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ABSTRACT:

Image registration is a fundamental issue in photogrammetry and remote sensing, which targets to find the alignment between
different images. Recently, registration of images from difference sensors become the hot topic. The registered images from
different sensors are able to offer additional information, which help with different tasks like segmentation, classification, and even
emergency analysis. In this paper, we proposed a registration strategy to calculate the dominant orientation difference and then
achieve the dense alignment of Thermal Infrared (TIR) image and RGB image with MINDflow. Firstly, the orientation difference
of TIR images and RGB images is calculated by finding the dominant image orientations based on phase congruency. Then, the
modality independent neighborhood descriptor (MIND) together with global optical flow algorithm are adopted as MINDflow for
dense matching. Our method is tested in the image sets containing TIR images and RGB images captured separately but in the
same construction site areas. The results show that it is able to achieve the optimal results with features of significance even for
dramatically radiometric differences between TIR images and RGB images. By comparing the results with other descriptor, our
method is more robust and keep the features of objects in the images.

1. INTRODUCTION

Image registration is a fundamental issue in photogrammetry
and remote sensing, which targets to find the alignment between
different images. Since images acquired by different sensors or
platforms provide information on various properties of objects
in the scene, combining information from different platforms
and sensors will provide a new perspective of information de-
livery for better visualization and analysis of scenes and objects
(Tong et al., 2019, Ye et al., 2020). Thermal infrared (TIR)
images, acquired by thermographic sensors, depict temperat-
ure and emission properties of objects. Different from cam-
era in the visible spectrum, thermographic sensors detect radi-
ation in a long-infrared range of the electromagnetic spectrum.
Compared to the near infrared images, thermal infrared images
have lower resolutions and different features due to the long
wavelength. Since all the objects with a temperature above ab-
solute zeros emit infrared radiation to the environment, thermal
infrared images enable us to observe the geometry of objects,
their moving process, inside structures, and their thermal prop-
erties without sufficient visible illumination (Zin et al., 2007,
Weinmann et al., 2014, Christiansen et al., 2014). This prop-
erty helps with thermal inspection of objects and recognition
of hidden structures. Though thermal images provide thermal
indicators for analysis, it is hard to achieve results of high accur-
acy for tasks like classification, recognition and abnormal phe-
nomenon analysis due to low spatial resolution and strong dis-
tortion compared to RGB cameras. Besides, prior knowledge of
the study area and the thermal images are required for analysis.
As supplementary, RGB images are typical data sources in the
field of photogrammetry, which provide accurate and detailed
geometry and texture information of the scene. Considering
∗ Corresponding author

the difficulties in analyzing thermal images, combining RGB
images and thermal images could improve the geometry and
texture information to compensate the disadvantages of thermal
images.

Generally, the challenges in the registration of thermal images
(Fig. 1a) and RGB images (Fig. 1b) from different datasets lie in
several aspects, including different geometric properties caused
by various image resolutions, different intensity information
resulting from various radiometric characteristics, and differ-
ences of sensor pose. Firstly, the thermal infrared images usu-
ally have lower spatial resolution compared to RGB images.
The different in resolution cause different features in RGB and
TIR images, which makes it hard to find the correspondences.
Besides, due to different wavelengths, thermal infrared images
and RGB images have different intensity information. The ra-
diation in RGB images depicts the texture information of the
objects, which is similar to the visible information observed
by human eyes. The thermal images reflect the temperature
or emission properties of the objects. Though a similar shape
could be observed, the radiation information dramatically var-
ied. Besides, the RGB images and TIR images may acqired
seperately, or mounted on the same plateform with different
viewing angles. The different extrior parameters lead to dif-
ficulties in finding corresponding points.

Considering the issues in the registration of thermal images and
RGB images, in this study, we propose a robust method to deal
with the dense matching of TIR and RGB images with large
radiometric differences. Besides, our method can be applied for
asynchronous devices with images that have small overlapping
areas and orientation differences.

