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ABSTRACT: 
 
Ground Penetrating Radar (GPR) allows a non-destructive analysis of the subsurface by using electromagnetic waves. GPR is used 
in application fields such as archeology and civil engineering, where the detection of buried objects is in demand. Such objects, e.g. 
pipes, lead to a disturbance of the propagation of the radar signal in the underground. A manual detection of disturbing objects can 
be both time-consuming and tedious, depending on the number of GPR images to be investigated. Hence, automatic methods should 
be considered. In this study, an object-oriented image analysis approach for the automatic detection and mapping of buried pipes is 
presented and evaluated. As dataset, measurements of the multi-channel system Stream C are considered. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Techniques, using Ground Penetrating Radar (GPR), allow non-
destructive investigations of the subsurface using electro-
magnetic waves. GPR is used in many different applications 
such as archeology (Burds et al., 2018), civil engineering (Baek 
et al., 2018), geophysical surveys and safety (Hu et al., 2018), 
pipe detection (Zhou et al., 2019; Yamaguchi et al., 2020), 
forensics and landmine detection (Daniels and Allan, 2009). In 
detail, GPR systems enable the detection of buried objects, 
which disturb the propagation of the radar signal in the 
underground. In essence, all dielectric discontinuities are 
detected by GPR. These discontinuities can be of natural origin 
like stones or of human origin such as ruins of historical 
buildings (Daniels, 2004; Jol, 2008; Goodman and Piro, 2013). 
In general, GPR images can be generated by a spatial 
arrangement of measurements of a single-channel system. 
Consequently, the investigation of the area of interest has to be 
conducted in a very accurate way. Moreover, in the case of 
large-scaled areas, this technique can be quite uneconomically. 
In contrast, multi-channel systems deliver two-dimensional 
image matrices with each measurement. Focusing on 
measurements consisting of a large number of GPR images, 
manual detection of disturbing objects can be both time-
consuming and tedious. Therefore, it seems obvious to consider 
automatic analysis methods. 
In this study, an approach for the fully automatic detection of 
disturbing objects in multi-channel GPR images is presented. 
Furthermore, as final processing result, the approach delivers 
visual information about the surveyed underground, given by 
3D maps containing locations of buried pipes. For the detection 
of buried pipes an approach, which bases on the recognition of 
hyperbolas in GPR images, is used (Dou et al., 2016). The long-
ranged aim of our approach is to develop an algorithm to 
support the operator in field by calculating a 3D pipe detection 
map. This algorithm needs to be suitable for commercial multi-
channel GPR systems, such as Stream C or Mala MIRA. 
The paper is organized as follows. In Section 2, the test site and 
the dataset are described. Section 3 contains the pre-processing 

of the GPR images. The methodology for the detection of 
buried pipes is given in Section 4. The evaluation of the 
resulting 3D map takes place in Section 5. The conclusions and 
an outlook are given in Section 6. 
 
 

2. DATA ACQUISITION 

In this Section, the Stream C sensor system is outlined. 
Moreover, the test site and the dataset available are described. 
 
2.1 Sensor 

The GPR data were recorded in 2020 with the multi-channel 
GPR system Stream C (IDS GeoRadar), which consists of 34 
antennas, 24 of them vertically polarized with a spacing of 
4.4 cm and ten horizontally polarized with a spacing of 10 cm. 
In this study, only the vertically polarized dipoles are used. This 
means that 23 uniformly spaced channels are available with one 
scan. Hence, the scan width of the system is 1.0 m. The central 
antenna frequency is 600 MHz, leading to a suitable depth 
range for underground utility network detection (Gabrys and 
Ortyl, 2020). Since Stream C is a multi-channel system, a 2D 
image can be acquired directly with each measurement. 
 
