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ABSTRACT: 

 

We have developed an automatic detection method for metallic corrosion in facilities by using a LiDAR point cloud. While visual 

inspections for monitoring facilities are widely conducted, the inspection result depends on human skill, and there is currently a 

shortage of inspectors. While automatic detection methods using an RGB image have been developed, such methods cannot be 

applied to inspections at night. Therefore, we propose a robust detection method that utilizes both 3D shapes and intensities in a 

LiDAR point cloud instead of RGB information. The proposed method segments the point cloud into a basic building material by 

using the 3D shape and then recognizes a point cloud with an abnormal intensity in each material as the corrosion area. We 

demonstrate through experiments that the proposed method can robustly detect corrosion spots in aging facilities during detection 

conducted both during the day and at night. 

 

 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

While visual inspections for monitoring facilities are widely 

conducted, the inspection result depends on human skill, and 

there is currently a shortage of inspectors. In this paper, we 

propose an automatic inspection method that objectively 

identifies the anomaly area from 3D shapes and intensities in a 

LiDAR point cloud. 

 

Recently, visual inspections to monitor facilities are widely 

conducted to prevent breakdown resulting from aging 

equipment (Koch, 2015). Metallic corrosion is one of the visual 

indicators for the deterioration level of facilities such as electric 

power and piping facilities. One can judge the necessity of 

replacing or repairing equipment by diagnosing its deterioration 

level on the basis of where the corrosion spots are located and 

the severity level for each spot. The precision of a visual 

inspection, which is susceptible to misdetection and/or 

misjudgment, strongly relies on the skill level of the inspectors. 

Furthermore, there is currently a shortage of inspectors, and 

training personnel requires a lot of time and cost (Bonnin-

Pascual, 2014). In light of this situation, there is a need for a 

diagnosis system that can automatically and objectively specify 

the corrosion spots and determine whether maintenance is 

required. 

 

Up to now, automatic corrosion detection has generally been 

performed using an RGB image taken with a digital camera. 

However, detection methods based on RGB information cannot 

be applied to inspection at night, when no workers are in the 

facility. Corrosion refers to deterioration on a metallic surface 

and is visually different from the surrounding surface. In this 

paper, we broadly refer to such corrosion as a surface anomaly. 

In the attempt to detect such anomalies, research has been done 

on deterioration detection for huge infrastructures, such as 

cracks and deteriorations in concrete, by using a point cloud 

with a light detection and ranging (LiDAR). A LiDAR acquires 

the geometrical 3D shape for a target by emitting a laser and 

obtains the reflected light intensity from the target surface. This 

process indicates where the intensity values in the deterioration 

spot are changed and shows the detection result based on the 

intensity. However, methods based on LiDAR detect the 

anomaly areas after manually trimming the detection target with 

the same building material, and therefore they cannot be directly 

applied to facilities that include complex structures such as 

pipes and steel bars. 

 

The unresolved issues for detecting surface anomaly using the 

above methods can be summarized as follows. 

 

 A method based on RGB values cannot be applied for 

operation at night. 

 A method using only intensity cannot be applied for a 

facility with complex structures. 

 

To tackle these issues, we propose a robust detection method 

that utilizes both 3D shapes and intensities in a LiDAR point 

cloud. By selecting intensities instead of RGBs, the proposed 

method can be operated even at night. Moreover, the method 

segments the point cloud into clusters with the basic building 

materials (e.g., steel bars and pipes) according to 3D shapes. In 

each cluster, points with an abnormal intensity are recognized 

as the surface anomaly. Thus, the method can be applied for a 

target with complex structures. 

 

The rest of this paper is organized as follows. Related works are 

briefly discussed in section 2. We explain the proposed 

methodology of the anomaly detection in section 3. In section 4, 

we describe experiments in which the algorithm is applied to a 

terrestrial LiDAR point cloud for aging facilities and report the 

results. We conclude in section 5 with a brief summary and 

mention of future work. 
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2. RELATED WORKS 

Examples of automatic corrosion detection using an RGB image 

include sophisticated methods that apply texture analysis, such 

as (Acosta, 2014) and (Medeiros, 2010), or deep learning, such 

as (Cha, 2018) and (Tao, 2018). However, these approaches 

based on RGB information cannot be applied to inspection at 

night because an ambient light source such as the sun or an 

illumination lamp is required to obtain the RGB information. 

Moreover, since the condition of the light changes the RGB 

values, other correction methodologies or training samples are 

required in order to ensure robust detection. 

