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ABSTRACT:

The expansion of off-/onshore wind farms plays a key role in the transformation of energy production from burning of fossil fuels
and nuclear energy to sustainable and safe power generation. However, the wind energy sector is permanently under strong cost
pressure and the maintenance of the turbines is currently still carried out quite expensively with human industrial climbers. In this
article, we present the results of an interdisciplinary research project on the automation of various image-based inspection steps.
Since the use of unmanned aerial vehicles (UAV) is a problem especially offshore, we present here a simple, cost-effective method
to obtain a three-dimensional model of a wind energy plant using solely a digital camera equipped with a sensor array to use it for
the detection and management of damages and abnormalities. A first approach to detect abnormalities on the surface with deep

learning methods achieved an F1-score of about 95%.

1. INTRODUCTION

As part of the energy conversion process, renewable energy
sources, such as wind turbines, are becoming increasingly im-
portant. One of the consequences is that more and more onshore
and offshore wind farms have been built in recent years and
more will follow in the coming years (Bilgili et al., 2011, Sun
etal., 2012). Wind turbines must be inspected regularly to avoid
consequential damage arising from structural damage and to en-
hance the life cycle performance (Rangel-Ramirez, Sgrensen,
2008, Karyotakis, 2011). However, the increasing number and
size of onshore and offshore wind farms requires an efficient
inspection workflow. This includes (a) the acquisition of im-
ages, (b) the detection and classification of damage and (c) the
evaluation of the damage by experts. With regard to (a), the
workload of manual image acquisition by industrial climbers
needs to be leveraged by ground based and/or unmanned aerial
vehicle (UAV) photography. With regard to (b), the detection
and classification of damage in the large image data sets must be
facilitated by the use of machine learning and computer vision
techniques. With regard to (c), experts need to use the results
of (b) to decide on actions for the maintenance of the installa-
tions. For this purpose, the original images of the damages as
well as the relative positions of the damages to each other and
their positions on the tower of the wind turbine must be made
easily accessible to the experts.

This research focuses on the creation of a three-dimensional
model of the wind turbine for interactive visual representation
of previously detected damage. To keep the data acquisition
simple and affordable, the 3D model uses only the images from
a normal (i.e. not stereo) camera, the GPS position and the tilt
angle of the camera. In addition, we performed a first study
on machine learning based classification of coating damage on
wind mill piles.

Three-dimensional reconstruction is an active topic in remote
sensing (Li et al., 2019, Stathopoulou et al., 2019, Schonber-
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ger, Frahm, 2016) for which a variety of methods exist. How-
ever, some existing methods use data generated with special
equipment like stereo cameras (Shen, 2013, Sengupta et al.,
2013) or laser scanners (Adan, Huber, 2011). Other methods
use structure from motion (SfM) (Ma, Liu, 2017, Stathopoulou
et al., 2019, Schonberger, Frahm, 2016). SfM detects keypo-
ints in images generated by a camera moving around the ob-
ject and estimates the depth from the movement of the keypo-
ints. SfM is often used for the 3D reconstruction of archae-
ological sites (Pollefeys et al., 2003) or places of interest like
temples/churches and works best with images that show a suf-
ficient number of prominent keypoints. However, images of
wind turbines usually hardly offer any keypoints (see Section 2
below) and data from laser scanners or stereo cameras are often
not available. In the context of 3D terrain modeling, orthorecti-
fication methods like (Baiocchi et al., 2004) are applied to aerial
or satellite images to remove distortion caused by e. g. uneven
terrain. But these models usually do not deal with the presence
of background in the images and assume that the camera orient-
ation is completely known which is not the case in the present
work.

In this work, we propose a new approach for the 3D reconstruc-
tion of on-/offshore wind turbines in windparks that neither uses
keypoints nor data from laser scanners or stereo cameras. The
proposed method uses images taken at four different positions
with a customary camera. The camera positions relative to the
tower of the wind turbine can be determined using the GPS co-
ordinates. An approximate orientation of the camera can be
obtained from the GPS positions and the tilt angle of the cam-
era. However, traditional image processing methods need to be
used to correct the inaccurate specification of the yaw and roll
angles. With that information, projective mapping can be used
to map the images to a cone frustum model of the tower. Due
to the large number of images, a projection of the images dur-
ing visualization is not feasible. So a texture based on the im-
ages is precomputed and wrapped around the cone frustum. In
this way, the visualization can run in environments that do not
have many resources, like e. g. a web browser on an of-the-shelf
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notebook or tablet. To the best of our knowledge, no methods
exists that combine image processing and computer graphics in
this way to create and visualize a 3D reconstruction.