2.2 Location and Data 

The test site was built as part of the Detectino project 
(Detectino GmbH, Hildesheim, Germany) on the grounds of the 
University of Frankfurt, Germany (Figure 1, left). It enables the 
non-destructive detection of pipes and cables in the 
underground. More information about the Detectino project and 
detailed descriptions of the test area can be found in Naser and 
Junge (2010). As optical reference data, a digital orthophoto 
containing the test site is shown. This DOP20 was acquired in 
2019 and downloaded from the hessian state office for soil 
management and geoinformation (https://gds.hessen.de).  
The test site is divided into two major areas consisting of two 
troughs, each measuring approximately 13 x 50 m. Trough 1 
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Figure 1.  Test site with sections A to D and AA to DD, and zoom on investigated part of the test site (D), respectively (left). Surface 
and subsurface materials of the sections (right). 

 
has a depth of 1.5 m. Trough 2 is 3 m deep and further 
hydraulically isolated from the surrounding area, allowing 
analyses with different water saturations. The two areas are 
filled with seven different subsoil materials such as sand, gravel 
or construction rubble. In addition, three different surface 
materials are used (Figure 1, right). In summary, this test site 
provides a wide variation of geotechnical properties (Naser and 
Junge, 2010). Concerning the objects, in total 40 different pipes 
and cables are buried in the subsoil. The pipes are made of 
different materials such as PE (polyethylene), steel, vitrified 
clay and concrete. Moreover, the pipelines have different 
diameters and inclinations. 
In this paper, a part of the whole test area is investigated 
(Figure 1, left, zoomed part: section D). The soil of this area 
consists of sand and the surface material is interlocking plaster 
(see Figure 1, right). Additionally, some manhole covers are 
visible on the surface. The examined area has a size of about 
15 m x 13 m. This dataset contains 13 adjacent tracks that have 
been recorded with the GPR sensor (Figure 1, left, zoomed 
part). The data acquisition in the sensor moving direction was 
carried out at walking speed, corresponding to approximately 
4 km/h. Each depth measurement contains 512 samples. 
Depending on the ground conditions, an investigation depth of 
3.2 m can be achieved by assuming an average velocity of 
0.1 m/ns. For each lane with a length of approximately 15 m, 
there are about 340 images available, which corresponds to a 
frame rate of about 4 cm in the sensor moving direction. 

2.3 Reference Data 

As reference data, a site plan of the buried pipelines at the test 
site is available, which is not in scale (Figure 2, left). Based on 
this sketch, a 3D map containing the locations of eight 
prominent pipes was created (Figure 2, right). This was 
manually accomplished by visually analyzing the GPR data. 
The hyperbolas were matched with the existing pipelines in the 
sketch and were manually picked at the apex. Figure 2 shows 
for example a set of three short pipes consisting of PE (red) 
perpendicular to the many longitudinal pipelines. All of them 
are located side by side in a depth of about 0.7 m with diameters 
between 110 mm and 225 mm. Two longitudinal pipes colored 
in black and blue are also made of PE with comparable 
diameters to the red pipes. The blue colored pipe is located in a 
depth of 1.2 m, whereas the black colored pipe has a depth of 
0.7 m. One of the marked longitudinal pipes is made of steel 
(DN168) and is inclined (green). The depth of this pipe varies 
from 0.6 m to 2 m (Naser and Junge, 2010). The pipe colored in 
cyan is located on the edge of the test site and is also inclined, 
with depths varying from 0.3 m to 1.4 m. The pipeline colored 
in orange is the only one that runs diagonally at a depth of 
about 0.9 m. The 3D reference map including eight pipes 
(Figure 2, right) is used in Section 5 to evaluate the automatic 
detection results. 
 
 

 

Figure 2.  Site plan of buried pipelines in the investigated part of the test site (left). Reference 3D map containing eight different 
pipes (right). 
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3. PRE-PROCESSING OF GPR IMAGES 

As initial processing step, the GPR data has to be prepared both 
in a geometric and radiometric way. 
 
3.1 Geometric Processing 

In total, the data cube consists of 512 x 299 x 340 pixels, where 
the first two dimensions represent the depth and the stack of 
channels (13 tracks x 23 channels) and the third dimension 
stands for the measurements per track. A 2D surface image of 
that cube is shown in Figure 3. The geometric displacements of 
the individual tracks can easily be observed. Therefore, at first, 
the even measuring tracks are mirrored.  
In general, various sources of error, which impose linear and 
non-linear geometric distortions on the data, have to be 
corrected. These are, for example: 

 Varying speed of the sensor during recording;  
 Deviations from the exact recording position of the 

sensor, concerning the planned driving track of the 
sensor array; 

