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ABSTRACT:

The coherence image as a product of a coherent SAR image pair can expose even subtle changes in the surface of a scene, such
as vehicle tracks. For machine learning models, the large amount of required training data often is a crucial issue. A general
solution for this is data augmentation. Standard techniques, however, were predominantly developed for optical imagery, thus
do not account for SAR specific characteristics and thus are only partially applicable to SAR imagery. In this paper several data
augmentation techniques are investigated for their performance impact regarding a CNN based vehicle track detection with the aim
of generating an optimized data set. Quantitative results are shown on the performance comparison. Furthermore, the performance
of the fully-augmented data set is put into relation to the training with a large non-augmented data set.

1. INTRODUCTION

Synthetic aperture radar (SAR) imagery allows for two differ-
ent approaches to change detection: amplitude change detection
or coherent change detection if provided with a coherent image
pair. The coherence image as a product of a coherent image pair
can expose even subtle changes in the surface of a scene, such
as the tracks made by vehicles. Several approaches to vehicle
track detection exist in the literature, including e.g. the use of
convolutional networks (Quach, 2017) or conditional random
fields (Malinas et al., 2015). Others seek to enhance the coher-
ence image with the aim of boosting a threshold-based change
detection method (Hammer et al., 2021).

As is common for all image classification via machine learning
models, the large amount of required training data often is a
crucial issue. A general solution for data scarcity is data aug-
mentation, where different techniques are used to expand the
existing data set in size and quality (Shorten and Khoshgoftaar,
2019). Current techniques for coherent track detection seek
to make synthetic data look more like measured data using
machine learning algorithms (Lewis et al., 2019) or insert sim-
ulated tire tracks into non simulated images to obtain a larger
variety of images (Turner et al., 2012). Most fundamental
are techniques using geometric and color space modifications,
however, these standard techniques were predominantly
developed for optical imagery, thus do not account for SAR
specific characteristics and thus are only partially applicable
to SAR imagery. Several of these techniques can be ruled out
merely by considering the specific properties of SAR images,
however, for some the question arises, how well they are suited
for the task of coherent change detection and what impact they
have on the actual track detection performance.
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In this paper several data augmentation techniques (geomet-
ric and color space transformations) are investigated for their
performance impact regarding a convolutional neural network
(CNN) based vehicle track detection. With the aim of gener-
ating an optimized training data set, they are compared among
one another and subsequently put into relation to the training
with a larger non-augmented data set. It is of interest if the
augmentation of samples originating from a single image can
compare with the un-augmented large data set extracted from
multiple diverse images.

The paper is structured as follows: Section 2 contains a descrip-
tion of the data set used in this study. In Section 3 the process
of data augmentation is specified. Section 4 describes the CNN
architecture and training process. The results are presented in
Section 5, while Section 6 contains the conclusions and an out-
look to future work.

2. DATA

The experiment is conducted on an airborne interferomet-
ric SAR data set of POLYGONE area, located in southern
Rhineland-Palatinate, Germany, where between the two over-
flights three distinguishable vehicle tracks were generated
per vehicle movement. The tracks overlap to an extent and
feature an axle width of 2.0 m ±0.2 m and a wheel width
between 0.37 m and 0.4 m. Otherwise this area was not affected
by human action in-between the times of the overflights.
Figure 1 shows an optical image of the scene, where the area of
vehicle movement is marked in orange. The recorded data set
consists of multiple coherent image pairs, showing the same
scene under different aspect angles. A manually performed
vector-based extraction of the three vehicle tracks yields the
corresponding reference data in the form of a binary image
distinguishing track from background.
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Figure 1. Optical image of the POLYGONE scene.

