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ABSTRACT: 
 
Modern Earth Observation optical satellite systems, such as Airbus’s Pleiades Neo (PNeo) push the boundaries of high spatial 
resolution by providing commercial imagery products with up to 30cm ground sampling distance (GSD). To further enhance the quality 
of the images, the in-space imaging system is usually complemented by on-ground image restoration processing, such as deconvolution 
and denoising (Latry et al., 2012). Recent advances leverage Convolutional Neural Networks (CNNs) to improve the image restoration 
quality (K. Zhang et al., 2021a). 
Single Image Super-Resolution (SISR), or Zoom, the process of obtaining a higher resolution (HR) image from a lower resolved (LR) 
source, has recently gained traction for both medium resolution sensors such as Sentinel 2 (Lanaras et al., 2018) and high resolution 
such as Pléiades and GeoEye-1 (Zhu et al., 2020). This process further enhances the resolution of the image to improve downstream 
applications such as mapping (L. Zhang et al., 2021) and small objects recognition (Shermeyer and Van Etten, 2019). While SISR for 
remote sensing has been successfully tackled using CNNs (Rohith and Kumar, 2021) the main challenge for reaching acceptable image 
quality performance lies in the generation of realistic LR/HR training pairs (K. Zhang et al., 2021b).  
In this paper, we propose: 

● a dedicated simulation chain leveraging extremely-high-resolution (EHR) aerial imagery to generate realistic 30cm Pléiades 
Neo images and their corresponding fully restored HR equivalent at 15cm GSD 

● A residual-based CNN architecture which we train to jointly restore and zoom the images 
All contributions are assessed on real PNEO images. We deployed the trained models in a production context, to enhance the full 
Pléiades Neo products – with a swath of 47k pixels – in an efficient and scalable manner.  
 

1. INTRODUCTION / CONTEXT 

Satellite imagery is nowadays widely used and often a resource 
for analytics such as land use analysis, precision agriculture, 
natural disaster management, and other defence specific 
applications. These applications usually imply accurately 
detecting objects or characterizing specific land crops: spatial 
resolution is thus a key factor when deciding on which images to 
base the analytics on. 
Therefore, being able to access better ground sample distance 
(GSD) for these analytics is critical. Hence, satellite imagery 
providers are competing to provide the best GSD. Unfortunately, 
enhancing resolution via imaging hardware improvement is 
expensive and technically challenging. The evolution of recent 
deep learning techniques toward even better performing 
algorithms is appealing and software-based image super-
resolution (SR) techniques are now attractive in practice (Yang 
et al., 2019). 
In recent years, the deep learning based super resolution domain 
has expanded and well performing super resolution models are 
now publicly available. But with those developments, their limits 
are now also more known. Some of the early models have shown 
limitations to specific deformations when embedded into mobile 
platforms. Moreover, generative model-based methods are to be 
closely monitored to prevent the inclusion of unwanted artifacts. 
In particular, contrary to mobile platforms, satellite platforms 
provide images with assumptions on their pixel content, and a 
naive super resolution approach would break these assumptions. 

 
* Corresponding author 

Target customers are really sensitive to these assumptions and a 
super resolution algorithm applied on satellite images should be 
designed adequately. In fact, super resolution models trained on 
natural images such as DIV2K tend not to generalize well on 
satellite images and require specific retraining on satellite 
images. There are a few attempts to train super resolution 
networks using satellite imagery (Rohith and Kumar, 2021). 
However, as stated in (Zhu et al., 2020), SISR approaches often 
uses a naive degradation model not representative of the true 
nature of remote sensing imagery. First, the noise model is of 
high importance and should be designed with care to represent 
real noise: the noise distribution of images acquired by satellite 
sensors vastly differs from white gaussian noise. Secondly, the 
Point Spread Function (PSF) in the satellite imaging system 
needs to be considered. Classical interpolation kernels are far 
from a good approximation of the real PSFs. Moreover, PSFs of 
most pushbroom sensors on satellites are spatially variant. 
Finally, variable motion blur caused by satellite movement or 
sensor scanning must be considered. 
 
In this paper, we propose: 
● an architecture on how to deploy a super resolution 

algorithm in an existing satellite processing chain, 
● a realistic training data generation model leveraging 

extremely-high-resolution (EHR) aerial imagery to generate 
realistic 30cm Pléiades Neo images and their corresponding 
fully restored HR equivalent at 15cm GSD using proprietary 
measured parameters, 
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● a satellite-specific data augmentation, 
● a Convolutional Neural Network (CNN)-based super-

resolution model which can handle variant PSFs and 
different degrees of aliasing. 

