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ABSTRACT: 

 

The use of deep learning (DL) with convolutional neural networks (CNN) to monitor surface water can be a valuable supplement to 

costly and labour-intense standard gauging stations. This paper presents the application of a recent CNN semantic segmentation 

method (SegNet) to automatically segment river water in imagery acquired by RGB sensors. This approach can be used as a new 

supporting tool because there are only a few studies using DL techniques to monitor water resources. The study area is a medium-

scale river (Wesenitz) located in the East of Germany. The captured images reflect different periods of the day over a period of 

approximately 50 days, allowing for the analysis of the river in different environmental conditions and situations. In the experiments, 

we evaluated the input image resolutions of 256 x 256 and 512 x 512 pixels to assess their influence on the performance of river 

segmentation. The performance of the CNN was measured with the pixel accuracy and IoU metrics revealing an accuracy of 98% 

and 97%, respectively, for both resolutions, indicating that our approach is efficient to segment water in RGB imagery. 
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1. INTRODUCTION 

It is crucial that measures must be adopted to maintain the 

safety of the population in growing and developing cities. The 

process of urbanization associated with inappropriate planning 

can have consequences affecting the environment and society's 

quality of life. For instance, urban floods are a concern because 

they can cause severe effects, such as the death of humans, 

socio-economic impacts and material loss. Yin et al. (2015) 

estimated that catastrophic floods coming from various sources 

(river, rain, coastal) caused 79 deaths, an economic loss of 

approximately US$ 1.86 billion and social impacts in urban 

areas of Chinese cities in July 2011. To cope with these issues, 

it is essential that preventive approaches, such as improved and 

densified monitoring systems, should be developed to minimize 

their impact. The use of computer systems combined with data 

information from cities, rivers, weather and others can 

contribute to monitoring and control the urban flood events.  

 

Due to the increased capacity to evaluate data using 

computational resources, Zhu et al. (2017) reports the 

application of deep learning (DL) in remote sensing, leading to 

a growth in the number of papers relating to the use of DL in 

remote sensing. Several review articles were published in the 

last years regarding the application of DL to remote sensing 

image analysis. Ma et al. (2019) conducted a comprehensive 

review of all major sub-areas of the remote sensing field 

connected to DL; Li et al. (2020) showed the progress of the 

recent DL based object detection method in both the computer 

vision and earth observation communities. 

 

Aldebert et al. (2017) mentioned that convolutional neural 

network (CNN) as one DL method is the most applied in image 

analysis, and it is able to learn powerful and expressive 

descriptors from images for a large range of tasks: 

classification, segmentation, detection, etc. For instance, Santos 

et al. (2019) applied object detection DL methods to detect tree 

species in RGB imagery obtained by unmanned aerial vehicle 

(UAV).  

 

A recent semantic segmentation method and a state-of-the-art 

CNN structure is SegNet. Yu et al. (2017) state that semantic 

segmentation makes it easier to understand images because it 

segments images into semantically significant objects and 

assigns each part one of the predefined labels. Thereby, 

different objects from remotely captured images can be 

extracted simultaneously. Segnet method has been applied in 

several remote sensing applications. (Du et al., 2018) exploited 

SegNet technique to classify and extract cropland in high 

resolution remote sensing images, showing that the proposed 

approach efficiently obtained accurate results (98%) for the 

segmentation task. 

 

The integration of DL and remote sensing in the field of 

hydrometry is promising, given that remote sensing seeks to 

obtain information from the Earth's surface without direct 

contact from the object of study, thus avoiding endangering 

people and equipment during flood events, and that DL makes 

automatic measurements possible with high speed and accuracy.  

For instance, Pan et al. (2018) demonstrated promising results 

from computer vision systems combined with CNN for river 

level estimation.  
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To the knowledge of the authors, there are only few studies 

related to the use of DL techniques to densify the monitoring 

possibilities of (urban) flood events, yet. Nogueira et al. (2018) 

focused on identifying flooding area from high-resolution 

imagery using DL approaches; Feng and Sester (2018) 

described a framework to collect, process and analyse pluvial 

flood relevant information from social media platform applying 

DL approaches on user generated texts and photos. 

 

Such a monitoring tool could also be applied to potentially 

support real-time flood warning capabilities as the hardware 

could be simple cameras and thus cost-effective to densify low-

cost gauging stations. The use of DL with CNN in remote 

sensing to monitor surface water can be a valuable supplement 

to costly and labour-intense standard gauging stations.  

 

The main aim of this paper is to automatically segment river 

water in RGB imagery using SegNet semantic segmentation 

method. We conducted experiments in a river in the East of 

Germany using RGB imagery collected by a low-cost camera. 

