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ABSTRACT:

Anomaly detection in imagery has widely been studied and enhanced towards the requirements of today’s available sensor data,
whereas many of them require a background estimation in order to identify an anomaly or target. In this paper, we examine
an analysis of simulation as background estimator for anomaly detection in thermal images of urban sceneries. We generate a
surface temperature image and a sensor-like infrared image by combined image and elevation data and a thermal model suited
for large scenes and fast simulation. With the simulated thermal image, we define anomalies as deviation between measurement
and simulation. Pixel-wise image differencing of the measured and simulated temperatures and infrared images respectively are
performed and evaluated concerning the full images as well as class-wise, including a material classification of the observed area.
Our approach shows complementary results compared to RXD application on the measured infrared images. Metal roofs which
appear warm in the thermal image and are not visually distinguishable from the residual image are detected.

1. INTRODUCTION AND PREVIOUS WORK

Anomaly detection algorithms have widely been studied
and enhanced towards the requirements of today’s available sen-
sor data. The field of application thereof spans from civilian
to military. Whilst the latter may deal with target detection in
defense systems, e.g. small targets sensed by a shipborne warn-
ing system (Hui et al., 2016), or vessel detection (Islam et al.,
2009), civilian applications include fire detection (Guo et al.,
2016, Kato, Nakamura, 2017), earthquake analysis (Wu Lixin
et al., 2006), urban heat islands (Sharma, Joshi, 2014), and
many more. As much as the possible fields of application dif-
fer, as much differ the underlying detection techniques (Chan-
dola et al., 2009). Many of them base upon machine learning,
resemble classification approaches and try to define a normal
behaviour in order to find data points deviating from it. When
it comes to anomaly detection in images visualizing sensor data
from other spectral ranges than the visible, statistics-based tech-
niques appear to be the method of choice (Guo et al., 2016).
The most commonly known statistical anomaly detector is the
Reed-Xiaoli-Detector (RXD) (Reed, Yu, 1990), on the basis
of which many further developments had been published un-
til today, including modifications towards long-wave infrared
(LWIR) imagery. The necessary assumption of the RXD is
that an anomolous object appears rare in an image and shows
a significant deviant signature from the background, which is
assumed to follow a Gaussian distribution. However, in real
data, the background does often not supply this condition due
to a complex scene composition, shadows, reflections, or other
clutter, which causes the RXD to result in a high false-alarm
rate (Gao et al., 2014). Many RXD enhancements deal with
refinement of either background or the target-background sep-
aration. The local-RXD (Gorelnik et al., 2010), for example,
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only takes into consideration the nearest surrounding area of
the pixel under test (PUT). The BACON algorithm (Billor et
al., 2000) iteratively refines the background by representing it
by a subset of pixels which undergoes an outlier detection pro-
cedure. The PAD method (Gao et al., 2014) evaluates a PUT not
only in relation to the background pixels, but also in relation to
the anomaly set of pixels to achieve a lower false-alarm rate.
Separating target and background in feature space is used by
the kernel-RXD (Heesung Kwon, Nasrabadi, 2005), which was
also enhanced towards LWIR images (Mehmood, Nasrabadi,
2011). In the domain of LWIR imagery, concepts such as Ma-
halanobis distance (Islam et al., 2009) or visual saliency (Hui
et al., 2016) were used similar to the visual domain to detect
anomalies in a sea-sky-background. In quite unstructured en-
vironment, like a sea surface, it may appear feasible to ac-
complish the background estimation from random distributions
(Yang et al., 2001), and the vast majority of unsupervised detec-
tion methods have in common that the background estimation is
based on the image under test within which an anomaly would
be detected. With usage of neural networks, background esti-
mation based on a number of training data is enabled. Thereof
deduced approaches may thus appear feasible in urban environ-
ments consisting of regions with piecewise constant geometri-
cal (normal vector) and physical properties. (Khan et al., 2009)
used a probabilistic neural network (PNN) as clutter rejector
for background refinement. The PNN is trained by a set of IR
images extracted from real IR video sequences, and a region-
of-interest (ROI) selection on the image under test is carried
out by a procedure of morphological operations. These ROI are
then evaluated by the PNN as either clutter or target. A con-
volutional neural network was examined in (d’Acremont et al.,
2019) for target detection in mid-wave infrared images. The
training data was supplied by simulation of IR images using
OKTAL-SE as well as real IR video sequences. Both neural-
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network approaches require a preceeding target labeling in the
training datasets, which makes them difficult employ if appro-
priate training data is not available or if a target can not be de-
fined.