The acquisition of the images is described in the following Sec-
tion 2. The computation of the 3D texture is described in Sec-
tion 3. Section 4 evaluates the quality of the result and the re-
quired effort. Finally, Section 4 gives an overview of limitations
and potential of the proposed method.

2. MATERIALS

To demonstrate the method, we created a dataset using as less
equipment and preparatory work as possible. For image captur-
ing, a customary Nikon D7100 was used. A Solmeta Geotagger
GMAX N3 supplies GPS-Coordinates and a tilt angle for every
image.

Images of the wind turbine have been taken from four different
camera positions ci, . ..cs. The four positions were arranged
in approximately 90 degree angles around the wind turbine and
had a distance of approximately 50 m to the turbine each. At
each position ¢; a number N; of images f have been taken with
different tilt angles ¢ to capture the whole wind turbine. Each
image has a size of H = 6000 pixel width and W = 4000 pixel
height.

In total, the dataset consists of four camera position ¢ ... c4
each coming with a set of views {o] };V:’I Each view is a pair
o) = (I, #]) where I/ is an image with an aspect ratio denoted
by a = 1.5 and angular aperture of o = 11.8° taken with a
tilt angle t{ and at a height of hcamera = 1.8 m. The number
Ni..., N4 of views per position depends on the dataset and
the height of the trunk. However, the number of views for a
trunk with e. g. 80 m height is between 20 and 30 images for
each position. See Figure 1 for example views.

Figure 1. Two example images of the dataset with an
approximate tilt of of 56.3° (top left) and 27° (bottom right).

3. METHODS

As described above, we want to construct a texture for the tower
of the wind turbine. The whole tower is modeled as a cone
frustum of height h with radius rpeom and 7p at the bottom
and the top, respectively. The texture will be created based on

e the images of the wind turbine

e the camera positions from the Geotagger

o the tilt angle given by the Geotagger for each image.

As the model of the tower is invariant to rotation around the
y-axis, the position of the textures left and right border can lie
on the intersection of the model with any plane through the y-
axis. The computation in Section 3.2 assumes that the image
borders lie on the intersection of the model with the yz-plane
(see Figure 2).

A
s

Figure 2. Visualization of the orientation of the texture.

To do so, we first bring the camera positions and the tower of
the wind turbine into a coordinate system with the center of
the towers bottom in the origin of the coordinate system (Sec-
tion 3.2). As no yaw and roll angles are given, computer vision
methods are used to rotate and shift the images in a way that al-
lows us to assume that the camera always points at the center of
the tower of the wind turbine (Section 3.1). Finally, computer
graphic methods are used to assign to each pixel of the texture
a pixel of one of the original images (Section 3.3).
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3.1 Compensate for yaw and roll inaccuracies

In this section, each image is rotated and shifted in the way that
the tower of the wind turbine is exactly vertical and in the exact
center of the image. The process is based on the towers left and
right edges. The detection of those edges might be erroneous
in some cases as the edges might be blurry or be confused with
edges of other wind turbines in the background of the image.
Therefore, this process is not fully automated but needs an in-
teractive step to let an expert select the correct edges of the
tower if necessary.

The first steps for finding the towers edges, are

e convert the original image to a grayscale image

e apply the Sobel filter (Gonzalez, Woods, 2006) to the gray-
scale image

e apply Otsu thresholding to the filtered image

e apply the Hough transform to transform the result into the
Hough space

e Find local maxima in the Hough space (Duda, Hart, 1972)

H:D—R (D

The local maxima in the Hough space form a set

L = {(or, di) }ela @)

representing lines in the original image by

o the distance d between the line and the bottom left of the
image and

e the angle ¢, between the line and its perpendicular to the
bottom left of the image

The lines I; = argmax(H) and lo = argmax(H|p/q,}) re-
flect in most cases (see Section 4 below) the edges of the tower.
However, in a few cases this does not apply, so the correct lines
have to be chosen interactively by a human expert.

Let 1 denote the angle between [; and the y-axis and let 2
denote the angle between [z and the y-axis. After rotating the
image by an angle of —(¢1 +¢2) the tower is perfectly vertical.

We rotate [; and I by — (1 + ©2) and denote the result by [,
and [s, respectively. Let p}op denote the intersection of /; with
the top of the image and let pi.,,, denote the intersection of
1 with the bottom of the image. Equivalently, let p?op denote
the intersection of I> with the top of the image and let pZ ;o
denote the intersection of [> with the bottom of the image. The
center of the tower is then given by (cz, ¢y) = (Piop + Prowom +
Piop + Phowom ) /4. After a horizontal shift of the image by c,, the
image will be perfectly aligned with the tower being vertical
and exactly in the middle of the image.