 

There are several methods for corrosion detection that use a 

LiDAR point cloud. (Aijazi, 2016) proposed a method that 

estimates corroded regions on the hull of marine vessels by 

using RGB values on a point cloud colored with LiDAR and an 

integrated 2D camera. After the RGB values are converted into 

HSV color space, points belonging to the corroded region are 

specified by using a histogram of the HSV values. 3D positional 

information is then utilized to extract the region of interest and 

calculate the area of the corroded regions. However, this 

method assumes the acquisition of RGB information, so 

measures must be taken to address changes of the ambient light 

condition, the same as with processing 2D images. 

 

Interpreting corrosion as a surface anomaly in a broad sense, 

(Olsen, 2009) presented a detection method for volumetric 

changes and cracks in spalled concrete. The volumetric changes 

are estimated from positional information on a point cloud. 

While this study showed that the intensity values on the cracks 

decreased, no automatic methodologies for mapping the crack 

location were described. 

 

(Maiero, 2015) proposed a semi-automated method to detect 

deterioration on infrastructure surfaces by means of image 

segmentation. The boundary of the surface deterioration is 

segmented by an edge detection in a 2D image with a manually 

defined color space referred to as lightness. After segmenting 

the 2D image, boundaries are mapped on the 3D point cloud. 

However, this method is based on RGB information, so the 

concerns regarding changes to the ambient light remain. This 

paper also discussed the availability of the intensity, which is a 

reflection amplitude of the laser at the measured point. If we 

assume that this method including the usage of intensity is 

applied for monitoring a facility with several structures in one 

scene, every boundary between the structures is recognized as a 

boundary of the deterioration surface. 

 

When a surface anomaly causes bumps or distortions, spatial 

roughness is a candidate to evaluate it numerically. (Turner, 

2014) evaluated the roughness of soil surfaces on the order of 

the centimeter by using a point cloud with an airborne LiDAR. 

Corrosion generally has a thickness on the order of the sub-

millimeter, while a high-precision LiDAR reaches only the 

order of the millimeter. Therefore, the roughness cannot be used 

to identify the deviation of surface thickness induced by the 

corrosion. When severe corrosion distorts a surface’s shape, 

roughness is a useful indicator. However, in this work we focus 

on corrosion without shape changing. 

 

3. DETECTION OF SURFACE ANOMALY 

The proposed method detects areas with a surface anomaly by 

determining the points with an abnormal intensity in each 

cluster, which is segmented into the same building material 

according to 3D shapes. The intensity measured with a LiDAR 

depends on the characteristics of the absorption and the 

scattering of the laser for the irradiated surface. When a surface 

has an abnormal area including corrosion, the intensity values 

of the corresponding points temporally vary from a normal 

intensity, and it has a different value from the surrounding 

points. Our method detects the surface anomaly by utilizing the 

spatial difference of the intensity from surrounding points. 

 

Radiometric calibration based on the radar equation is widely 

used as a classification method that utilizes the LiDAR intensity. 

The reflected light intensity Pr is given by (Briese, et.al, 2012) 

 

      (1) 

 

with transmitted laser power Pt, the diameter of the receiver 

aperture Dr, the range between sensor and target Ri, the 

backscattering coefficient of the surface i, and the atmospheric 

and system transmission factors atm, and sys respectively. All 

parameters except Ri and i are constant during the scanning of 

a facility by terrestrial LiDAR. The surface anomaly appears in 

i, which strongly depends on the incident angle of the laser to 

the target surface. Therefore, the dependencies of Ri and the 

incident angle of the laser have to be considered.  

 

Figure 1 shows the processing algorithm of the proposed 

detection method. It consists of four blocks: “Clustering”, 

“Grouping clusters”, “Sub-clustering by incident angle”, and 

“Decision of anomaly points”.  The first three parts segment a 

point cloud into the basic building materials with approximately 

the same Ri and surface material (e.g., steel bars and pipes), 

along with the incident angle. The final one determines the 

anomaly points on the basis of the intensity. The processing 

details are explained in the following section. 

 

 

Figure 1. Processing flow of proposed method. 

 

3.1 Clustering 

This process segments the input point cloud into the basic 

building material for each object in the scene. In this paper, we 

use region-growing clustering (PCL, 2016) for this process. The 
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regions are grown from the angle between the normal vectors 

and the curvature differences from neighbor points. In the case 

of monitoring facilities, the inspection targets including 

corrosion are man-made objects. Such objects typically have a 

bump at the boundary between the basic building materials 

created by their joints. Thus, the region growing based on the 

discontinuity of normal vectors is suitable for the segmentation. 