 
2. RELATED WORK 

Image transformation tasks where a system receives some input 
image and transforms it into an output image are common in the 
deep learning landscape. Examples from image processing 
include denoising, super-resolution, and colorization, where the 
input is a degraded image (noisy, low-resolution, or grayscale) 
and the output is a high-quality image. The naive approach for 
solving image transformation tasks is to consider the problem as 
a supervised regression problem where a convolutional neural 
network is trained using a per-pixel loss function like L1 or L2 
(Charbonnier et al., 1997). Such approaches have many 
advantages including their simplicity, their efficiency at test-time 
since they only require a forward pass through the trained 
network.  
Recent developments have shown that per-pixel losses used by 
these methods do not capture perceptual differences between 
output and ground-truth images and loss functions should be 
adjusted to integrate overall image structure prior. In fact, 
classical loss functions do not represent the human perceived 
distance between images (Johnson et al., 2016). Perceptual loss 
functions have begun to appear: they are based not on differences 
between pixel values but instead on differences between high-
level image feature representations extracted from pretrained 
convolutional neural networks (Johnson et al., 2016). In practice, 
they have played a major role in recent advances in super-
resolution. At the beginning, image feature representations were 
extracted from pretrained networks on ImageNet and there is now 
an effort to design and train specific networks to be used as 
perceptual losses such as LPIPS (R. Zhang et al., 2018) or DISTS 
(Ding et al., 2020). 
Regarding neural network architectures, residual-based 
architectures without pooling operations, pioneered by SRResnet 
(Ledig et al., 2017), and since then improved with more recent 
papers introducing complex blocks) are used in conjunction with 
UNets (K. Zhang et al., 2021a). More recently, Visual 
Transformers architectures have been introduced to the SISR 
problem (Liang et al., 2021). An important point to note is the 
positioning of the upsampling operation which differs between 
well-established architectures: the upsampling (usually a bilinear 
upsampling) step can occur before the network in pixel space, as 
in Zhu et al. (2020), whereas Ledig et al. (2017) uses subpixel 
upsampling after the residual network.  
The data used for training are of extreme importance: first super 
resolution results worked on synthetic images but did not 
generalize. Nowadays, several datasets are publicly available 
such as DIV2K (Agustsson and Timofte, 2017) helping the super 
resolution community benchmark new solutions. Another key 
element to consider is the degradation model i.e., how to obtain 
both the Low Resolution (LR) and High-Resolution (HR) tuple. 
While the naïve approach consisted in downsampling and adding 
white gaussian noise, recently more realistic degradation models 
were formulated ((K. Zhang et al., 2021b) and (Wang et al., 
2021)) to be able to train SISR model on purely synthetic LR/HR 
pairs. Unfortunately, such degradation models do not apply to 
satellite images : For example, in order to assess pretrained SISR 
models on remote sensing imagery, White et al. (2021) designed 
a specific degradation models matching their systems’ sensors. 
In order to train SISR models for satellite imagery, a realistic 
simulation chain as well as aerial source images are needed to 
produce correct LR/HR training pairs : drawing from Zhu et al. 
(2020) and from our own experience, the design of the simulation 

chain is paramount and access to the sensor numerical model is 
essential to be able to train SISR models from synthetic data. 
Furthermore, the final objective is to produce good quality 
enhanced products of PNEO imagery. Simulation data is used to 
train the network, but final performance will be evaluated on 
PNeo imagery. This is a special case of domain adaptation where 
simulated data is to train and ground truth data (HR) cannot be 
accessed in the target domain. Currently, our work focuses on 
finding the best simulation parameters, but different semi-
supervised techniques could also be used (such as Cycada 
(Hoffman et al., 2018)) to leverage simulation data and real data 
during training. 
It should be noted that we are in the case where LR/HR pairs are 
available also known as aligned super resolution in contrast to the 
case where only 2 datasets are available: one LR and one HR with 
non-corresponding images in the two sets. Generative techniques 
are then well indicated for this problem as they do not require to 
have a tuple of LR and HR images (Lugmayr et al., 2019). 
Furthermore, for classical photography, state-of-the-art 
approaches include a loss term based on a discriminator network 
(Wang et al., 2021) along with L1 and perceptual losses. 
Unfortunately, these techniques do not provide the same level of 
control and are less-suited to remote sensing where the objective 
is enhance the information already in the image in terms of 
sharpness and signal-to-noise, rather than recreating “realistic” 
high-frequency information. 
 

