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ABSTRACT:

In this paper, a combination of photogrammetric, computer-vision, and deep-learning approaches are proposed for accurate detection
and quantification of cracks from the images of concrete structures. In particular, a semantic segmentation approach using UNet is
applied, which is trained on a customized dataset of real-world images. Then, two photogrammetric methods are assessed for
reconstructing the full figure of the cracks from stereo images. One approach is based on detecting the dominant structural plane
surrounding the crack and projecting the crack pixels to this 3D plane. The second approach is based on matching the crack pixels
across two images. To be able to perform the 3D reconstructions accurately, a rigorous calibration of the intrinsic calibration
parameters of the cameras is performed. The relative orientation parameters between the stereo cameras are also determined in the
calibration procedure. Extensive experiments are performed to evaluate each phase of this detection-and-quantification workflow. In
general, cracks can be detected with an average precision of 87.48% and recall of 87.45%. They can be reconstructed in 3D with an
accuracy as high as 0.05 mm.

stereo ZED camera not only to eliminate the distortions but also
to determine the relative orientation parameters between the two
cameras.

1. INTRODUCTION

In order to maintain infrastructure in a healthy status, its
conditions must be inspected regularly (Lattanzi and Miller,
2017). In general, the task of inspection is comprised of two
components:  visual inspection and metric inspection
(Jahanshahi and Masri, 2013; Koch et al., 2014). While visual
inspection refers to visually examining condition of an asset and
identifying its damage, metric inspection refers to accurately
measuring the facts that may have an impact on the health
condition of the asset. In particular, optical and image-based
approaches have gained popularity for structural health
monitoring (Kerle et al., 2019) due various reasons: 1) they are
contact-less and non-destructive methods; 2) the equipment
(mainly cameras) for this purpose is inexpensive; 3) the full
figure of the structure’s damage or deformation can be provided
as a large field of view can be covered by cameras; 4)
techniques of computer vision, deep learning and machine
learning can be used to automate the inspection tasks; 5)
integrating these solutions with robotic systems allows real-time
collection and processing of information (Jahanshahi et al.,
2013; Lee et al., 2019; Mohan and Poobal, 2018).

In this paper, we propose a flow of image-based approaches for
automatic detection and quantification of the full figures of
cracks in concrete structures. Figure 1 shows two samples of

images captured from concrete sidewalks and building fagades.
The camera used in this study is a commercial stereo camera,
the ZED system (Stereo Labs, USA), as shown in Figure 2. The
cameras have sensors of 2208x1242 pixels and are equipped
with wide-angle lenses with a focal length of 2.8 mm. As such,
the effect of lens distortions can be significant in the quality of
stereo reconstruction. Therefore, the first specific objective of
this study is accurately calibrating the low-cost, wide-angle,
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Figure 2. ZED stereo camera (Image source: stereolabs.com)

Detecting cracks in concrete structures is generally a very
challenging task because the structure surface is covered by all
types of crack-like features, e.g., concrete joints, artificial
patterns, and shadow outlines (Figure 3). Therefore, the second
specific objective of this study is to implement an automated
image-based crack detection solution. Finally, if one can
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reconstruct the cracks in three dimensions (3D), the status of the
crack can be assessed. For instance, cracks longer or wider than
a certain threshold can be identified for immediate maintenance.
Therefore, the third specific objective of this study is 3D
reconstructing the full figure of cracks with sub-millimeter level
of accuracy. The task of 3D reconstruction from images is a
well-studied topic. Several photogrammetric approaches, either
based on stereo vision or structure from motion (SfM), exist to
complete this task. In the case of quantifying cracks, the “scale”
of 3D reconstruction is of paramount importance. The main
reason is that only a few millimeters of error can affect our
conclusion as to whether the crack represents considerable
damage or not. A stereo rig of cameras provides the advantage
of defining the object scale without the need for external
observations if the baseline of the stereo cameras is accurately
determined. In the case of SfM, one needs to access an external
observation (e.g., reference distances between tie points) to
define the scale (Jahanshahi and Masri, 2013; Kim et al., 2017).
Another solution to determine the scale is assuming that the
crack is lying on a planar surface whose 3D model relative to
the camera is known. This assumption is often correct as
concrete structures are piece-wise planar objects (Shan et al.,
2016).

