolution of satellite imagery. Li 
et al. (2022) presented a CNN-based relative radiometric 
calibration method to acquire consistent satellite images from 
different sensors, especially for the ones from long-term time 
series (Li et al., 2021). This CNN-based regression model 
performs quite outstanding to other methods (Li et al., 2021). 
These studies demonstrated that the deep learning-based model 
has the capability of enhancing the resolutions in different 
perspectives.  
 
Based on the previous studies, vegetation indices show a strong 
correlation with NTL radiance distribution. Thus, Chen et al. 
(2021) proposed a learning-based method to extend the VIIRS 
time series from DMSP data by cross-sensor calibration (Chen et 
al., 2021). They put the EANTLI into an auto-encoder-based 

convolutional neural network (CNN) to simulate VIIRS-liked 
DMSP NTL data. The results of this method are satisfactory in 
terms of having a good spatial pattern and temporal consistency 
at the pixel and city level (Chen et al., 2021). However, this 
method needs to calculate EANTLI before using it as model input, 
which inspired us to directly use EVI and DMSP NTL as the 
input to train a deep learning-based model without additional 
processing.  
 
This study will present a deep learning-based model based on the 
Self-Supervised Sparse-to-Dense networks (SSSD) (Ma et al., 
2019) to cross-sensor calibrate DMSP data and simulate a VIIRS-
like higher spatial and radiometric resolution NTL data to support 
extending the annual NTL time series. The vegetation index and 
DMSP data are directly input to the CNN based model. 
Compared to other simulation or enhancement methods, our 
model is easier to apply without additional image pre-processing. 
The rest of this paper is structured as follows.  The second section 
will introduce the details of the used dataset, experiment 
environment, and the methods of this study. Section 3 will 
present the experimental results, evaluation, and discussions. The 
last section will have a summarized conclusion of this paper. 
 

2. MATERIALS AND METHODS 

2.1 Materials 

This section is going to introduce all datasets used and related 
preprocessing, the methods of this study, and the evaluation 
metrics. 
 

 
Figure 1. A comparison example of DMSP and VIIRS NTL data 

within the same area. 
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2.1.1 NTL Datasets: Two NTL datasets were used: the 
annual global average visible stable lights DMSP NTL data and 
the annual average global VIIRS NTL dataset. Both datasets were 
retrieved from the Earth Observation Group (Elvidge et al., 2017; 
NOAA, 2021). These datasets have a two-year overlap the 2012 
and 2013. Since the VIIRS NTL annual average only composited 
data from April to December 2012. this study chose the 2013 as 
the training data to develop the model. The average masked 
annual global VIIRS NTL dataset version 2 was produced by 
several steps, including removing outliers, sunlit, moonlit, and 
cloudy pixels, rough composites, filtering lights, fires, aurora, 
and background (Elvidge et al., 2021). The geographical 
coordinate system of both datasets is WGS84 (EPSG 4326). The 
annual DMSP and VIIRS NTL product have an approximate 1 
km and 500 m spatial resolution at the equator, respectively, as 
shown in Figure 1. It is clearly to be noticed from Figure 1 that 
the DMSP NTL data has severe saturation and blooming 
problems as mentioned in the previous section. While the VIIRS 
NTL provided more urban structural details.  
 
2.1.2 MODIS Vegetation Indices Dataset: The MODIS 
Terra MOD13A1 V6 16-Day Global 500 m products were used 
to provide the EVI value on a per-pixel basis (Didan et al., 2015). 
This EVI layer minimizes the variety of canopy backgrounds, 
keeps the sensitivity over dense vegetation, and removes residual 
atmosphere contamination. The MOD13A1 products were 
produced from the atmospherically corrected surface reflectance 
data. To alleviate the sensitivity to the seasonal and interannual 
fluctuations, the annual average EVI datasets were produced 
from MOD13A1 using the Google Earth Engine (GEE) platform. 
The annual average EVI datasets were reprojected to EPSG 4326 
to correspond with the NTL datasets, and the no data values were 
assigned as nan.  
 
2.1.3 Preparing Training Samples: To future train the deep 
learning-based model, we preprocessed the two datasets into 
training samples. Firstly, the method of this study requires the 
input data to have the same spatial resolution as the target data, 
so we first resampled the DMSP NTL to 500 m. Since there is no 
improvement in the prediction accuracy of the input resampled 
imagery by different interpolated methods such as nearest 
neighbour and bilinear interpolation (Ma et al., 2019), in this 
paper, we first resample the DMSP NTL by an easily 
implemented method, cubic resampling to match the input 500 m 
spatial resolution. Secondly, we aligned and retiled the global 
coverage NTL datasets and EVI data into 256 by 256 pixels 
paired data samples. Lastly, we remove the outliers in the data 
samples by several strategies. VIIRS sensor detects the light 
radiance from 1 nW/cm2/sr, and by examining the histogram of 
radiance value, there are only few sites with radiances over 1000 
nW/cm2/sr across the world. Thus, to avoid the influence of 
skewed large values on the loss function, we assigned the pixel 
value as 1000 if the VIIRS NTL data value is greater than 1000. 
In addition, the ocean area usually has no radiance captured by 
the sensor, and the oceans account for a large proportion of the 
global area, which may cause the class imbalance problem during 
the training process. Therefore, we filtered out the data pairs 
which all the pixel values are 0 of the DMSP NTL or the VIIRS 
NTL. Similarly, all the pixel values are nan values of the EVI, we 
removed the data pairs. Finally, there are 8375 paired data 
samples created.  
 