 Variations in sensor orientation.  
An elaborate correction of these geometric errors for the system 
Stream C was investigated by Gabrys and Ortyl (2020). Since, 
in our study, we could not make use of the recorded 
coordinates, a simple georeferencing method was used. The 

shifts between the individual tracks are manually identified and 
corrected. For this, corresponding points between neighbored 
tracks are identified and the geometric distance between them is 
corrected by applying a shift operation. The result is given in 
Figure 4. 
In the future, if GPS coordinates are available, it is also possible 
to utilize open-source software for multi-channel GPR 
processing, such as presented in Wunderlich (2021). Regarding 
our long-ranged aim of study, it is significant to apply an 
automatic registration of the GPR data. For this purpose, the 
MATLAB based GPR processing software (Wunderlich, 2021) 
seems very promising. 
 
3.2 Image Processing 

Geometric correction is followed by a time-zero correction of 
the data, which is accomplished by using the index of the 
maximum peak plus half the pulse width. Afterwards, a sigmoid 
function is applied, which dampens the ground bounce in order 
to emphasize the signals from the deeper soil layers. 
Additionally, the data is scaled to amplify the signals from the 
deeper soil layers (cubic, maximum amplification = 8).  
The different brightnesses of the individual channels in the data 
(Figure 5, left) were eliminated using dewow filtering (Jol, 
2008). Further, the ground bounce and the noise dominated 
deeper parts were cut off. In Figure 6, the result of the pre-
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Figure 5.  Before (left) and after (right) applying a 
dewow filter. 

 Figure 6.  Resulting GPR data after pre-processing: exemplary B-Scan. 
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Figure 3.  Geometric shifts between the different tracks.  Figure 4.  Result after applying shift operations. 
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processing is exemplarily shown for one B-Scan. The individual 
pipes at different depths are clearly visible by several 
hyperbolas. In Section 4, the automatic detection of such 
hyperbolas is addressed, whereby the resulting pre-processed 
GPR data are used as input data. 
 
 

4. METHODOLOGY 

We favor an object-oriented image analysis approach, in which 
there is a transition from the iconic level in both 2D and 3D 
space to more abstract objects. 
In GPR measurements, tube-like objects appear as hyperbolas. 
The first step is to automatically determine the maximum of the 
hyperbola in the GPR data. This maximum can then be used as 
a hypothesis for the location of a pipe. The set of 3D hypotheses 
forms clusters of points, that are approximated to form lines, 
which in turn are considered as pipe hypotheses. For evaluation, 
the line approximations are represented as cylinders in 3D 
space. 
 
4.1 Hyperbola Approach 

The approach bases on a 2D recognition of hyperbolas. 
Building on this, a 3D approach, which attempts to discern the 
linear structure of the buried pipes by clustering clues in 3D 
space, is applied. The proposed method is presented in Dou et 
al. (2016) and was implemented fragmentary. 
The GPR data is arranged in a 3D data cube, which is processed 
in two directions, as visualized in Figure 7. The reason is that 
pipes that run parallel to the direction of data acquisition at the 
same depth are interpreted as background in the GPR data. 
Procedures that react to a change (e.g. background removal) fail 
in this case. If the pipe runs orthogonally to the recording 
direction, a signal is generated over the entire width of the 
measuring aperture, as is caused by soil stratification. If the data 
is processed in both directions, a hyperbola-like signal of a pipe 
will appear in the GPR data in at least one processing direction. 
Depending on the processing direction, a B-Scan is defined 