3.2 Compute camera positions in world space

GPS coordinates are given in a coordinate system that has its
origin at the earth’s center. Let p denote the position of the
tower of the wind turbine and c; the i-th camera position in
this coordinate system. For the computation described in the

the next section 3.3, the camera positions and rotations as well
as the tower of the wind turbine have to be represented in a
coordinate system that has its origin at the bottom base of the
tower and the y-axis on the towers main axis (see Figure2). We
refer to this coordinate system as the world space.

To transform the coordinates into the world space, we first ro-
tate the coordinates into a coordinate system with the center of
the towers bottom base on the y-axis: Let n = p/||p|| and let
k = n x [0,1,0]" denote the crossproduct of n and [0, 1, 0].
With I the identity and K the crossproduct matrix of k, the
Rodrigues rotation rule (see (Rodrigues, 1840)) states that for
R defined by

KQ
K2

R = I+K+(1—n.[0,1,o]T) 3)

the equation R.- n = [0, 1,0]7 holds. In other words R rotates
n (and thus also p) onto the y-axis. Applying R to p and to the
camera positions c; rotates the tower and the camera position
approximately (i. e. neglecting the earth curvature) into a plane
parallel to the xz-plane.

Finally, the position of the tower in world space is
R-p-[0.]p].0]" = [0,0,0" @)
and the final camera positions are

pi=R-c;— [07 ||pH - hcamermo}T- (5)

For the rotation of the cameras, the tilt angle is given by the
sensor (see section materials above), and through the prepar-
atory work in the previous Section 3.1 the yaw angle of the
camera at position p; is given by

J

v = atan2(pi,. pi.) (©)

and the roll angle is rfz =0.
3.3 Project images onto the texture

To create a U x V pixel sized texture of the tower of the wind
turbine, first each texture pixel needs to be assigned to a co-
ordinate in the world space. While doing so, we assume that the
texture is wrapped around the frustum in a way that the leftmost
column of the texture is in the yz-plane (see Fig.2). Second, for
each pixel on the texture the view o] has to be determined that
captures the corresponding world coordinate best. Last, a color
has to be assigned to the texture pixel based on the view o{ . To
do so, projective texture mapping (see (Everitt, 2001)) can be
used, pretending a projector that

e is located at camera position p;

e faces into the direction given by the tilt angle tf from the
sensor and the yaw and roll angles 7} and r] from the
previous section '

projects the image [ f onto the tower.

For the first step, let r and c be the row and column coordinate
of a texture-pixel p¢, respectively. The y-coordinate of p; in
world space is then given by

y=h-(V=r)V. ™
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The towers radius at height y is given by
R = Tpottom — ('r'bottom - Ttop) * y/H~ (®

With w = 27 — 27 -  the x and z coordinates of p; in world
space are given by
z = cos(w) - R )

and
z = sin(w) - R. (10)

For the second step, let (z, y, z) denote the coordinates in world
space of a texture pixel. We first note that the best camera pos-
ition is given by p; with

1= argmin, ([||(z, 2) — (Pi,, Pi.)|l])- (11)

The best view is then given by pz with

j = argmin; ([[lp;, + (I(p;,, ;)| — R) - tan(r}, ) — y[[])-
(12)

For the last step, let (1, ¢;) denote the row and column coordin-
ates of a texture pixel and let (z, y, z) denote the corresponding
coordinates in the world space as computed in the first step. In
what follows we compute pixel coordinates (r;, cr) of the pixel

of If that is projected to (x, y, z). For ease of notation, let @ de-
note the tilt angle tz and 3 denote the yaw angle rf associated
Y

with the view og .

First, a perspective projection is performed that projects (z, y, z)
onto the plane that is orthogonal to the cameras direction of
view and contains the camera. This is achieved by multiplying
(z,y, z) with the matrices

—cos(B) sin(a)sin(8) cos(a)sin(8) —p;,
W — 0 — cos(a) sin(a)  —p;,
a sin(B) sin(a)cos(f) cos(a)cos(f) —p;,
0 0 0 1
13)
tan(£3%)~! 0 0 0
B 0 tan({)™" 0 0
P= 0 0 0 O (14
0 0 -1 0
and
0.5« W 0 0 05
0 05xH 0 0.5
S= 0 0 05 0.5 (15)
0 0 0 1
Let
u x
Vl=s.p.Mm | Y (16)
w z
T 1

The row and column coordinates (rr, cr) of the pixel pr of IZJ
that is projected on the texture pixel p; are given by r; = u/r
and c; = v/r.