SN

Figure 3. Examples of concrete structures with features that
visually resemble cracks; a) concrete joints; b) artificial
patterns; c) outlines of shadows from vegetations

2. METHODOLOGY
2.1 Camera Calibration

Although the manufacturer (Stereo Labs) provides the intrinsic
calibration parameters of the two cameras as well as their
mounting parameters, we found out that these parameters need
considerable improvement to yield millimeter-level of accuracy
in 3D reconstruction. Equation (1) describes the model used by
the factory for calibrating the cameras.
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K, .K;, .K;, : radial lens distortion coefficients

R . P : tangential lens distortion coefficients

In Equation (1), R is the rotation matrix from the object to the
camera coordinate system, C is the position of the image

perspective center in the object coordinate system, Xis the
homogeneous coordinates of the object point, and (x, y) are the

observations of the point in the image. (Cx, Gy, fy, f;) are the
interior orientation parameters. These equations were integrated
into a self-calibrating free-network bundle adjustment (Shahbazi
et al., 2017) for calibrating the cameras. Relative orientation
(RO) stability constraints were also added to the self-calibrating
bundle adjustment. For an image pair, &, the relative rotations

R; and translations I'lr between the left camera and right

camera can be denoted as follows, where / denotes the left
camera and r denotes the right camera in the stereo rig.

I _pl T
R = R% (R)
(@)

I_nl
=R (1 1)

This equation must hold for all image pairs. That is, for a
different image pair, s, the stability of the RO parameters
obliges Equation (3). Despite being in the form of translation
vectors, these equations involve rotation matrices too; i.e., they
constrain both the lever arm offsets and the boresight angles.

e 5

1 _ o
RJ (r) -1, )= RF (1 —17)

Our experiments showed that the model of Equation (1) was
insufficient to accurately model all the distortions in the stereo
images of the ZED camera. As such, in another calibration
attempt, the collinearity equations of the perspective projection
model were augmented with five radial lens distortion terms as
well as affine sensor distortion terms (Equations (4) and (5)).

_ S Y _ 0
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N @
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The interior orientation parameters of the cameras include
(Cx’cyaf)’ and ((ngy) are the distortion corrections that are

modeled as follows.
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DD, decentering lens distortion parameters

m

s ,8, : sensor affine distortion parameters
lm 2m

However, unmodelled systematic errors in the residuals along
the x-direction could still be observed with this calibration
model. Therefore, inspired by the models presented in (Lichti et
al., 2015), a quartic polynomial as a function of x (Equation (6))
was added to the distortion terms in the x-direction while
considering only three radial lens distortion coefficients. This
model significantly reduced the systematic errors in the
residuals. Further discussions around this subject will be
provided in Section 3.

poly _ 2 3 4
Oy, =83, -y ) sy (x-cy ) s (x-c ) (6)

2.2 Crack Detection

In this paper, a semantic segmentation approach based on
convolutional neural networks is used for detecting cracks from
RGB images. In particular, the UNet network (Ronneberger et
al., 2015), is applied. The architecture of UNet includes two
paths. The first path is the encoder that captures the global
context of the image. The second path is the decoder, which
allows localizing the object precisely. Since cracks are fine
objects with a semantic context in a concrete background, this
network architecture is effective for crack segmentation.