2.1 SAR imagery

The SAR data set was part of a measurement campaign in 2015,
recorded by the SmartRadar experimental sensor of Hensoldt
Sensors GmbH, mounted on a Learjet. This is an X-band sensor
with resolution in the decimeter range. The six image pairs
used in this study were recorded during two overflights over
Bann B of POLYGONE Range, approximately 4 hours apart.
In-between this time the vehicle movement took place, whereas
at the time of the overflights the scene was static. In Table 1 ba-
sic properties of the POLYGONE acquisition are summed up.
For this investigation six image pairs have been selected featur-
ing only very small acquisition angle differences, so that high
coherence values can be achieved. All image pairs were co-
registered and subsequently the coherence was computed us-
ing the classical formula and a 7 x 7 pixel window. Coherence
takes values in the interval [0,1] where zero reflects total inco-
herence (black) and 1 implies a fully coherent signal (white).
In Figure 2, the resulting coherence images C1-C6 are depic-
ted, showing the whole scene of the POLYGONE area. Note
that all SAR images in this paper are visualized with range dir-
ection on the x-axis and azimuth on the y-axis. In all six images
wide horizontal stripes are visible which are caused by a flawed
motion compensation during SAR data processing. For the task
at hand, however, this is not considered to be a problem. As
a matter of principle a high coherence level surrounding the
changed regions is essential for a successful coherent change
detection. The grassland cropped shortly before the measure-
ment campaign features such an area of high coherence, thus
making the vehicle track detection in this area possible. For the
images C1-C6 the coherence levels vary somewhat, which was
to be expected, since the acquisition angles and the angle differ-
ence between each image pair differ. For this, see the azimuth
angle αM of each master image, the azimuth difference ∆α re-
garding each image pair, and the mean local coherence level γ̄C
of said grass-land area (measured in a 500 x 500 pixel window)
in Table 2.

Sensor SmartRadar
Band X-band
Resolution Decimeter range
Slant range distance approx. 10,260 m
Flight height above ground approx. 4270 m
Depression angle first bin approx. 25◦

Time between acquisitions approx. 4 h

Table 1. Acquisition properties of the POLYGONE
measurement campaign.

Image C1 Image C6

Image C2 Image C3 Image C4 Image C5

Figure 2. Coherence images: Image C1 for the basis of an
augmented data set, Images C2-C5 for the generation of a large

un-augmented data set, and Image C6 for the testing.

Since the images are not calibrated and recorded under different
aspect angles, they show varying track orientation and backs-
cattering and they also result in a different coherence level, thus
qualifying for independent training and test imagery. In the
main part of this investigation, Image C1 was used as source
material for the training data set (un-augmented and augmen-
ted), whereas Image C6 functioned as test environment. Note
the profound orientation difference of the two images. Images
C2 - C5 subsequently were used in combination with Image C1

to provide for a large, diverse un-augmented data set.

2.2 Reference data

Reference imagery was generated in three steps: Firstly, a
manual vector-based extraction of the three vehicle tracks was
conducted, where both lanes were accounted for; secondly,
the tracks were rasterized to generate a mask; and lastly, the
mask was subjected to a morphological dilation operation
to enforce a standard wheel width. The result is a binary
image distinguishing track from background. Figure 3 shows
the process of reference generation for the vehicle tracks in
Image C1. Images C2 - C6 were processed accordingly.

3. DATA AUGMENTATION

Using but one image for the extraction of a training data set, as
in this case, inevitably leads to some deficits regarding object

αM ∆α γ̄C

C1 161.56◦ 0.000045◦ 0.874
C2 115.49◦ 0.005707◦ 0.875
C3 203.57◦ 0.005745◦ 0.861
C4 206.58◦ 0.005237◦ 0.865
C5 209.81◦ 0.011034◦ 0.836
C6 208.70◦ 0.001642◦ 0.856

Table 2. List of coherence images: Master azimuth αM ; azimuth
difference ∆α; local mean coherence level γ̄C .
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a) b) c)

Figure 3. Manual track extraction for reference purposes (here
Image C1): a) coherence image; b) vector-based manual

extraction; c) binary mask with dilated tracks.

orientation, and backscattering variety. Data augmentation
methods can be used to widen that variety, so that the trained
model generalizes better. This raises the question whether
standard data augmentation techniques on a small data set can
equal the use of a a larger data set with a wider variety. In
that regard the interferometric data set of POLYGONE is very
suitable for an investigation.

3.1 Standard methods

When it comes to data augmentation a wide range of meth-
ods have been introduced, ranging from standard basic image
manipulation to more sophisticated methods. GAN-based aug-
mentation or other deep learning based augmentation methods
are amongst the most advanced methods and are capable of very
complex image generation. For the task at hand, however, these
methods are somewhat disproportionate and hence are not taken
into account.