The structure of this paper is as follows. The introduction part
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Figure 1. Illustration of (a) TIR image and (b) RGB image
acquired from the same scene.

in Section 1 describes the motivation and problems in the re-
gistration of thermal infrared images and RGB images. The
literature review part in Section 2 summarises the state of art
methods for image matching. Then, the proposed strategy will
be described in detail with each step of our proposed method
elaborated on in Section 3. After that, the data and result based
on the proposed method will be demonstrated in Section 4. The
result will be compared with several current methods. Finally,
we will draw a conclusion regarding the results in Section 5.

2. LITERATURE REVIEW

The typical automatic image matching methods can be roughly
divided into two categories: feature-based methods and area-
based methods. The feature-based methods use a feature sym-
bolic descriptor to describe the characteristics of elements in
the image. By finding a similar descriptor, the correspond-
ing elements in other images can be found. The feature-based
image matching process includes the following steps: feature
detection, feature description, feature matching, transformation
model estimation, and image resampling (Zitová, Flusser, 2003,
Chen et al., 2019a). Here, reliable and effective feature de-
tection and feature description normally deem to be the pre-
conditions for image matching. Feature detection detects dis-
tinctive features, such as points, lines, blobs between images.
Typical algorithms are i.e. Harris detector (Harris, Stephens,
1988), Laplace of Gaussian (Lindeberg, 1994),Harris-Laplace
(Mikolajczyk, Schmid, 2004), Hessian-Laplace (Mikolajczyk,

Schmid, 2005), Difference-of-Gaussian (Lowe, 2004) and so
on.

After the feature detection, feature descriptors will be con-
structed to depict the characteristics of detected features. The
scale-invariant feature transform (SIFT) (Lowe, 2004) is widely
used due to its robustness to image rotation and scale changes.
After SIFT, a series of descriptors have been proposed to im-
prove the performance of SIFT, such as speed up robust fea-
ture (SURF) (Bay et al., 2008), fast local descriptor for dense
matching (DAISY) (Tola et al., 2009), gradient location and ori-
entation histogram (GLOH) (Mikolajczyk et al., 2005), Binary
Robust Independent Element Feature (BRIEF) (Calonder et al.,
2010) and Fast Retina Keypoint (FREAK) (Alahi et al., 2012).
The feature-based method is usually more robust to geomet-
ric and radiometric differences, but ignores the positional re-
lation between neighboring pixels in the image. Compared to
the feature-based methods, the area-based methods make use of
intensity information of the images. Feature detection and fea-
ture matching are combined by using some similarity measures,
such as mutual information (MI), normalized cross-correlation
(NCC), sum of square diference (SSD) and matching by tone
mapping. Though this method is sensitive to geometric distor-
tion, it is optimal for dense matching and subpixel matching.

Due to the increasing focus on registration of images from dif-
ferent sensor platforms, researchers have done a lot of work
on multi-modal image matching, especially in the medical ima-
ging and remote sensing domains. The challenge mainly lies
in the geometric deformation and radiometric variation, lead-
ing to mis-correlated features. (Wang et al., 2012) proposed
the bilateral filter SIFT to find the feature matched for optical
images and SAR image. (Xiong et al., 2019) put forward the
Rank-based Local self Similarity descriptor describing the local
shape properties for SAR to optical images registration. (Ye et
al., 2017) come up with the shape descriptor DLSC to form a
similarity metric (named DLSC). By using the normalized cross
correlation (NCC) of the DLSS descriptors, a template match-
ing strategy is used to register the optical images and SAR im-
ages. (Xiang et al., 2020) incorporate the dense feature repres-
entations into the 3-D phase congruency scheme to estimate the
translation of the Optical images and SAR images in sub-pixel
level. Due to the outstanding performance in feature detec-
tion in intensity variant situations, phase congruency is widely
used in illumination-invariant image matching. (Xiang et al.,
2019) present the global and local frames for matching of op-
ticla images and SAR images with gradiant location and orient-
ation histogram (GLOH) descriptor. (Ye et al., 2018b) adopts
the magnitude and orientation of phase congruency feature as
structural image representation for subpixel image correlation.
(Ye, Shen, 2016) proposes the histogram of oriented phase con-
gruency (HOPC) and integrates a similarity matrix to represent
the geometric structure features of images, which achieve great
performance in the registration of SAR, optical and map im-
age. Based on the HOPC descriptor combined with normalized
correlation coefficient, a similarity measure called HOPCncc
is used for image registration. (Ye et al., 2018a) proposes the
minimum moment of phase congruency with LoG to detect fea-
ture points and local histograms of phase congruency for feature
descriptors.