In order to train this network, an adequate number of annotated
images is required. There are a few datasets publicly available
for crack segmentation. Still, these datasets do not represent the
challenging scenarios in real life and only consist of very close-
range and simple images. Besides, studies of crack
identification are conventionally applied to low-resolution
images up to 227x227 pixels (Dung and Anh, 2019). To address
this data-adequacy challenge, a new dataset is collected and
labeled. The dataset consists of 670 challenging RGB images
and their corresponding semantic segmentation labels. For
further enhancement, this dataset is merged with a public
dataset available on Mendeley Data (Ozgenel, 2019), which
includes 458 simpler images. The overall dataset is resized to
512x512 pixels for our experiments. This dimension of training
images is considered high-resolution compared to the existing
models in (Neff et al., 2017) and (Dung and Anh, 2019), which
use 128x128 and 227x227 image sizes only. As the images in
the training set are resized to 512x512 pixels, some information
is lost in high-detailed scenes. As a result, before resizing the
images, for every training image, a few patches of size 512x512
pixels are manually sampled. These patches are then added to

the training set as well. Adding these patches to the training set
improves the segmentation method, specifically for detecting
smaller cracks. Randomly, 80% of our original dataset (80% of
670 images), as well as 80% of the Mendeley dataset (80% of
458 images), are used to form the training set, resulting in a
total of 902 images. Then, the corresponding patches of each
training image from our share of the original data are also added
to the dataset. For testing the performance of our segmentation
approach, an independent set of 226 images (with no patches) is
used. This testing set consists of the remaining 20% of our
original dataset and the remaining 20% of the Mendeley dataset.

In order to reduce the risk of overfitting, data augmentation
techniques should be used (Krizhevsky et al., 2012). In this
paper, to augment the training dataset, affine transformations
including random rotations from -45° to 45°, scaling from 0.8 to
1.2, and shear from -15° to 15° are used. Moreover, a random
four-point perspective transformation is applied. As a result of
this data augmentation, the training dataset is doubled in size.

The input/output layers of the original UNet network are
adjusted for high-resolution input/output, i.e., 512x512 pixels.
The UNet model is trained for 220 epochs with a batch size of
4. In each epoch, the network is iterated through all the training
images. Adam Optimizer is used as the update rule with the
learning rate of le-4, beta-1 of 0.9, and beta-2 of 0.999. All the
other parameters of the network are similar to the original work
of Ronneberger et al. (2015).

It is worth mentioning that for preparing the ground truth of our
dataset, an annotation algorithm is developed following the
work of Jahanshahi et al. (2013) based on morphological
opening and closing operations. This approach makes the
annotation task semi-automatic, i.e., the user must only clean up
the false positive crack pixels detected by the algorithm instead
of manually labeling the complete figure of the crack.

2.3 3D Reconstruction of Cracks

Two photogrammetric approaches are assessed to reconstruct
the detected cracks in 3D. The first 3D reconstruction approach
assumes that the cracks are lying on a planar object. To
implement this approach, first, salient features from the stereo
images are detected using Harris corner detector (Derpanis,
2004). Their descriptors are extracted using SURF approach
(Bay et al., 2008), and they are robustly matched across the two
images given the knowledge of the relative orientation
parameters (obtained through the -calibration). Then, the
calibration parameters (including the RO parameters) of the
stereo cameras are used in a simple spatial intersection process
to determine the 3D coordinates of these tie points. Next, using
Random Sample Consensus (RanSaC), the dominant plane,
which best fits the tie points immediately surrounding the
detected crack, is determined. Finally, the collinearity equations
for crack pixels observed in the left image along with additional
constraints to enforce the crack points to lic on the dominant
plane are solved (with zero degrees of freedom) to determine
the 3D coordinates of each point (Forstner and Wrobel, 2016).
The main advantage of this approach is its speed since images
do not need to be undistorted and rectified. Moreover, the crack
needs to be detected only in the left image. Our experiments
show that a crack averagely consisting of 50,000 pixels can be
reconstructed in 0.06 seconds (CPU usage only). The main
drawback of this approach is that the depth of the cracks can no
longer be estimated.
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In the second approach, no assumption about the shape of the
concrete structure is made. Instead, the detected pixels from the
left and right images are matched to each other. This method is
more time-consuming since we need to not only perform the
deep-learning-based detection on both images but also must
complete the matching process for all the crack pixels. To
facilitate matching, images are first undistorted and then stereo-
rectified using the method of Fusiello et al. (2000). As such
corresponding epipolar lines become parallel, and the search
space for matching becomes very small. Basically, for each
crack point from the left image, the corresponding crack point is
one of the detected pixels that lie on their corresponding
epipolar line in the right image. Therefore, matching can be
done faster and with fewer errors. The main advantage of this
approach is that, for larger cracks, the depth of the cracks can
also be estimated. On the other hand, it takes a longer time for
rectifications, and it is prone to matching errors.