2.2 Methods 

To simulate the VIIRS-liked DMSP NTL data, we formulate the 
problem as a deep regression learning problem. The network 

adopted in this study is SSSD, initially proposed for depth 
completion.  
 
The modified model architecture is shown in Figure 2. The 
resampled 500 m DMSP and the EVI are processed by the initial 
convolutional block (Conv). Then a total of four residual (Res.) 
blocks of ResNet-34 were used as the encoder, which are 
sequentially increasing the filter size and downsampling the 
feature spatial resolutions. The decoder has a reversed structure 
with four transposed (Transp.) convolutional blocks. Output from 
each encoding layer is passed to the corresponding decoding 
layers by skip connections. Finally, the predicted VIIRS-liked 
DMSP will be produced with the same spatial resolution as the 
network input. Except for the last Conv, each Conv is followed 
by batch normalization and ReLU. 
 
The pixel values of the input data, including the DMSP NTL, EVI 
and VIIRS NTL images, are scaled to 0-1 according to the 
possible minimum and maximum values. During prediction, to 
mitigate the blooming effect of DMSP NTL images, the nan 
values in the EVI images were used as a mask to mask out water 
bodies. 

 
Figure 2. The proposed deep regression network with DMSP and 

EVI as input. The dashed lines denote skip 
connections and circles denote concatenation of 
channels. F represents the number of channels. 

 
2.3 Accuracy Evaluation Metrics 

To conduct the quality evaluation of the simulated VIIRS-liked 
DMSP data, the Root Mean Square Error (RMSE) and the 
coefficient of determination R2 between the results and VIIRS 
NTL data will be used (Chen et al., 2021; Li et al., 2017). Given 
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the observed image (here denoted the VIIRS NTL imagery) and 
its corresponded predicted image (here denoted the VIIRS-liked 
DMSP imagery), the RMSE is defined as: 
 

RMSE = &!
"
∑ (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑# − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑#)$"
#%! ,    (1) 

 
where  𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑# = the radiance of the VIIRS NTL imagery  
 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑#  = the predicted radiance value of the 
VIIRS-liked NTL imagery 
 N = the sample size 
 
The R2 is defined as: 

𝑅$ = 1 − ∑ (()*+,-+.!/0,+.#12+.!)"#
!$%

∑ (()*+,-+.!/0,+.412+.&5555555555555555)"#
!$%

,            (2) 
 
where  𝑝𝑟𝑒𝑑𝚤𝑐𝑡𝑒𝑑4:::::::::::::: = the mean value of the predicted radiance 
of the VIIRS-liked NTL imagery 
 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1 Experiment Setting 

Among the 8375 pairs of data samples, 98% were randomly 
selected as the training set, while the rest 2% was used as the 
validation set. To train the proposed deep regression network for 
simulating NTL data, the learning rate was initialized at 0.0001 
and optimized by the ADAM optimizer. The learning rate was 
reduced by 10% if validation loss reached a plateau. The L2 loss 
was chosen to better reconstruct high-intensity areas. 
 
The experiments were implemented in PyTorch 1.6 with Python 
3.7 on a workstation with an Intel Core i9-9900K CPU 
@3.60GHz, 32GB RAM, and an NVIDIA RTX 2080Ti GPU, 
under Ubuntu 20.04.  
 
3.2 Experimental Result 

The deep regression network was trained using data pairs in 2013, 
and it was tested to reconstruct higher-resolution NTL images 
using DMSP NTL and EVI image pairs in 2012. Figure 3 
illustrates the comparison between the resampled DMSP NTL 
data, VIIRS NTL data, and the predicted VIIRS-like NTL data in 
2012 in four major metropolitan areas, including Cape Town, 
South Africa, the Greater Toronto Area (GTA), Canada, Los 
Angeles, USA and Shanghai (extended to the Yangtze River 
Delta area), China.  
 
Compared with the DMSP NTL which suffers saturation and 
blooming effects, the reconstructed VIIRS-like NTL images 
resemble the higher-resolution VIIRS NTL images with better 
representations of urban spatial structures in all tested areas. The 
reconstructed NTL images have better spatial details of the 
blooming areas in DMSP data. For instance, the DMSP dataset 
of the GTA has a significantly blooming problem, especially in 
the shoreline area of Lake Ontario. However, the reconstructed 
VIIRS-liked DMSP data eliminated most blooming areas and 
delivered the spatial variations which highly corresponded to the 
original VIIRS imagery. Similarly, the Yangtze River Delta area 
consists of many towns and cities of different levels. In the 
DMSP image, due to high light radiance, the whole region is 
connected without spatial details. But our predicted VIIRS-liked 
DMSP demonstrated the clearer different hierarchic urban 
structures in this area. In addition, some main road networks were 
successfully reconstructed. Thus, it demonstrates that the fusion 
of lower-resolution DMSP NTL with higher-resolution EVI 
images could significantly improve the interpretability of the 

DMSP NTL images in saturated regions, with the potential of 
reconstructing higher-resolution NTL images from historical 
records to extend the NTL time series.  