For the segmentation task, we evaluated different input image 

resolutions to assess their influence on the river segmentation 

performance of SegNet method. 

 

The rest of the paper is organized as follows. Section 2 presents 

the methodology adopted in this study. Section 3 presents and 

discusses the results obtained in the experimental analysis. 

Finally, Section 4 summarizes the main conclusions. 

 

2. METHODOLOGY 

2.1 Image Dataset 

The observed river is the Wesenitz featuring a medium scale-

catchment located in the East of Germany. A low-cost 

Raspberry Pi camera sensor was installed 4 m above the ground 

at a lantern to monitor the river from an oblique perspective 

(Figure 1). 

 

 

Figure 1. Position of the camera used at the Wesenitz river. 

 

The dataset was acquired with the 5-megapixel sensor 

Raspberry Pi Camera Module v2.1 connected to the 

corresponding single-board computer Raspberry Pi Zero. The 

image resolution is 2592 x 1444 pixels and the pixel pitch 

amounts 1.4 μm. The camera is equipped with a fixed lens with 

a focal length of 2.9 mm resulting in a wide field of view at the 

investigated river section. The Pi camera was calibrated prior to 

the installation using a scaled temporary calibration field. Image 

sequences of 5 images are captured every half hour during 

daylight (Eltner et al., 2018). The captured images reflect 

different periods of the day over a period about 50 days 

allowing for the analysis of the river in different conditions and 

ambient situations. A total of 3,407 images have been annotated 

from 2017-03-30 to 2017-05-16 using the LabelMe Software. 

Figure 2 shows examples of original and labelled images. 

 

 
(a) 2017-03-30  

 
(b) 2017-04-23 

 
(c) 2017-05-16 

   

 
(d) 2017-03-30 

 
(e) 2017-04-23 

 
(f) 2017-05-16 

Figure 2. Examples of original and labelled images from the 

dataset.  

 

2.2 Semantic Segmentation Method 

The CNN SegNet by Badrinarayanan et al. (2017) was used to 

segment the pixels into water area and background in imagery 

acquired by the Raspberry Pi RGB sensors. SegNet consists of a 

symmetrical encoder-decoder followed by a pixel-wise 

classifier as shown in Figure 3. The encoder network is similar 

to the convolutional layers in VGG16 (Simonyan and 

Zisserman, 2014). These convolutional layers are designed for 

image classification, and SegNet encoder network is 

significantly smaller and easier to train than many other 

architectures because the fully connected layers of VGG16 are 

removed. The higher resolution feature maps at the deepest 

encoder output are acquired when the fully connected layers are 

discarded. Therefore, the number of parameters in the SegNet 

encoder network reduces significantly. In the encoder network, 

convolutions are performed, and a set of feature maps are 

produced. In other words, this step consists of one or more 

convolutional layers which then are batch normalized and an 

element-wise rectified-linear non-linearity (ReLu) is applied. 

Then, a max-pooling is used to achieve translation invariance 

over small spatial shifts in the input image. 

 

The decoder network is composed by convolutional and a set of 

upsampling layers, and the memorized max-pooling indices 

from the encoder feature map(s) are used to upsample the low-

resolution feature map(s). Since the upsampled maps are sparse, 

convolution layers are applied, producing dense feature maps. 

In each of these maps a batch normalization is used. The detail 

preservation can be valuable to delineate what is water area and 

background with good accuracy. At the end, the decoder output 

has the same resolution as the input image, and a multiclass 

softmax classifier is applied (Garcia-Garcia et al., 2017). The 

multi-class softmax classifier activation function produces a 

probabilistic value for each pixel-wise classification, where the 

predicted segmentation matches to the most likely class at each 

pixel. 
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Figure 3. SegNet architecture composed of encoder and 

decoder. The encoder extracts a low-resolution feature map and 

the decoder upsamples it to obtain a pixel-wise classification. 

Source: adapted from Badrinarayanan et al. (2017).  

 

2.3 Experimental Setup 

During the experiments, we evaluated the input image 

resolutions of 256 x 256 and 512 x 512 pixels to assess their 

influence on the river segmentation performance. Garcia-Garcia 

et al. (2017) mentioned that the integration of information from 

various spatial scales are required to deal on semantic 

segmentation. Finding the most suitable image resolution is 

necessary to balance local and global information. When these 

steps are done properly, it is possible to achieve good pixel-

level accuracy and to deal with local ambiguities. 