3. EXPERIMENTS AND RESULTS
3.1 Calibrations
In order to self-calibrate this stereo camera system, a total of 92

image pairs were captured from the multi-depth, multi-
resolution test-field of Figure 4.

> 4

Figure 4. The calibration test-field

The test-field included 132 targets, and a total of 16760
observations were made in the calibration images. An
independent set of 25 image pairs were also captured to check
the accuracy of the calibrations. The network configuration for
the calibration and the test images are shown in Figure 5 and
Figure 6, respectively. When calibrating the camera with the
model of Equation (5), an unmodelled error-pattern was noticed
in the residuals. This pattern specifically existed in the residuals
along the x-direction, and a high correlation between them and
the x-coordinates was observed (Figure 7). A similar pattern,
with residuals of larger magnitudes, was also observed when
using the calibration model suggested by the manufacturer
(Figure 8). As discussed in Section 2.1, the model of systematic
errors in the x-direction was augmented with a quartic
polynomial. As a result, the unmodelled systematic errors in the
residuals were almost removed (Figure 9). The root-mean-
square (RMS) and standard deviation (StD) of the magnitude of
the residuals were also reduced to 0.05, 0.04 pixels from 0.08,
and 0.04 pixels, respectively. In the calibration process, the
relative orientation parameters between the two cameras were
also estimated with a precision of 0.67 mm for the baseline
vector and 0.017 degrees for the relative rotations. In the check
images, the RMS of the residuals was 0.12 pixels using our
calibration approach. Using the manufacturer parameters
resulted in an RMS error of 1.18 pixels. The distribution of the
residuals is shown in Figure 10. The RMS of the errors of 3D
stereo reconstruction with our calibration parameters was only
0.9 mm while it was 252 mm with the manufacturer’s
parameters. These accuracies are measured based on our pre-

knowledge of the exact size of the checkerboard pattern (Figure
10).

Z(m)

Figure 6. Network of check image pairs
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Figure 7. Unmodelled systematic errors in the residuals along
the x-direction using the photogrammetric model including five
radial lens distortion coefficients as described Equation (5)
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Figure 8. Unmodelled systematic errors in the residuals using
the manufacturer’s calibration model as described in Equation
(1); a) magnitude of the residuals; b) x-component of the
residuals
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Figure 9. Residuals after adding the quartic distortion terms
described in Equation (6)

a b
Figure 10. Residuals from the check data magnified with a
factor of 500; a) our calibration; b) manufacturer’s calibration

3.2 Crack Segmentation

In order to assess the performance of our UNet-based
segmentation approach on the testing set, the average precision,
recall, F1-score, and the Intersection over Union (IoU) measures
were calculated. These results are shown in Table 1. The
average F1-score was calculated by taking the mean of the F1-
scores computed for each test image. The required time for
detection on a test image in average is 60 milliseconds using a
machine equipped with a GeForce GTX 1080 Ti graphical
processing unit.