 
Figure 3. Visual comparison between predicted VIIRS-liked 

NTL images and DMSP and VIIRS NTL images in 
2012. 

 
Figure 4. Comparison of pixel values between predicted VIIRS-

liked NTL and VIIRS NTL images in four 
metropolitan areas. The solid line represents the 1:1 
line. 

 
Quantitative comparisons between the reconstructed VIIRS-like 
NTL images and the true VIIRS NTL images in the four sample 
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metropolitan areas are shown in Figure 4. In the scatter plots, 
each dot represents one corresponding pixel in the prediction and 
the ground truth, and the green line represents the 1:1 line. The 
overall RMSE is relatively low considering the total range of data, 
and the R2 values showed that the points generally follow the 1:1 
line. The GTA has the highest accuracy with R2 0.76, and Cape 
Town followed with R2 0.74. Shanghai and Los Angeles have the 
accuracy of R2 0.68 and 0.64, respectively. In particular, the 
RMSE of Cape Town, the GTA, and the Yangtze River Delta 
area (Shanghai) are very close from 3.96 to 4.84. In contrast, the 
RMSE of Los Angeles is relatively large at 9.55. There are many 
scatter points alone with the 0 value of VIIRS imagery 
significantly not predicted well in this case. Meanwhile, in Figure 
3 and Figure 4, the predicted values do not reconstruct the high 
radiance values well, with maximum radiances significantly 
smaller than the actual VIIRS NTL images. 
 
3.3 Discussions 

The predicted VIIRS-liked DMSP imagery evaluations showed 
that it is possible to directly use DMSP NTL data and EVI to 
simulate the VIIRS-liked NTL data. However, there are still have 
some places that need to be further investigated. Firstly, as 
Figure 5 shown, the blue rectangle area has a high radiance 
value, while the predicted NTL data was not shown the high 
radiance of light. By further examining this blue rectangle area, 
the underestimated area is where the California State Prison, Los 
Angeles County located. This facility may produce more light 
than other similar land cover facilities. Thus, the prediction failed 
to estimate. On the contrary, the red rectangle areas were 
overestimated light radiance. Most of these areas are in the sub-
rural and rural area of Los Angeles. The landscape of these areas 
is human settlements within the area covered by barren soil and 
desert, and less vegetation covered. Since this study only used 
EVI as the supplementary data to estimate VIIRS-liked DMSP 
NTL data, it may cause this type of error. The land cover and land 
used data may improve the under- and overestimated issues.  
 

 
Figure 5. A zoomed-in comparison between VIIRS NTL and 

VIIRS-liked DMSP NTL data. 
 
 

  
Figure 6. Distributions of two NTL datasets with value < 1 

removed. 
 
Secondly, skewed data distribution has been observed in both the 
DMSP and the VIIRS NTL datasets, due to most pixels do not 
have valid radiance values. Over 92% and 98% of pixels are 
observed in the DMSP and the VIIRS NTL datasets, respectively. 

Moreover, high radiance values are seldomly observed, so the 
intensity distributions are still significantly skewed even with 
low values removed, especially in the VIIRS NTL dataset as 
observed in Figure 6. The skewed distribution may significantly 
constrain the performance of the deep regression network. 
Further improvements to the network can be made in future work 
to better address this issue, including data normalization with log 
scaling, and masked losses. 
 
In addition, although using the higher-resolution EVI images 
could significantly improve the spatial details, such as road 
networks, of DMSP NTL data in the saturated regions, while it 
still cannot provide as clear as VIIRS NTL data in the urban area. 
Considering the light radiance is highly corresponding to the 
development of human settlement status, here we suggest that in 
the future it is worthy of trying using new supporting datasets 
such as MODIS land surface reflectance data or other optical 
daytime datasets to improve the spatial details of the VIIRS-liked 
DMSP NTL data.  
 
4. CONCLUSIONS 

This study proposed a deep regression model that simulated a 
higher spatial and radiometric resolution VIIRS-liked NTL data 
by inputting a lower resolution DMSP NTL and corresponded 
EVI data. The results demonstrated that the reconstructed VIIRS-
liked DMSP NTL data have similar spatial patterns as the original 
VIIRS NTL data. Further works can be conducted by integrated 
more supplementary datasets and a refined network. Meanwhile, 
it is worth adding more pre-and post-processing of the whole 
framework to produce more accurate VIIRS-liked DMSP NTL 
data. The extended time series VIIRS-liked NTL data could be 
used to monitor urbanization and the socioeconomic related 
applications.  
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