In addition to phase congruency, methods have been applied for
infrared and RGB image registration. For example, (Chen et al.,
2019b) utilizes the multi-scale and multi-orientation Gabor fil-
ter to encode the edge information as a descriptor to match the
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infrared and visible image. (Yu et al., 2019) proposes a gray-
scale weight with window algorithm together with normalized
mutual information to register infrared images and RGB im-
ages. (Rahaghi et al., 2019) utilizes mutual information and
particle swarm optimization. (Istenic et al., 2007) detects the
line segments in visible and infrared images, and find the cor-
responding lines in Hough parameter space to recover the trans-
lation and rotation. The scale problem is not properly solved
here. (Hrkać et al., 2007) proposed the method to co-register the
IR images and RGB images based on the assumption that the
images are taken at close viewpoints to simplify the transforma-
tion modal and reduce computation, which limit the application
of this method. In (Shen et al., 2014), a robust selective nor-
malized cross correlation (RSNCC) is used as the matching cost
applying to a coarse-to-fine registration between the RGB/NIR
and RGB/range images. (Turner et al., 2014) demonstrates a
workflow to co-registrater visible, multi-spectral and thermal
images aquired with a micor-UAV. The registration utilize the
ground control points and is conducted by Photoscan. (Sanchez
et al., 2015) register thermal and visible light images based on
a novel multi-scale method that employs the stationary wavelet
transform. The silhouettes of diseased plants extracted can be
used to register thermal and visible light images with high ac-
curacy. However, how the method can be used to registrate the
IR images and RGB images captures in the urban areas without
positioning information still remains to be solved.

3. PROPOSED METHOD

Considering the radiometric differences between thermal in-
frared images and RGB images, this contribution proposes a
strategy to achieve a registration which is orientation-invariant
and illumination-invariant. The scale was estimated by forming
a pyrimad space of both images. The the best scale is chosen
when the peak of normalized correlation of two edge strech
images by phase congruency reaches the highest. Orientation
of phase congruency and modality independent neighborhood
descriptor (MIND) are adopted as a similarity descriptor. After
that, the MINDflow is adopted for dense matching of thermal
infrared images and RGB images. Finally, corresponding points
from the dense matching are used for the transformation of the
image. In Fig. 2, the workflow of the proposed method is given.

Figure 2. Workflow of the proposed method.

3.1 Orientation estimation

Phase congruency is calculated via local frequency analysis
which originated from local energy modal. It assumes that per-

ceived features are located at points where the Fourier compon-
ents are maximal in phase (Morrone, Owens, 1987). The phase
congruency function is defined as the ratio of local energy as
position x[E(x)] to the sum of local Fourier components.

PC1(x) =
E(x)∑
nAn

=

∑
nAn cos(φn(x)− φ̂n(x))∑

nAn
(1)

∑
nAn cos(φn(x)) is the Fourier series expansion of the func-

tion where An represents amplitude and φn(x) represents the
local phase. Since it is not robust to noise and does not consider
the frequency spread, a refined calculation model using log
Gabor wavelets is adopted from Kovesi (Kovesi et al., 1999).
The transfer function of a log Gabor filter is show as Eq. 2:

g(ω) = exp(
log(ω/ω0)

2(logσω/ω0)
) (2)

ω0 is the center of the filter and σω/ω0 is the constant para-
meters for bandwidth. If Me

n and Mo
n represent the e even-

symmetric and o odd-symmetric components of log Gabor fil-
ter at scale n, the response vector of a quadratic pair can be
expressed as:

[en(x), on(x)] = [f(x)×Me
n, f(x)×Mo

n] (3)

Then, the amplitude An(x) and phase φn(x) at the scale n can
be expressed as:

An(x) =
√
en(x)2 + on(x)2

φn(x) = atan2(en(x), on(x))
(4)

Based on the magnitude of phase congruency, the orientation
of phase congruency Θ can be achieved by the log Gabor odd-
symmetric wavelet of multiple directions.

a =
∑
θ

(ono(θ)cos(θ))

b =
∑
θ

(ono(θ)sin(θ))

Θ = atan2(b, a)

(5)

θ is the orientation of odd-symmetric wavelet. Therefore, the
orientation of the image can be calculated by the accumulated
orientation.