further on by the number of samples of an A-Scan and the 
measurements along a sensor track (see Figure 7, processing 
direction 1), or in the other processing direction by the number 
of samples of an A-Scan and the number of channels 
(processing direction 2). An example of B-Scans in different 
processing directions is shown in Figure 8. The image on the 
left represents the 40th plane in driving direction. This B-Scan 
shows signatures of two pipes orthogonal to the driving 
direction. The image in the middle shows the plane 143, the 
right image the result of plane 207 perpendicular to the driving 
direction. Those corresponding B-Scans of the other processing 
direction clearly show the corresponding hyperbola signatures. 
Each B-Scan in the data cube is analyzed to detect hyperbolas 
as hypotheses of pipes. The necessary threshold is determined 
by an adaptive operation in the image part below the ground 
bounce (Bradley and Roth, 2007). In doing so, large-scale 
fluctuations in the gray values of the background are taken into 
account. A result of the binarized image of Figure 6 is shown in 
Figure 9, where different hyperbolas can be identified. To 
discriminate these hyperbolas from other objects in the image, a 
filter operation is used. First, a connected component algorithm 
is applied to generate region objects (Shapiro, 1996) and to 
fulfil the transition from the iconic to the symbolic level. 
Afterwards, a set of features is calculated for each region. To 
reduce the number of candidates, we apply a filter aiming at the 
number of region pixels. Noise and regions generated by soil 
layers are eliminated. As a result, we get regions of interest for 
the position of hyperbolas in the GPR data produced by a pipe. 
The filter operator is a simple brute forward approach. In the 
future, it is planned to improve this filter by considering a 
Support Vector Machine (SVM) approach. 
The remaining region objects are skeletonized (Zhang and 
Suen, 1984). As mentioned, pipes located parallel to the driving 
direction cause hyperbolas in the GPR data. Finally, the 
coordinates of the maximum of the detected hyperbolas can be 
used as a hypothesis for the position of the pipe. The minimum 
value in y-direction of a skeleton line, representing a hyperbola, 
and the matching x-value build the hypothesis. Migration 
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Figure 7.  Processing directions of the data 
cube. 

 Figure 8.  Results of pre-processing. The image on the left shows the 40th plane in 
driving direction. The image in the middle shows the plane 143, the right 
image the result of plane 207 perpendicular to driving direction. 

 

Figure 9.  Result of a B-Scan with adaptive 
threshold. 

  Figure 10.  Two results of consecutive B-Scans. Regions with bounding box (red), 
skeleton line (cyan) and estimated maximum of hyperbola (yellow).  
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effects are not taken into account. A result of two consecutive 
B-Scans is given in Figure 10. 
This approach suffers from false suggestions in the case of 
overlapping hyperbolas. Concerning overlapping hyperbolas, an 
improvement was investigated that is visualized on synthetic 
hyperbolas (Figure 11). First, so-called branch points and 
endpoints are searched for in the skeletonized data (blue line) of 
a region object using a morphological operator. In Figure 11, 
right, the branch points are colored cyan and the endpoints 
yellow. The skeleton line is split at the branch points and the 
remaining partial lines (green) are traced from the endpoints. 
The entire skeleton line is thus split into several non-
overlapping parts. For these, the maxima are now sought as 
mentioned before. These maxima are highlighted in red in the 
examples (Figure 11, right). 
 
4.2 Generation of 3D Hypothesis 

The results of processing each B-Scan as shown in Figure 10 
deliver hints to 2D pipe location coordinates. The third 
dimension is defined by the channel number, respectively the 
measurement position. The accumulation of all these point 
coordinates results in a 3D data cube. 
To produce a more homogeneous result, a morphological filter 
called majority is utilized in a next step. Majority is defined as 
follows: Set a pixel to 1 if five or more pixels in its 3 x 3 
neighborhood are 1. Otherwise, set the pixel to 0. 
The results of the morphological filtering of the data of both 
processing directions are considered as input for a fusion 
process basing on a logical OR function. The fusion leads to a 
3D data cube containing hypotheses for the position of pipes 
(Figure 12, coloring indicates measurement position). 
 

4.3 Line Approximation 

In further processing steps, this 3D data cube is interpreted as a 
point cloud. We apply a segmentation of the point cloud into 
clusters, with a minimum euclidean distance of a defined 
minimum distance between points from different clusters. 
Furthermore, a suitable minimum of cluster instances has been 
found by test runs. A result is shown in Figure 13. Each cluster 
is marked by a unique color. 
Subsequently, each cluster is approximated by a line. These 
lines are determined by multiple linear regression (Figure 14, 
red colored lines). The generated line objects are a base for 
further analyses, for example to aggregate pipe networks. 
 
4.4 Visualization of Pipes 

In the final step, for a more realistic visualization, the generated 
lines are transformed into a cylinder representation similar to 
real pipe geometry. The extracted line represents the center line 
of the visualized cylinder in the 3D space. Here, the radius of 
the cylinders is equally chosen for all detected pipes (Figure 
15), since no further information on the diameter of the pipes is 
available. 
 