3.4 Computational damage detection with convolutional
neural networks

In order to test the automation of the detection of damage and
abnormalities, a set of 20 images was made available by a pro-
fessional inspector. To obtain annotations with a high level of
detail, the online annotation tool BIIGLE 2.0(Langenkdmper et
al., 2017) (see Figure3) was used. The annotated images where
cut into 1200 images patches. As there was only a single patch
containing rust, that patch was removed from the dataset. In the
remaining 1199 examples, 323 of the patches showed surface
damage and 876 showed no surface abnormalities, i.e. have
been labeled inconspicuous. The dataset was split into a train-
ing and validation set of size 959 and 240, respectively. A Con-

Figure 3. Annotation on wind turbines using BIIGLE 2.0

volutional Neural Network (CNN) of type Inception-V3 (Szegedy
et al., 2016) was used for the training. The classification ac-
curacy of the CNN was calculated using the values TP = true
positives, FP = false positives and FN = false negatives. The
values "Precision” (TP / (TP + FP)), ”Recall” (TP/(TP + FN))
and F; were calculated for classes “coating damage” and “’in-
conspicuous” (i. e. showing now surface damages) and for all
1199 examples.

4. EVALUATION

The goal of this paper was the cost and time efficient construc-
tion of a 3D model of a wind energy plant for the localization
and management of damages and abnormalities. Table 1 shows
that the automated detection works with sufficient accuracy to
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use the result for further inspection and status assessment. The
CNN achieved an overall accuracy of 0.955 in the coating dam-
age classification experiment. A percentage of around 93.9%
was detected by the network and the CNN found less than 11%
of false positives.

class prec. | recall F1 | patches
inconspicuous 0.977 | 0.960 | 0.968 876
coating damage | 0.897 | 0.939 | 0.917 323
all 0.955 | 0.954 | 0.955 1199

Table 1. The accuracy of a convolutional neural network (CCN)
applied to coating damage classification in image patches from
wind mill inspections.

The resulting texture based on the images described in Section 2
is shown in Figure 4. Some artifacts show up in the texture,
e. g. a discontinuity at the top of the door caused by inaccuracy
of the tilt sensor (see the red ellipse in Figure 4). However, the
texture gives a good overview of the appearance of the tower.
The correction of the yaw and roll angles improves the quality
of the texture significantly as can be seen in Figure 5. The image
on the top is a part of a texture generated without correction of
the yaw and roll angles. This part shows background (here: sky)
on the tower texture and a welding seam that is not horizontal.
The texture on the bottom is generated with correction of the
yaw and roll angles and both artifacts are no longer present in
the texture.

The effort for the overall process of creating the 3D model, is
broken down into the effort for recording the dataset and the
computation of the texture. For the dataset, a customary digital
camera and a customary sensor array can be used. Taking the
images took about 20 to 30 minutes for an entire wind turbine.

For the computation of the texture, a customary Mac Book Pro
(2,7 GHz Quad-Core Intel Core i7, 16 GB Ram, Intel Iris Plus
Graphics 655 1536 MB) was used. The time for the com-
putation of the texture depends on the resolution of the tex-
ture. A texture with size of 377 pixels width and 1201 pixel
height, takes 1 minute and 16 seconds. A texture with doubled
resolution (755 pixels x 2401 pixels) takes 4 minutes and 12
seconds. The effort for the interactive correction of the wind
turbine edges is fairly low: In 8 images the edges had to be
corrected manually, i. e. 92% of the images are processed fully
automatic.

5. CONCLUSIONS

We proposed a method for 3D reconstruction of wind turbine
towers in on-/offshore windparks. The overall process, includ-
ing image taking and reconstruction is time and cost efficient
and can be done with customary hardware. The resulting tex-
ture reflects the appearance of the tower although a few artifacts
occur. This artifacts are caused by inaccuracies of the tilt angle
and by elevation of an uneven terrain.

No preconditions (e. g. number of camera positions, number of
images) are used by the method except that

e atilt angle of the camera is given for every image

e the position of the camera (including the hight) is given for
every image

Figure 4. Texture for the 3D model of a wind turbine based on
the dataset described in Section 2. The red ellipse highlights an
example artifact.
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Figure 5. A comparison of a texture detail without (top) and a
texture detail with (bottom) correction of the yaw and roll
angles. The upper texture clearly shows an artifact (background)
that is compensated in the texture at the bottom.

o the angle of view is known for every image

e every point on the tower has to be shown in at least one of
the images

o two edges (left, right) of the tower must be displayed in
every image.

We are therefore confident that this method shows the potential
to be adapted for the processing of UAV images if the UAV is
equipped with a height sensor and the images are taken from a
sufficiently large distance.

Moreover, we showed the usefulness of this method for man-
aging and visualizing wind turbine towers and their damages in
an efficient way. Figure 6 shows an application that shows dam-
ages of a tower in an interactively rotatable/movable 3D model
and allows to show any damage or point on the tower in the
original image
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