3. METHOD 

3.1 Data 

As stated before, a special care has been dedicated to the 
simulation chain to carefully design every numerical parameter 
to fit real images. We use Airbus owned Extremely High 
Resolution (EHR, 3 to 7.5cm GSD) aerial imagery in order to 
generate realistic LR/HR pairs of patches. The high scale factor 
between the aerial GSD and target GSDs limits the impact of the 
source sensor parameters in the simulation process, even when 
generating HR targets.  
 
Using the knowledge of the sensor’s characteristics (Point Spread 
Function (PSF), noise, radiometry factors) we generate 
(𝑋!" , 𝑌#") training pair from 𝑌$#" aerial image with the 
following simulation model (eq. 1) 
 
𝑋!" = 𝑑𝑠(𝐻!" ∗ 𝑅%&$'(𝑌$#")	, 𝐺𝑆𝐷!"),		 	 (1)	
𝑌#" = 𝑑𝑠(𝐻#" ∗ 𝑅%&$'(𝑌$#"), 𝐺𝑆𝐷#"),	 	 	
𝑋!" =	ñ!"(𝑋!") = 𝑋!" +𝑁40,6𝑎 + 𝑏 ∗ 𝑋!"9,	 	 	

	 
Where 
• 𝐺𝑆𝐷!" et 𝐺𝑆𝐷#" are respectively input and target ground 

sampling distance, 
• 𝑑𝑠(𝑥, 𝑔𝑠𝑑) is an operator which downsamples 𝑥  to a given 

𝑔𝑠𝑑, 
• 𝐻!" is the PNeo PSF kernel, 
• 𝐻#" is a sharp anti-aliasing PSF kernel, 
• ñ!"	is a noise distribution approximating shot noise and 

depending on the pixel intensity, 
• 𝑅%&$' is a set of radiometric transformations mapping the 

source sensor dynamic to the PNeo sensor dynamic range. 
 
The different Ground Sampling Distances (𝐺𝑆𝐷!" and 𝐺𝑆𝐷#") 
are chosen to be 30cm and 15cm in coherence with the objective 
to perform a x2 upsampling on PNEO images. The Point Spread 
Functions were chosen according to satellite sensor experts and 
were based on real acquisition measurements. 𝐻!" is chosen to 
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represent real PNEO images, hence is based on real 
measurements. 𝐻#" is chosen to generate a sharp target image 
but with limited aliasing and is sharper than 𝐻!". Thus, our 
problem formulation consists in a joint denoising, zoom and 
deconvolution process (Figure 2).  
 
We show in Figure 1 examples of co-registered simulation and 
Pléiades Neo samples, illustrating that our simulation model 
closely matches the real images. 
 

 
Figure 1 Image data examples. Left: Réal Pléiades Neo L1A, upsampled. 
Center: Simulated Pléiades Neo L1A, upsampled. Right: HR simulated 
target for super resolution 

 

 
Figure 2 Left: Simulated LR image w/ noise, upsampled. Centre: 
Simulated HR image with the same PSF as the LR image, w/o noise. 
Right: Simulated HR target.  

Note that the entire degradation model is far more complex than 
a bilinear downsampling and the addition of a gaussian 
distributed noise as classically done in super resolution on natural 
images. For instance, the noise function is a shot noise model 
where noise variation depends on the image content (Figure 3) 
but also depends on compression. This noise is added on-the-fly 
as data augmentation/domain randomization. During data 
augmentation, we also add specular reflection artifacts to 
increase variability and insert additional artifacts in the 
simulation process.  
 
Aerial images were split to produce 2000x2000 LR images. A 
different blur level is selected in a predefined range to emulate 
uncertainty on the blur level of real images. In total, we were able 
to generate about 10k tuples of HR/LR patches of size 128 x 128 
in LR resolution. In the future we plan to generate various 
Ground Sampling Distances and varying radiometric factors for 
each aerial image to increase our model’s robustness to these 
kinds of uncertainties happening under certain acquisition 
conditions (e.g., off-nadir angle, illumination…). 
 