The focus instead is on the standard methods of image ma-
nipulation such as geometric and color space transformations.
However, since these standard augmentation techniques were
developed primarily for optical use, not all are reasonable for
the SAR specific case. One such case is the widely used method
of scaling. While for the optical use the simple resizing of an
image to imitate another resolution or object size is valid, in the
SAR specific case this disregards the more complex workings of
image processing. Not only the radiometry would be tampered
with, but for more complex objects with specular reflections
also the characteristic features of the signatures. Further, the
resolution of the SAR image depends only on the sensor and the
acquisition mode and is constant over the entire image. There
are further techniques that are obsolete due to the missing ra-
diometric background, such as e.g. shearing, noise injection.
Since in SAR images small changes in aspect angle can res-

Figure 4. Exemplary un-augmented training samples.

ult in profound signature changes, in particular due to multi-
bounce reflections, rotation augmentation usually is an unsuit-
able method as well. However, for flat objects at ground level,
such as in this case it is a different matter. The absence of
orientation dependent specular reflections and the object flat-
ness eliminate the main objections. Whether a difference in
range and azimuth pixel spacing may cause unrealistic distor-
tions when rotated is deemed insignificant when compared with
the high potential of rotation augmentation. Many color space
transformations rely on the presence of multiple channels, and
for this reason cannot be transferred to SAR imagery. However,
simple modifications can also be applied for grayscale images.

In the following, five augmentation techniques are applied to
the training samples from Image C1, including translation (A),
flipping (B) and rotation (C), as well as changes to contrast (D)
and brightness (E).

3.2 Applying augmentation methods

Original samples Based on a single coherence image C1 a
base training data set of 2000 samples of the size 128 x 128
pixels was extracted, with the samples being perfectly centered
on the tracks. The reference map provides the corresponding la-
bel data, accordingly. Figure 4 shows an exemplary set of these
training data. Based on these samples, multiple training data
sets were generated via the data augmentation techniques A-E.

Translation To avoid positional bias in the data, translation
augmentation was used, where the sample centers are moved
with a random displacement offset. Taking into account the
sample size of 128 x 128 pixels and the track width a maximal
translation offset of 45 pixels was chosen so that the maximal
cut-off was no more than 35% of the sample. Figure 5 a) shows
an exemplary set of these training data.

Flipping Random horizontal and vertical flipping of the ori-
ginal samples was conducted. The resulting training data are
depicted in Figure 5 b).

Rotation Based on the original sample centers and Image C1

a rotation was executed for each sample using nearest-neighbor
interpolation. For an optimal coverage of track orientations the
rotation was executed randomly in the interval between 0◦ and
359◦. Note that there is little variation regarding the orienta-
tion of the vehicle tracks in the original samples, suggesting the
rotation augmentation to be able to improve the model training
considerably. Figure 5 c) shows the exemplary rotated samples.

Contrast and brightness The challenge of a track detection
ultimately is to work with image pairs of poor coherence, so the
contrast is bound to be smaller than that of the given training
data. To take this into consideration both contrast and bright-
ness were modified to a small extent. For both, there was made
a point of making sure the resulting values were in the range a
typical coherence image takes, between 0 and 1. Figures 5 d)
and e) depict the corresponding augmentation samples with a
distinct change in gray values.
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a)

b)

c)

d)

e)

Figure 5. Exemplary training samples after data augmentation:
a) translation, b) flipping, c) rotation, d) contrast, e) brightness.

Figure 6. Exemplary training samples with all 5 data
augmentation methods.

3.3 Training data sets

In this paper two aspects are targeted: Firstly, the investigation
of the five data augmentation techniques and their performance
impact in a vehicle track detection; and secondly, the aim of
generating an optimized training data set that can match the per-
formance of a larger non-augmented data set. For the first as-
pect, six training data sets were generated (one for the original
un-augmented data and one for each augmentation technique,
respectively, each consisting of 2000 samples. They are de-
noted as listed in Table 3. Regarding the optimized training data
set, a further set was generated combining all the augmentation
techniques A-E. Some exemplary training samples are depicted
in Figure 6. Lastly, a large un-augmented data set was created
by extracting samples not only from Image C1, but also from
Images C2 - C5, resulting in a data set of 10.000 images. In
total, this leads to the generation of 8 training data sets listed in
Table 3.