 

The image dataset was randomly divided into training (60%), 

validation (20%), and test datasets (20%). The training dataset 

is used to train the SegNet. The validation dataset was used to 

determine the learning rate, which defines how the weights are 

adjusted in the CNN, and to estimate the best suitable number of 

epochs during training to reduce the risk of overfitting. Finally, 

the test dataset is used to report the success of the trained 

network. ImageNet (Deng et al., 2009) was used to determine 

the pre-trained weights of the SegNet encoder. This procedure is 

known as transfer learning. The stochastic gradient descent 

optimizer was used for training with a learning rate of 0.001. 

The number of epochs at which the loss function stabilized in 

training and validation datasets was 30. 

 

The performance of the river segmentation was measured with 

the pixel accuracy and Intersection over Union (IoU) metrics. 

The pixel accuracy shows in percentage the pixels that were 

correctly classified, while the IoU calculates the ratio between 

the number of intersecting pixels of ground truth and predicted 

mask and the number of unified pixels of both masks.  

Data processing was performed with a desktop computer on the 

Ubuntu 18.04 operating system (Intel(R) Xeon(R) Central 

Processing Unit (CPU) E3-1270@3.8Ghz, Random Access 

Memory (RAM) 64 GB, NVIDIA Titan V Graphic Processing 

Unit (GPU) 5120 Compute Unified Device Architecture 

(CUDA) cores, 12 GB main memory). The algorithms were 

coded with Keras-Tensorflow, an open source neural network 

library written in Python. 

 

3. RESULTS AND DISCUSSION 

The loss function of SegNet showed indications of overfitting 

for the resolution of 256 x 256 pixels (Figure 4.a). However, 

using a resolution of 512 x 512 pixels (Figure 4.b) indicated that 

overfitting was mitigated because the loss values in training and 

validation were similar. Generally, the loss function stabilized 

with the chosen number of 30 epochs and increasing the 

resolution from 256 x 256 to 512 x 512 further improved the 

segmentation. These results show that low resolution input 

images make the learning of the CNN more difficult. 

Furthermore, it has to be noted that the higher the resolution of 

the image is, up to a certain limit to consider memory 

constraints, the more important details can be learned. 

 

 
256 x 256 pixels  

 
512 x 512 pixels 

Figure 4. Loss function for SegNet using resolutions of 256 x 

256 and 512 x 512 pixels. 

 

Assessing the performance of the DL classification with the 

pixel accuracy reveals an accuracy of 99% considering 256 x 

256 pixels resolved images (Table 1). The accuracy improves 

even further when the resolution is increased to 512 x 512 

pixels.   

 

Resolution 

 

Pixel Accuracy 

Background River 

256 x 256 0.9880 (±0.006) 0.9890 (±0.004) 

512 x 512 0.9920 (±0.005) 0.9916 (±0.004) 

Table 1. Results using pixel accuracy in the subset of images. 

 

The IoU reveals for both resolutions an accuracy of about 98%. 

However, the results are slightly better for the higher resolution 

images (Table 2). Both accuracy estimates, pixel accuracy and 

IoU, indicate that the method used is efficient to segment water 

in low-cost camera images. 

 

Resolution 

 

IoU 

Background River 

256 x 256 0.9750 (±0.005) 0.9795 (±0.005) 

512 x 512 0.9821 (±0.005) 0.9852 (±0.005) 

Table 2. Results using IoU in the subset of images. 

 

Due to numerous adversities (changes of weather, lighting 

conditions, and camera position) it is required to assess the 

learning generalization. Figures 5 and 6 show the segmentation 

of test images in different circumstances, displaying that river 

pixels were classified accurately.  

 

 
  

 
(a) RGB  
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(b) SegNet 

 
 

Figure 5. Examples of different illumination conditions in (a) 

original images; (b) SegNet segmented images. 

 

 
  

 
(a) RGB  

 
 

 
  

 
(b) SegNet 

 
 

Figure 6. Examples of different point of views in (a) original 

images; (b) SegNet segmented images. 

 

4. CONCLUSIONS 

In this study, we present the application of a semantic 

segmentation method (SegNet) to automatically segment river 

water in imagery acquired by RGB sensors. The results for pixel 

accuracy and IoU indicated that the SegNet method is useful to 

segment the water in imagery, also considering different image 

resolutions. In addition, although there was a high number of 

adversities, the segmentation of test images in different 

circumstances was performed accurately with errors below 

2.5%. In future works, it should be evaluated how well it is 

possible to replicate this segmentation at different rivers. In 

addition, water segmentation could be applied to obtain various 

information from a body of water, such as level, speed and 

discharge. For instance, there are already works related to image 

based approaches applied successfully to camera gauges, and 

thus being possible to extract water level information 

automatically. Consequently, it could improve traditional 

methodologies and becoming a new source of information. 
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