3.2 Modality independent neighborhood descriptor

MIND descriptor (Heinrich et al., 2012) uses the principle of
local self-similarity. The patch distance is first calculated as
the sum of square distances between two voxels x1 and x2 as
Dp(x1, x2), between the patches P of size (2p+ 1)d.

Dp(I, x1, x2) =
∑
p∈P

(I(x1 + p)− I(x2 + p))2 (6)

The exact patch-distance can be efficiently calculated using
convolution filter C of size (2p + 1)d with point-wise squared
difference between image I and transformed image I ′(r) (r is
the transformed distance.

Moreover, in order to highlight the response of MIND with sim-
ilar patches, a Gaussian function is used. The variance of the
image can be estimated via mean of the patch distances them-
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selves within a six-neighborhood n ∈ χ.

V (I, x) =
1

k

∑
n∈χ

Dp(I, x, x+ n) (7)

where k is the number of neighbors in the defined neighbor-
hood, in our case it equals to six.

Then, the output of MIND can be defined by a distance Dp, a
variation estimate V and a spatial search region R.

MIND(I, x, r) =
1

n
exp(−Dp(I, x, x+ r)

V (I, x)
), r ∈ R (8)

3.3 Dense matching of corresponding points by MINDflow

MINDflow is adapted from the renowned Siftflow (Liu et al.,
2010) and here it is adopted for dense matching in feature space.
Considering the SIFT descriptor can hardly describe the simil-
arity between the images from different spectral bands, espe-
cially between the thermal infrared images and RGB images,
here MIND descriptor is applied.

Specifically, let s1 and s2 be two images represented by MIND
descriptor, and ε contains all the spatial neighborhoods. w(p)
is the flow vector at grid coordinate p = (x, y). The energy
function is defined as:

E(w) =
∑
p

min(||s1(p)− s2(p+ w(p))||1, t)+

∑
p

η(|u(p) + µ(p)|)+

∑
(p,q)∈ε

min(α|w(p)− w(q)|, d)

(9)

which contains a data term (i.e., the first term of Eq. 9), a small
displacement term (i.e., the second term of Eq. 9) and a smooth-
ness term (i.e., the third term of Eq. 9). The data term contains
the MIND descriptor to be matched along with the flow vector
w(p). The small displacement term constrains the flow vector
to be as small as possible when no information is available. The
smoothness term constrains the flow vector of adjacent pixels to
be similar. L1 norms are used in the data term and the smooth-
ness term to account for matching outliers and flow discontinu-
ities. This energy function can be then solved by the use of
sequential belief propagation (BP-S) (Szeliski et al., 2008).

3.4 Image transformation using corresponding points

Once the corresponding points are obtained, the dense align-
ment between TIR and RGB images can be achieved. Based
on the dense matching points, a non-parametric transformation
based on a flow map can be achieved. Each pixel in the trans-
formed image can be thus resampled.

4. EXPERIMENTAL DATA AND RESULT

The experimental data used consist of two datasets: TIR images
(512× 640 pixels) and RGB images (2680× 4019 pixels). Two
UAV flights with the same predefined flight path have been per-
formed: one with the RGB camera and one with the TIR cam-
era. Three image sets are utilized for validation. However, due

to limited positioning accuracy, the exterior orientation of the
same waypoints for both flight are slightly different. In order to
evaluate the co-registration result, we select two images (Fig. 3)
and manually selected matched keypoints for evaluation. The
RGB images lay on the left, while the TIR images are on the
right. In image 1, 46 point pairs are selected and in image 2,
40 point pairs are selected. In Fig. 3, we found the images we
use here have two characteristics. Firstly, the scale differences
exist between the two datasets. The RGB images are much lar-
ger than the corresponding TIR images. Secondly, the overlap
between the corresponding images are not always the same. For
the second image pairs, the selected points in the RGB images
distributed on the bottom, while the corresponding points in the
TIR images spread close to the top. Compared to the first image
pairs, the overlap between the second image pairs is smaller.