 
Figure 3 Noise distribution used data augmentation. First row is our data 
augmentation where the noise variance depends on the pixel LSB value. 
Second row is a white classical gaussian noise distribution. The problem 
is far more complex with our distribution and according to sensor models 
closer to reality 

3.2 Problem Formulation 

We choose to perform upsampling in pixel-space, as soon as 
possible in the processing chain and combine image restoration 
and zoom – effectively blind deconvolution since the network 
does not learn the upsampling operation – into a single CNN that 
replaces the nominal PNeo denoising and deconvolution (see 
(Latry et al., 2012) for a description of satellite image restoration 
applied to another sensor). We perform these operations in place 
of the nominal image restoration, in restored sensor geometry, 
before the orthorectification step (Figure 4). We also use the full 
sensor dynamic range (12bits). Such a choice leads to a simpler 
simulation model as we did not have to model the resampling 
operation, nor the image restoration process that we replace. The 
choice of architecture is based on several experiments and 
especially, performing the upsampling soon in the pipeline has 
shown promising results. Note that this implies that the denoising 
operation is done after having upsampled the noise distribution 
to the target GSD. 

 
Figure 4 Left: Standard Image Processing Chain. Right: Proposed 
processing chain integration the joint image restoration and super-

resolution network 

Classically, a fully supervised learning approach is adopted 
where a network is trained to minimize a distance between the 
inferences from LR images and their ground truth HR. The 
network used is a residual-based CNN akin to SRResNet (Ledig 
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et al., 2017) with bilinear upsampling as a pre-processing step 
instead of late-stage pixel shuffle. We use a similar architecture 
than Zhu et al. (2020), with minor modifications such as 7x7 conv 
at the beginning and Channel Attention Block (Y. Zhang et al., 
2018) in residual blocks. We use “replicate padding” instead of 
the classical “zero padding” in all convolutions to limit the border 
effect. See Figure 5 for the full network architecture.  
As the network will be run in production on thousands of images, 
(a Pleiades Neo swath is around 47k pixels), the number of 
operations and weights were important to consider during the 
architecture choice, and that is why it was currently preferred 
over a classical and heavier Unet neural network. In practice, the 
inference takes place as denoted in (eq. 2): 
 
𝑌#"	< =	𝑓((ℎ(𝑋!")	      (2) 

 
Where:  
• 𝑌#"	<  is the final high resolution image, 
• 𝑋!" is the low resolution input image, 
• 𝜃 is the network parameters and 𝑓( is the final model, 
• ℎ is an upsampling operator which in our case is chosen to 

be a bilinear upsampling. 
 

 
Figure 5 Our Neural Network Architecture.  

After having defined the data and the model, we defined the loss 
to use in the optimization. The L1 loss function is often 
prescribed for super resolution problems but recent work shows 
that perceptual losses (Johnson et al., 2016) are quite effective for 
super resolution and strongly improve the visual aspect of 
inference images. For our trainings, we used the DISTS loss 
function (Ding et al., 2020), which combines the advantages of 
both the perceptual loss functions and the structural similarity 
index, as our perceptual loss component.  
Our loss function is formulated as (eq. 3)  
 
𝐿4𝑦), 𝑦*9 = 	𝛼	𝑆𝑚𝑜𝑜𝑡ℎ𝐿+4𝑦), 𝑦*9 + 𝛽	𝐷𝐼𝑆𝑇𝑆(𝑦), 𝑦*) (3) 
 
where  
• 𝛼 and 𝛽 are scalars tuned to the desired contribution for each 

loss term.  
• 𝑆𝑚𝑜𝑜𝑡ℎ𝐿+is the smooth L1 loss function which is a 

combination of both the L1 loss for large deltas and the L2 
loss for small deltas. The beta parameter of smooth L1 is set 
to 5 LSB.  

  

We empirically set 𝛼 = 0.5	 ∗ 1	/	𝑀𝑒𝑎𝑛(𝐿1	)+,	.)/01).234 and 𝛾 
identically so the contribution for both components is roughly 
equal after a few iterations.  
For the sake of comparison, we also evaluated a loss based on the 
SSIM index which tries to improve image distances and close the 
gap between visual perception and mathematical image distance 
without using a pretrained network. 
 