 

5. EVALUATION 

The resulting 3D map of the detected pipes (Figure 15) is 
evaluated with the manually created reference map (Figure 2, 
right). For a better comparability, the cylinder representation is 
also applied to the reference map (Figure 16). The result of the 
evaluation is shown in Figure 17. Detected pipes that could be 
matched to pipes in the reference map are marked in the same 
color as the reference (red, green, black, blue and cyan). The 
two other colors yellow and magenta highlight pipes, which are 

 

 

 
Figure 12.  3D data cube as result of the fusion of both 

processing directions.  
 Figure 13.  3D point cloud with point cloud clusters. 

 

Figure 11.  Binarized image (left), skeletonized hyperbolas (middle) and splitting overlapping hyperbolas (right). 
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very prominent in the detection results, but cannot be found in 
the reference 3D model. In total, seven of the eight pipes in the 
reference map can be associated with pipes in the detection 
result. These include a set of three short pipes consisting of PE 
(red) perpendicular to the many longitudinal pipelines. In 
addition, the longitudinal steel pipe colored in green, which is 
inclined, can be clearly identified. Another longitudinal and 
inclined pipe at the end of the measurement cube (cyan) is also 
unmistakably identified. Furthermore, the two longitudinal 
pipes colored in black and blue can be matched with the 
reference data. However, in the case of the blue pipe, two 
detected pipes are in question (both colored blue in Figure 17). 
The only pipe from the reference map that cannot be assigned is 
the diagonal pipe colored in orange. One possible reason might 
be the diagonal orientation, which makes it more difficult for 
the detection algorithm. 
Considering the depth and the material of the pipes, no 
dependency of the detection results can be recognized on the 
basis of the examples showed. However, it is clear that deeper 
located pipes show weaker signals and are therefore more 
difficult to detect. To further investigate the influences of 
material and depth of the pipes, additional reference data have 
to be created. Regarding the different diameters of the pipes, it 
can be seen that pipes with small diameters are not detected. An 
example is the additional fourth pipe of the set of three pipes, 
marked in red (Figure 2, left), which is the thinnest of the whole 
group with a diameter of 63 mm. This pipe shows only a very 
weak signal in the data, which made it impossible to pick it for 
the reference map. 
The detection result given in Figure 17 shows many additional 
pipelines, which are not included in the 3D reference map. Four 

of these pipes, which are all running longitudinal, are 
highlighted with colors. The two pipes colored in yellow are 
located at the end of the measurement cube, whereas the two 
pipes colored in magenta are located at the beginning of the 
cube. Possibly, these are the pipes in the yellow marked area in 
the site plan (Figure 2, left). The detection results indicate even 
many more pipes than are noted in the site plan. Visual 
inspection of the processed GPR data supports this observation. 
In summary, it can be stated that the reference pipes are 
detected in a robust way. The results look quite promising as a 
basis for ongoing research and optimizations. 
 
 

6. CONCLUSION AND OUTLOOK 

In this paper, an approach for the automatic 3D mapping of 
buried pipes in GPR data is presented. It bases on a hyperbola 
detection method and is applied to multi-channel GPR data 
acquired with the commercial system Stream C. As a result, a 
3D map showing the visualization of the detected pipes is 
automatically created. This map is evaluated with reference 
data.  
Seven out of eight pipes in the reference map are identified with 
the hyperbola detection method. These detected pipes are 
orientated parallel and perpendicular to the sensor moving 
direction. The automatically generated detection result shows 
many additional pipes, which are not included in the reference. 
However, this is consistent with the visual impression when 
looking at the processed GPR data. 
The results are promising and motivate further investigations. 
Concerning an object-oriented image analysis approach, we 

 

 

 
Figure 14.  Approximation of point cloud clusters by lines.  Figure 15.  Visualization of detected pipes. 

 

 

 

 
Figure 16.  Visualization of reference pipes.  Figure 17.  Detected pipes with marked reference color. 
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plan to optimize the detection of the pipes. The treatment of 
non-linear pipe structures (e.g. curves, branches) will also be 
considered. In addition, the possibility of aggregating pipe 
networks will be examined. Moreover, we will address the 
following topics: improvement of geometric processing, 
influence of migration and SVM for filtering hyperbola 
candidates. 
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