4. CNN TRAINING

The U-Net architecture has been shown to be very effective
for fast semantic segmentation of images, and hence was con-
sidered a suitable choice for the task at hand. In our experiment
a standard 4-layer U-Net architecture was used, consisting of a
contracting path, a bridge segment and an expansive path. The
encoder subnetwork consists of two sets of convolutional and
ReLU layers at a time followed by a max pooling layer. In
return, the decoder subnetwork involves a transposed convolu-
tional layer and two sets of convolutional and ReLU layers at

data set augmentation source image
DSorig un-augmented C1

DSA translation C1

DSB flipping C1

DSC rotation C1

DSD contrast C1

DSE brightness C1

DSA−E methods A-E C1

DSBigData un-augmented C1 - C5

Table 3. List of training data sets.

data set validation accuracy validation loss
DSorig 99.1571 0.020999
DSA 98.9971 0.025031
DSB 97.2638 0.062695
DSC 96.4036 0.088731
DSD 98.6041 0.033565
DSE 98.8415 0.027946
DSA−E 95.9861 0.094365
DSBigData 98.9135 0.025894

Table 4. Training information for the different data sets.

a time. The 4-layer structure represents a good compromise
between the position independence of the features and the fact
that too much information is lost when the images in the lowest
U-Net layer become too small. Note that with an input image
size of 128 x 128 pixels, the lowest layer image has but a size
of 16 x 16 pixels. The network was then trained with an Adam
optimizer and fed with the different training data sets respect-
ively, whereas 200 samples of each training data set were used
as validation data. Table 4 shows the final validation accuracies
and losses for different training data sets. The trained models
were then applied to the test image C1.

5. RESULTS

In the following the predictions for test image C6 regarding
the individual trained networks are described. Aside from a
visual inspection, two quality measures are used to assess the
track detection performance. Firstly, a detection performance
ratio (DPR) is introduced, which describes the ratio of detected
pixels in the local track area and calls upon the reference mask
to be able to do so. To capture the line continuity of the track
detection, the segmentation result is converted into connected
components with an 8-pixel connectivity. As a second criterion
the maximal length Lmax of the major ellipse axis of the com-
ponents is explored, where the full length of the vehicle tracks
would equal an Lmax of 3745.6 pixels.

5.1 Effect of data augmentation

In Figure 7, two details of the prediction results for Image C6

are visualized, regarding a training with the un-augmented data
set DSorig and the augmented data sets DSA-DSE . For a
better visual impression, the segments (red) are superimposed
on the corresponding coherence image. Quantitative results
are provided in Table 5. The performance regarding the un-
augmented data set DSorig serves as a basis for the assess-
ment of the augmentation impact. So it is of relevance how
well this simple training data set can perform. Figure 7 a)
demonstrates quite well that the un-augmented samples lack
the variety to generalize the network. In particular, the lack
of track orientation in the training samples becomes apparent,
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a)

b)

c)

d)

e)

f)

Figure 7. Segmentation results (red) superimposed on the
coherence image C6, regarding the network training with data
sets: a) DSorig , b) DSA, c) DSB , d) DSC , e) DSD , f) DSE .

DPR [%] Lmax

DSorig 11.8009 313.8592
DSA 5.6812 329.7666
DSB 13.2699 374.6575
DSC 67.5337 2192.9018
DSD 20.3743 376.3904
DSE 7.5411 413.1504
DSA−E 72.5374 2278.1166

Table 5. Performance measures for the track detection (detection
performance ratio DPR, and the maximal length Lmax of the

connected components) regarding the individual data sets.

Figure 8. Segmentation results (red) superimposed on the
coherence image C6, regarding the training with set DSA−E .