Figure 3. Manually select keypoint pairs for evaluation.

Data Image Set 1 Image Set 2
Rotation (degree) -6 -5
MIND(errorx) 18.52 8.06
MIND(errory) 5.12 11.99
SIFT(errorx) 14.90 23.38
SIFT(errory) 58.68 41.19

Table 1. Orientation difference between the TIR image and RGB
image.

Fig. 4 shows the results of the proposed method. The first
column are the original RGB images, the second column are
the TIR images, the third column plots the flow map results of
each pixel, the third column shows how phase congruency edge
strength image by the RGB image are warped to that of the
TIR image, and the last column show the checkerboard image
from the TIR image and the RGB image. In the flow map, the
color demonstrates the flow vector of each pixel with respect
to the RGB images. Generally speaking, although the overlap
between the two images are not exactly the same, the proposed
method is able to find the corresponding areas with significant
features. Compared to other data, Image 3 didn’t achieve an op-
timal results due to the repeated texture information and similar
boundary structures inner and outer the building roof.

Fig. 5 presents the comparision results between the proposed
MINDflow and SIFTflow. The first two rows are the results for
image 1, the last two rows are results for the Image 2. Note
that the images applied to the SIFT flow has already adopted
the scale parameters generated by the proposed method. Bed-
side, Table lists the estimated orientation differences between
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Figure 4. Results by proposed method.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-111-2020 | © Authors 2020. CC BY 4.0 License.

 
115



Figure 5. Result by proposed method using MINDflow and SIFTflow.

image pairs based on phase congruency and the error in x and
y direction. The average error for MINDflow is less than that
of SIFTflow. From the table, MINDflow gets better result in
y-direction while SIFtflow receives better result in x-direction
for Image 1. Besides, the errors for Image 2 are always less
than that in Image 1. However, when we analysis the res-
ults in Fig. 3, especially comparing the warped images in the
third column, results by SIFTflow have larger distortions com-
pared to the results by MINDflow. By checking the boundary
of checkerboard image by Image 1, the MINDflow can achieve
the approximate aligned road along the upper boundary. The
white area on the bottom of warped image indicating a large
offsets in y-direction. Comparing the original RGB image and
the TIR image, a large offset on y direction is reasonable due
to the overlapping areas spanned positions in different images.
The phenomenon could be better observed in the Image 2. The
overlap between the two images is about half of each image. In
the Checkerboard image by MINDflow, the shape of the boxes
are kept despite the large offsets and the radiation differences in
the RGB and the TIR images.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed a strategy to register thermal infrared
images and RGB images based on MINDflow. Firstly, the ori-
entation difference of TIR images and RGB images is solved
by finding the dominant image orientations with phase congru-

ency. Then, the MIND descriptor and flow matching are adop-
ted as MINDflow for dense matching. Our method is tested in
9 image sets in construction areas. The result shows that it is
able to achieve an optimal result in the images with significant
features but can hardly deal with the area with repeat patterns
or insufficient structure differences. Comparing the result with
SIFTflow, MINDflow combined with Phasecongruency can bet-
ter extract the features for dense matching.

Though our proposed method is able to preliminary accomplish
the mission of the registration of thermal infrared images and
RGB images, there are some challenges we need to face. First,
we need to find a better way to realize optimal orientation and
scale estimation for multi-modal images. For both area-based
and feature-based methods, the orientation and scale will highly
affect the feature descriptor or similarity descriptor. Though we
are able to offer the coarse scale and orientation, an optimal
result will improve the result. Besides, the method is limited
by a certain overlap between the images, which is the typical
problem when the data are acquire separately. The overlap areas
influence the estimation of rotation and scale. Last but not least,
we need to find the optimal solution for the texture repetition
areas.

The next challenges is the detection of overlapping areas in
RGB and TIR images to optimal the image orientations and
scale. How to match images with less textures or repetitive pat-
terns is also our concern.
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