Another general clustering method, Euclidean clustering (PCL, 

2016), which segments the point clouds located near each other 

into a cluster, is not suitable for this purpose because it often 

segments several building materials into the same cluster. 

 

Figure 2 shows the point cloud used in our explanation from 

here through section 3. Each cluster is filled with a different 

color, so the different steel bars and the pipes can be correctly 

segmented. 

 

 

Figure 2. Example of region-growing clustering for a facility 

with complex structures. 

3.2 Grouping clusters 

This process groups several clusters segmented by the clustering 

algorithm in the previous section, although they originally 

belong to the same building material. The point cloud of a 

facility with complex structures includes many occlusions. 

These occlusions split a building material into several clusters 

according to the region growing, so structures existing far from 

the sensor are subdivided into excessively small clusters. Our 

technique requires the cluster to be larger than the anomaly so 

that an area of lower intensity can be detected in the 

corresponding cluster. Therefore, this process estimates 

combinations of the clusters subdivided by the occlusions and 

recognizes them as a single cluster. 

 

The selection criteria of grouping clusters assumes a man-made 

object as the target. The following criteria are applied to all 

combinations of clusters. 

 

1. Two clusters are located on the same plane. 

2. Both clusters have common edges. 

3. Projected clusters exist within a short distance of each 

other. 

4. Occluded region exists between the clusters. 

 

3.2.1 Clusters on the same plane: The first process skims 

the combinations of clusters. When the split clusters belong to 

the same material, they mostly exist on the same plane. Thus, a 

criterion confirms whether the two clusters are located on the 

same plane after each cluster is approximated by a plane. The 

approximated plane of a cluster is defined as the plane located 

at a centroid of the cluster and perpendicular to the third vector 

of a principal component analysis (PCA). The combination of 

two clusters is selected as the candidate for the grouping, when 

an angle between the third vectors of the PCA and an averaged 

distance between the plane and points in another cluster is less 

than a certain threshold. By approximating the cluster by a 

plane, even curved objects (such as pipes) can be segmented. 

 

3.2.2 Existence of a common line for cluster edges: Since a 

man-made object tends to be rectilinear in shape, the edges of 

the split clusters exist in common lines. The fitted line of the 

edges for each cluster is regarded as the common line, when 

both an angle between the edge lines and an averaged distance 

between the line and edge points in another cluster are less than 

the threshold values, respectively. In this paper, more than two 

common lines are required for the grouping candidates. An 

exception is when one common line is detected, in which case 

the subsequent selection scheme described in section 3.2.3 is 

applied. 

 

3.2.3 Distance between projected clusters: When one of the 

edge lines disappears due to the occlusion, the criterion shown 

in section 3.2.2 drops off some candidates. Therefore, when one 

common line between the cluster edges is detected, the 

following selection scheme is applied. After projecting clusters 

along the common line, the distance between projected clusters 

is evaluated. In this paper, the distance is defined as an 

averaged value of closest distances between projected clusters.  

 

3.2.4 Existence of an occluded region between clusters: 

The final process confirms whether occlusions have split the 

clusters for the remaining candidates. After generating a point 

cloud that interpolates between the clusters using the common 

edge lines, the candidates remain when the point cloud exists 

between the interpolated point cloud and the sensor origin. 

Figure 3 shows an example of the cluster grouping described so 

far. In addition to the measured point cloud, the interpolated 

point cloud for the remaining combination candidates is shown 

as green points. The green points accurately fill the region 

occluded by the front objects, so the grouping algorithm can 

group the split clusters as a single cluster successfully. 

 

 

Figure 3. Result of cluster grouping. White points indicate 

“measured” and green points indicate “interpolated”. 
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3.3 Sub-clustering by incident angle 

For each cluster, this process segments the cluster into several 

sub-clusters whose points have a similar incident angle. The 

intensity acquired by a LiDAR depends on the distance between 

the sensor origin and the measured point, and also on the 

incident angle of the laser to the target surface. In the case of 

monitoring facilities, the former factor rarely changes the 

intensity value unless the cluster is sufficiently long in the depth 

direction. However, the latter one is a prominent issue in 

monitoring facilities, and pipes are the major examples. Figure 

4 shows a point cloud coloring only a cluster of the pipe with a 

gradient according to the intensity. Since the incident angle 

becomes shallow on the side of the pipe due to its cylindrical 

shape, the intensity on the side region decreases. Therefore, the 

intensity in the cluster is drastically changed by not only the 

surface anomaly but also the incident angle. 