DPR [%] Lmax

DSA−E 72.5374 2278.1166
DSBigData 79.4442 3663.1824

Table 6. Performance measures for the track detection (detection
performance ratio DPR, and the maximal length Lmax of the

connected components) regarding the individual data sets.

since the performance varies profoundly with the track orient-
ation. Several track segments aligned more in azimuth direc-
tion even show an acceptable result. With a DPR of 11.8% and
an Lmax of 313.9 pixels this is used as a basis of comparison.
Figures 7 b)-f) show the effect of the individual data augment-
ation techniques. As was expected, the rotation augmentation
has the most profound impact on the track detection perform-
ance (see Figure 7 d)), with the observed orientation depend-
ent performance differences seemingly eliminated completely.
Overall, a good performance can already be achieved with but
this augmentation technique, also showing in the high values
of the chosen performance measures, a DPR of 67.5% and an
Lmax of 2192.9 pixels. In comparison, all other techniques
have a much smaller effect on the performance. The flipping
augmentation, even though by far not as powerful as the rotation
technique, has some effect in the same direction. Most track
orientations still cannot be detected, however, the performance
measures (DPR of 13.3% and an Lmax of 374.7 pixels) show
a certain improvement to the un-augmented data set. Employ-
ing contrast augmentation leads again to a small performance
increase (DPR of 20.4% and an Lmax of 376.4 pixels). This
improvement is probably due to the somewhat lower coherence
level in test image C6 compared to the training image C1. Aug-
mentation by translation and brightness modifications show no
clear improvement over the un-augmented data set. However,
for the optimized data set DSA−E they seem to improve the
robustness of the model, so that the optimized data set deliber-
ately includes all five augmentation techniques. The segmenta-
tion result of the network trained with data set DSA−E can be
observed in Figure 8. The data augmentation with a combina-
tion of all five augmentation techniques could again consider-
ably improve the track detection results and achieve a DPR of
72.5% and an Lmax of 2278.1 pixels.

5.2 Data augmentation vs larger un-augmented data set

To put the performance of the fully augmented data set into
relation, a performance comparison to the network trained on
the larger un-augmented data set DSBigData is provided in the
following. A visual impression is given in Figure 9, showing
the segmentation result for both the training with the fully aug-
mented data set and the training with the large un-augmented
data set. Although both show a good line continuity, the results
of the large un-augmented data set surpass those of the fully
augmented data set. This also is reflected in the performance
measures, listed in Table 6. The un-augmented data set pro-
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a) b)

Figure 9. Segmentation of test area (Image C6); a) augmented data set DSA−E , b) large un-augmented data set DSBigData.

duces a DPR of 79.4% and an Lmax of 3663.2 pixels. Even
though standard methods of image manipulation such as geo-
metric transformations and color space transformations were
not able to fully replace the use of a more diverse large data
set, the performance increase is profound.

6. CONCLUSION AND OUTLOOK

The experiment was conducted on an airborne dual-pass SAR
data set of POLYGONE area, located in southern Rhineland-
Palatinate, Germany, where between the two overflights three
distinguishable vehicle tracks were generated per vehicle
movement. The data set consists of multiple coherent image
pairs, showing the same scene under different aspect angles.
A manually performed vector-based extraction of the three
vehicle tracks provided the corresponding reference data in the
form of a binary image distinguishing track from background.

It was discussed which standard augmentation techniques are
not reasonable for the SAR specific case and which are to be
investigated. Based on a single coherence image a base train-
ing data set of 2000 samples was extracted and subsequently
multiple training data sets were generated via different data
augmentation techniques. These include geometric transforma-
tions such as translation, flipping and rotation, as well as color
space transformations such as changes to contrast and bright-
ness. A second coherence image of the overflight functioned
as test data, showing the same three vehicle tracks in a dif-
ferent orientation. A CNN with a 4-layer U-Net architecture

Figure 10. Foot tracks in the POLYGONE data set.

was introduced and trained with an Adam optimizer for the dif-
ferent training data sets respectively. The performance of the
trained models was then assessed on the test image, whereas
e.g. line continuity served as a quality criterion. As a result
the impact each augmentation technique has on the track detec-
tion performance can be rated. As a last step the training with
augmented data was put into relation to the training with non-
augmented data. For this, four additional coherence images of
the scene were exploited to receive a large data set matching
the augmented data sets in size and featuring the three vehicle
tracks for multiple orientations and coherence levels. Finally, a
performance comparison was conducted between the best res-
ults regarding the augmented data versus the results of training
with non-augmented data. Concluding, this brings into light
how well the data augmentation techniques can imitate an ac-
tual larger data set.

Future work could include, how well this approach can be ex-
panded to the prospect of foot track detection. The POLY-
GONE data set provides the means for such an investigation,
with Figure 10 showing the area in question and the segmenta-
tion result regarding the network trained on vehicle tracks.
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