4. EXPERIMENTS 

We used a dataset composed of simulation data based on the 
simulation process described in the paragraph above. The images 
used for the simulation are images of cities for most part but also 
some other landscapes (seas, etc.). We generated 7.6k training 
patches (before the data augmentation process) and 2.4k 
validation patches of size 128x128.  
We evaluated different training strategies: different parameters 
for the SRResnet architecture and the different loss functions 
described above (one parameter at each time). We trained the 
different SRResnets using the previously mentioned losses with 
a Lamb optimizer with a batch size of 16, an initial learning rate 
of 5. 1056 and a schedule strategy applying a 0.5 scale factor to 
the learning rate when the loss stagnates for more than 10 epochs. 
We ran the training for 200 epochs and kept the best validation 
checkpoint for each training. All trainings were run on an 
instance running on Google Cloud Platform with a single Nvidia-
V100 GPU. 
We kept two evaluation datasets aside from the training 
procedure:  

• a dataset consisting of simulation data from other aerial 
images with simulation parameters similar but 
different from the ones used in training, 

• a dataset consisting of hand selected PNeo images 
targeted for super resolution models evaluation. 

On the evaluation dataset, where groundtruth is available, we 
compared the prediction and the ground truth using the multi-
scale SSIM index, the PSNR, and the LPIPS index. The LPIPS 
index integrates a perceptual component and is used by the super-
resolution community in complement to standard image 
processing metrics. For the dataset without groundtruth (real 
imagery) we used no-reference indices such as Total Variation 
and BRISQUE, since we do not have the ground truth available.  
In practice, especially for super resolution, numerical metrics 
show strong weaknesses when compared to visual inspection 
e.g., a model can be visually pleasing while having poor metric 
values or the inverse when some artifacts are not reflected in the 
metric. As such, a strong emphasis is put on visual inspection to 
evaluate models and the last model selection step consists of 
validation by trained satellite image datasets. The evaluation is 
done by experts on the held out PNeo dataset where dedicated 
locations have been selected to compare super resolution models 
such as airports and ground patterns to evaluate sharpness and 
denoising properties of a given network. 
 

5. RESULTS 

5.1 Results 

We report the results obtained by our method on simulated 
imagery (Figure 6). Images show very good results on both 
denoising and zoom operation, with fine details being restored 
without major artifacts. We also notice that some very fine details 
(which could only be seen at the native HR GSD) are not restored 
as they don’t exist in the input image and thus are not 
“hallucinated” by the model.  
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We obtain similar results when applying our model to real images 
(Figure 7). This highlights the generalization power of a model 
trained on synthetic imagery. We find that the model outputs 
appear very stable under different acquisition conditions and 
landscapes, even those which were not present in the training 
dataset.  
 

 
Figure 6 Results on simulated imagery. Left: Simulated LR image 

(30cm). Centre: Simulated HR image (15cm). Right: 
Output from model (15cm) 

 

 
Figure 7 Results on PNeo imagery Left: Pleiades Neo L1B with nominal 
image restoration, after bicubic upsampling Right: Output from model 
prediction taking L1A (unrestored image) as input 

We also report with-reference metrics on the simulated dataset 
(Table 1) as well as no-reference metrics on Pleiades Neo 
imagery (Table 2). For the full reference dataset, we compare our 
approach with a baseline of bicubic upsampling with a 
sharpening kernel. For the no-reference dataset, we compare our 

approach to the nominal image restoration (denoising and 
deconvolution) of the Pleiades Neo images after a bicubic 
upsampling. Both metrics show a significant improvement over 
baselines. 
 

 PSNR ­ SSIM ­ LPIPS¯ 
Bicubic upsampling + sharpening 36.48 dB 0.894 0.034 

CNN (ours) 42.65 dB 0.967 0.019 
Table 1 Image quality metrics comparing a bicubic upsampling followed 
by sharpening filter and our approach on the hold-out simulated dataset 
(64 x 64 patches) 

 BRISQUE ¯ TV ­ 
Nominal restoration + bicubic up. 82.65 0.92 

CNN (ours) 58.08 2.43 
Table 2 No-Reference image quality metrics on real Pléiades Neo images 
(64 x 64 patches) comparing the upsampled base restoration process and 
our CNN based approach. For BRISQUE, lower is better. 

5.2 Ablation Studies 

We ran ablation studies on the model architecture, lowering 
either the number of residual blocks (depth), the number of filters 
per block (width), and removing the squeeze-and-excite layer. 
We found that, while our baseline architecture remains the best 
according to the image quality metrics the differences remain 
small and computational complexity trade-offs may favour 
lighter models  (Table 3). The perceived image quality remains, 
however, better for the more complex model, underlining the 
differences between the computational metrics and visual 
perception (Figure 8). 
 
We also ran ablation studies on loss functions, using only L1 
Loss, L1 and Multiscale SSIM and L1 and DISTS. We found that 
the results became blurrier and with more artifacts without the 
structural component and the perceptual loss (Figure 9). 
 