 

In order to mitigate the dependency of the incident angle for 

determining the surface anomaly, an additional process divides 

the sub-clusters with a similar incident angle. The incident 

angle of each point is estimated from an angle between a vector 

from the sensor origin to the measured point, and the normal 

vector. According to the estimated incident angle, the points in 

the cluster are divided into sub-clusters. Figure 5 shows the 

sub-clustering result for a pipe and a flat structural steel. While 

the flat steel consists of one sub-cluster, the pipe is divided into 

several sub-clusters. 

 

 

Figure 4. Intensity image of a pipe. Blue points indicate a 

stronger intensity than red points. 

 

 

Figure 5. Example of sub-clustering by incident angle.  

3.4 Decision of the anomaly points 

This process, which is the final step, determines the points with 

abnormal intensity values in the sub-cluster. The intensities for 

points in a sub-cluster are almost the same unless the cluster 

contains an anomaly. Thus, the points separating from the 

normal intensity value in a sub-cluster can be regarded as areas 

that contain a surface anomaly. In this paper, we fix the range of 

the normal intensity for each sub-cluster on the basis of the 

histogram of the intensity. Figure 6 shows an intensity 

histogram of a sub-cluster that includes a partially corroded area. 

After fitting a normal distribution to the histogram, the intensity 

value deviating from the distribution is recognized as the 

surface anomaly. 

 

 

Figure 6. Histogram of intensity for partially corroded cluster. 

 

4. EXPERIMENTS 

We performed experiments using a LiDAR point cloud in order 

to evaluate the effectiveness of the proposed detection method. 

The measurement setup and the analysis parameters are 

presented in section 4.1, the experimental results and 

comparison with the conventional method are described in 

section 4.2, and the verification results for the robustness are 

shown in section 4.3. 

 

4.1 Experiment condition 

We captured aging facilities as the experiment target using a 

terrestrial LiDAR. A FARO FocusS350 was placed 5–20 m 

from the target and obtained point clouds 0.035 degrees per 

point to reach a sufficient number of points for analysis. 

 

The parameters used for the proposed method are summarized 

in Table 1. For region-growing clustering (discussed in section 

3.1), a radius for estimating a normal vector and two threshold 

values for recognizing same clusters must be specified. We set 

the former radius to a relatively large value to prevent dividing 

into excessively small clusters. The “Grouping clusters” process 

requires the angle and the distance for identifying whether two 

clusters are located on the same plane, along with a threshold 

value of the average distance between the projected clusters. In 

the “Sub-clustering by incident angle” process, a cluster is 

uniformly divided into sub-clusters according to a cosine value 

of the incident angle. The bin width of the histogram in the 

“Decision of anomaly points” process is selected according to 

the intensity resolution of FARO FocusS350. The abnormal 

intensity is defined as three sigma away from the fitted normal 

distribution in each sub-cluster. 
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Clustering Radius for normal 

estimation 

0.1 m 

 Threshold of curvature 

difference 

1.0 

 Threshold of difference 

of normal vectors 

3 degree 

Grouping 

cluster 

Threshold angle of 

clusters in the same 

plane 

10 degree 

 Threshold distance of 

clusters 

5 mm 

 Threshold distance for 

projected clusters 

0.05 

Sub-

clustering 

Division step for 

incident angle 

0.05 

Decision of 

anomaly 

Bin width for intensity 

histogram 

30 

 Abnormal intensity far 

from Gaussian 
3  

Table 1. Parameters of proposed method. 

 

4.2 Comparison with conventional method 

In this section, we compare the surface anomaly detection result 

by the proposed method with that of the conventional method. 

Figure 7(a) shows the RGB image of the experiment target 

captured by a digital camera. The target included un-painted 

corrosion areas everywhere. The unnecessary part in the 

background has been removed from the figure. Figure 7(b) 

shows the point cloud coloring according to intensity strength. 

As we can see, the intensity in the corroded region relatively 

decreased compared to the surrounding area. The point cloud 

belonging to the ground was removed since the ground is not 

the monitoring target. 

 

 
(a) RGB image 

 
(b) Point cloud colored with intensity 

Figure 7. (a) RGB and (b) intensity image of test target. Both 

images were captured in daytime.  