Precision | Recall | F1 IoU
87.48 87.45 | 85.71 | 58.31
Table 1. Performance of UNet for crack segmentation

One of the most recent studies in the field of concrete crack
segmentation (Dung and Anh, 2019) claims to outperform the
state-of-the-art by gaining a maximum Fl-score of 89.3% on
very close-range images with a size of 227x227 pixels, in which
cracks occupy a considerable area in each image. By achieving
an Fl-score of 85.71% using UNet, our proposed approach
compares well to the state-the-art, with the benefit of being able
to segment finer cracks with more challenging backgrounds
captured in larger-size images. A few results of the test dataset
are shown in Figure 15. As can be seen in this figure, the
network successfully distinguishes between the crack-like
features, such as concrete seams, and the real cracks even in
complex scenarios. It is worth mentioning that although the test
images were resized to 512x512 pixels to be fed to the
segmentation network, the output masks were resized back to
their original size for comparison with the ground-truth labels
and measuring the performance variables of Table 1.

3.3 Crack quantification

To assess the performance of the suggested 3D reconstruction
approaches, 10 stereo pairs were captured, as shown in Figure
16. The images were taken from 1 to 2 meters away from
sidewalks. The average spatial resolution in these images was
0.914 mm. These images were fed to the segmentation network,
and their cracks were detected. To collect some ground-truth
data about the 3D structure of the cracks, few checkmarks were
painted on the ground along the crack’s length and width. The
actual distances between these marks were manually measured
with a caliper. In 10 pairs, a total of 47 ground-truth distances
were collected. The checkmarks were distributed evenly along
the cracks. Figure 11 shows a sample image with the
checkmarks. Figure 12 displays a sample stereo pair after
rectification; it can be seen than non-linearities due to
distortions were well adjusted. Figure 13 presents the full extent
of the crack in this stereo pair, which was reconstructed in 3D
using the planar approach (the matching approach results in a
very similar model).

e o T -~
. o &

Figure 11. Zoomed-in view of a test image with checkmarks for
assessing the accuracy of 3D reconstructions
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The proposed approach, based on the planar assumption,
resulted in reconstruction errors with an RMS of 1.23 mm and
StD of 1.27 mm. The second approach, based on stereo
matching and spatial intersection, resulted in errors with an
RMS of 0.86 mm and StD of 0.72 mm. This approach resulted
in a slightly higher 3D reconstruction accuracy. In both
methods, the accuracy on some checkmarks was as high as 0.05
mm. The reconstruction accuracies from both methods were
reasonable considering the average spatial resolution of 0.91
mm and the limited precision of checkmark detection in the
images. We also noticed that the ZED camera always caused a
sort of blur in the right edge of all left images and the left edge
of all right images, as shown in Figure 14. Since many of our
checkmarks were observed close to image edges, this blurring
issue could have also affected the check accuracy.

b

Figure 12. Sample rectified stereo images (the original images
belong to the 7" row of Figure 16)
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Figure 13. 3D model of a crack that was detected from the
images of Figure 12

b
Figure 14. The camera generates a sort of blurring effect on the
edges of the images; a) right edges of both images, where the
left image is blurred; b) left edges of both images, where the
right image is blurred

4. CONCLUSIONS

In this paper, a complete image-based workflow for identifying
and characterizing cracks in concrete structures was proposed
and evaluated. The crack detection approach was based on
convolutional neural networks. Crack quantification was
performed using photogrammetric approaches. The proposed
approaches were applied to the stereo images captured by a
commercial camera, ZED System. This wide-angle camera
needed to be calibrated with additional parameters to yield
acceptable accuracies. It was shown that our proposed
calibration approach improved the accuracy by 96% compared
to the manufacturer’s calibrations. The proposed detection
approach was able to segment cracks with a precision of
87.48% and F1-score of 85.71%. Despite the state-of-the-art, in
which similar accuracies are achieved for detecting simple
cracks from simple backgrounds in low-resolution images, our
approach was tested on high-resolution images with complex
cracks and backgrounds. In terms of 3D reconstructing the
cracks, an RMS error of 0.86 mm was observed, which was
reasonable given the spatial resolution of our test images and
the limited precision of our checkmarks.
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with the results of crack ségmentation; left column shows the RGB images and right column shows
the detection results
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