Model # params throughput PSNR ­ SSIM­ 
B=10, F=64, SE 788k 4.76s/Mpix 42.65 0.967 
B=10, F=54, noSE 783k 3.95s/Mpix 41.90 0.962 
B=5, F=64, SE 416k 2.25s/Mpix 42.36 0.965 
B=10, F=32, SE 199k 2.26s/Mpix 42.23 0.966 

Table 3 Ablation study on model architecture on the simulated imagery. 
We report throughput on a 1024x1024 tile split into 64x64 patches with 
16 pixels of marging for the split-and-merge operation. 

 
Figure 8 Architecture ablation results. Left: Shallower network. Centre: 
Narrower network Right: Main Network. Note the lines being better 
restored on the baseline model with less ringing effect and noise. 

 
Figure 9 Loss function ablation results on real images. Left L1 Loss 
Centre: L1 + MS-SSIM Right: L1+DISTS. L1+DISTS appear sharper 
and with less artifacts and ringing effects. 
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5.3 Application to multispectral bands 

While this article mainly focuses on the application of our 
approach to the Panchromatic band of Pleiades Neo, we adapted 
our method for the super-resolution of the PNeo multispectral 
channels, notably the blue, green, red, and near-infrared 
channels. The objective of such an approach is to be able to 
produce a better pansharpening by super resolving the MS 
channels before the fusion process, as MS channels at acquired 
at ¼ of the GSD of the panchromatic channels by the PNEo 
imaging system. We kept the same zoom factor (2) and applied a 
similar method with our dataset simulated at a GSD of 60/120cm, 
while keeping the 4 multispectral bands. We obtained similar 
results to the panchromatic approach with a similar network 
(Figure 10). This approach leads to the spectral components 
matching the panchromatic band more closely, thus making the 
colours appear sharper and without “smearing” effects.  
 

 
Figure 10 Results of our proposed approach on Pléiades Neo 

acquisition (multispectral bands at 120cm GSD). RGB and False Color 
Infrared are displayed. Left: L1B restored sensor with bicubic 

upsampling Right: proposed approach 

5.4 Industrial Deployment 

An end-to-end image processing chain capable of enhancing 
Pleiades Neo full strips at scale has been deployed in a public 
cloud environment. The processing chain is automatically 
activated once an image needing processing arrives on a 
dedicated bucket, by provisioning a docker container containing 
the described model on a GPU-enabled compute node, 
orchestrated by a Kubernetes cluster. The chain has been 
designed to run the classical image processing steps on CPU in 
parallel with the inference steps running on GPU, in order to 
maximize GPU usage rates. The super-resolved image is finally 
published to its destination bucket in cloud optimized geotiff 
format so that it is immediately available for online viewing. 
 

6. CONCLUSION 

In this paper we propose a realistic simulation process to generate 
a training dataset of paired LR/HR satellite images from very 
high-resolution aerial images. We show that this simulation 
process enables us to train a residual-based CNN architecture to 
jointly restore and zoom (single-image super resolution) its input 
image, and that it generalizes well to real satellite imagery. Thus, 

our process enables the development of image restoration models 
from purely synthetic training datasets.  
 
We highlight that image quality metrics on the simulated dataset 
may not reflect the final perceived quality and usability of the 
model on real imagery, a point to keep in mind when selecting 
the best model to deploy. It is likely that the final choice between 
several models will be done with a blind image quality 
assessment by qualified image quality engineers. 
 
We applied this method to obtain a joint super-resolution and 
image restoration model that can be applied on Pleiades Neo 
imagery, and we developed a complete image processing chain 
for an operational deployment of the single-image super-
resolution module in a production context, where the CNN is 
complemented by subsequent image production steps, such as 
orthorectification, pansharpening and local contrast adjustments, 
to produce analysis-ready 8-bit imagery. 
 
In the future, we will focus on improving our simulation model 
to ensure that our model is robust to the full range of the images 
that can be imaged by the PNeo satellites. We will also explore a 
full radiometric image quality assessment (Yalçin et al., 2021) 
for the generated super-resolved products as well as 
improvements to the approach, such as implementing a more 
progressive image restoration pipeline by separating the 
denoising and the zoom steps with several networks chained 
together and learned sequentially – and designing a hard example 
mining procedure for the SR problem to be able to focus on more 
difficult examples during training as not all patches are equals for 
the SR problem. 
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