As the conventional method uses only the intensity, Figure 8(a) 

shows the result where the anomaly points are determined by 

thresholding a uniform intensity without the clustering. The red 

points indicate the detected surface anomaly. The threshold 

value was adjusted to detect the corrosion on the front structural 

steel. Besides the corrosion spots, the red points appeared 

everywhere since this facility includes several kinds of building 

material. For example, the surface with a shallow incident angle, 

the grayed small-bore pipe, and the plants reflected comparably 

lower intensity in this scene, and they were detected as the 

surface anomaly. The detection result by the proposed method 

is shown in Figure 8(b). In addition to the visual corrosion spots 

in Figure 7 (a), the spots on the obscure back structure were 

successfully detected. However, a few false positives remained 

in the frame surrounding the fence. These were caused by a 

failure of the region-growing clustering, which segmented the 

frame and the fence as the same cluster. 

 

Next, to confirm that our method was not affected by ambient 

light, we performed measurements for the same target again but 

this time at night. Figure 9(a) shows the RGB image captured 

by a digital camera. Since only the light at the front-left and the 

fluorescent lighting in the buildings were visually confirmed, 

corrosion spots could no longer be extracted from this image. 

Figure 9(b) shows the detection result of the proposed method. 

The LiDAR obtained the point cloud at the same time when the 

image in Figure 9(a) was captured. Partly because the LiDAR 

was located at the same position as it was in Figure 7, the same 

corrosion spots as in the daytime detection were successfully 

detected. 

 

 
(a) Thresholded by a uniform intensity 

 
(b) Proposed method 

Figure 8. Detection result based on intensity. Anomaly points 

are colored in red. 
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(a) RGB image 

 
(b) Proposed method 

Figure 8. Comparison of RGB image and result of the proposed 

method. Both images were captured at night. 

4.3 Robustness 

This section demonstrates the robustness of the proposed 

method through two experiments: one where we changed the 

viewing angle to the same target, and the other where we 

changed the target itself. 

 

In the first experiment, we investigated whether the proposed 

method could extract the same anomaly area from the point 

clouds captured from a different viewing angle. Due to the 

intensity dependency on the incident angle (described in section 

3.3), the intensity values change when the point cloud is 

captured from a different observation point. Figure 10 shows 

the point cloud colored according to the intensity from the 

different observation points. We can see that the intensity 

difference with and without corrosion is significant. Figure 11 

shows the results when we applied the proposed method to 

these point clouds. As we can see, it extracted almost the same 

anomaly area among all observation points. However, the result 

of observation point 1 (Figure 10(a)) missed the corrosion area 

on the upper-right pipe. As shown in Figure 10 (a), the intensity 

values in the missing area were almost equal to those of the 

surrounding points. Since the intensity gradient to the incident 

angle for the surface without corrosion was larger than the one 

with corrosion, the intensities in regions with shallow incident 

angles were close to each other. 

 

 
(a) Observation point 1 

 
(b) Observation point 2 

Figure 10. Intensity images for same target as section 4.2 

captured from a different angle. 

 

 
(a) Different angle 1 

 
(b) Different angle 2 

Figure 11. Detection results by proposed method for scene in 

Figure 10. 

 

In the second experiment, we investigated whether the proposed 

method could extract the surface anomaly for different targets. 

Figure 12 shows the RGB images of the new experimented 

target, which includes corrosion on pipes and structural steels. 

Figure 13 shows the results of applying the proposed method to 

this target. Both the corrosion spots visible in Figure 12 and the 

shadowed region in Figure 12(a) were also successfully detected.  
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However, false positives appeared in the back structures due to 

a failure of the region-growing clustering.  

 

We should point out here that the area detected as the surface 

anomaly is inconsistent with corrosion color in RGB images. 

Especially for corroded areas on a pipe, the detected area is 

mostly narrower than the area with corrosion color. This 

difference is usually caused by rust leachate, which means the 

intensity-based detection can specify the source area of 

corrosion. 

 

 

5. CONCLUSION 

We have proposed an automatic detection method that specifies 

the area with a surface anomaly by using a LiDAR point cloud. 

Our method extracts the anomaly area for a wide-area point 

cloud including several complex structures by using the 

intensity values in each building material. Its processing 

consists of region-growing clustering, a grouping algorithm for 

the split clusters caused by occlusions, and a sub-clustering 

based on the incident angle of the laser to the target surface. 

Experimental results showed that the proposed method robustly 

detected the area with a surface anomaly in an aging facility 

both during the day and at night. However, a few false positives 

appeared, mainly due to a failure when clustering building 

materials. A dedicated clustering algorithm for man-made 

objects will be required. 

 

 

 
(a) Different target 1 

 
(b) Different target 2 

Figure 12. RGB image for second test target. 

 

 
(a) Different target 1 

 
(b) Different target 2 

Figure 13. Detection result by proposed method for scene in 

Figure 12. 
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