The unsupervised methods including the RXD and its deriva-
tives share one drawback when it comes to LWIR imagery. Re-
garding a thermal image, i.e. a LWIR image, a conspicuous sig-
nature that falls into their detection range is mainly caused by
a temperature difference. Depending on the surface, however,
such a temperature difference might be hidden or falsely gen-
erated, i.e. by camouflage or polished metallic surfaces. These
signatures will be missed or falsely classified. Furthermore, the
anomaly detection schemes do not take into account the scene-
based context of a thermal image, i.e. how the scene composi-
tion influences the temperature distribution. In this paper, we
aim to tackle these issues. We present a novel approach for
anomaly detection in LWIR imagery, where a synthetic thermal
map of the observed scene is simulated. The synthetic thermal
image represents the background and possible anomalies are
found by comparison to the actual LWIR image under test. Our
study focuses on the basic usage of simulation for anomaly de-
tection, and outlines the similarities and differences to conven-
tional anomaly detection by application of the RXD on LWIR
images. To the best of our knowledge, simulation of thermal
background for anomaly detection has not been studied before.

The rest of the paper is organized as follows. Section 2 intro-
duces our methodology of simulated IR image generation and
subsequent anomaly detection on real IR data. In section 3, our
results evaluating our method on a dataset provided by the City
of Melville (Council of City of Meville, 2017) are presented.
Section 4 concludes with a short summary of our findings and
an outlook to future work.

2. METHODOLOGY

In the first part of this section, we briefly describe how the
data can be decomposed into infinitesimal patches (triangles)
to which we assign important attributes, such as semantic class,
material, and, finally, temperature. Next, we obtain the simu-
lated thermal and infrared images. The final part presents our
method for anomaly detection by combining simulated and real
IR data, together with the following evaluation procedure.

2.1 Preprocessing

Several subsequent preprocessing steps had to be performed in
order to apply our proposed simulation-based anomaly detec-
tion technique. The scene reconstruction and subsequent ther-
mal simulation follow (Kottler et al., 2019) and (Bulatov et al.,
2020). For the latter, actual environmental conditions as well
as the temperature distribution at the beginning are required.
The simulation model therein was chosen as it is easy to imple-
ment and performs fast. Focus was put on an average temper-
ature distribution close to reality being calculated in short time
rather than on high-precision simulation. In our opinion, this is
sufficient and allows subsequent studies on the actually needed
precision for our method.

2.1.1 Semantic triangle mesh generation: In order to per-
form the thermal simulation starting from raw sensor data, a
semantic 3D model including the thermally relevant properties
had to be established. Following the method of (Ilehag et al.,
2018), a Random Forest Classifier (Breiman, 2001) is used to

determine the occurring semantic structures and materials re-
spectively. The selected classes are street, grass, soil, water,
building with tile roofing, building with metal roofing, tree and
forest boxes. While single trees with geo-specific 3D models
(Bulatov et al., 2020) allow for a more precise simulation, forest
boxes are derived from larger regions on the landcover map that
have been assigned to the tree class. This allows to reduce the
amount of polygons needed for representation and thus keeping
low the overall simulation complexity. Triangulation and ther-
mal property assignment are performed based on the material
classification, resulting in the final semantic triangle mesh.

2.1.2 Thermal simulation We used the thermal model of
(Bulatov et al., 2020) to perform the heat simulation leading to
the necessary surface temperatures. This model aims for fast
simulation of larger scenes, and further focuses on surface tem-
peratures. Each triangle in the reconstructed scene is converted
into a narrow orthogonal prism in order to model heat transfer
into the inner of an object. The heat equation for each prism is
then given by

cvρ
∂T

∂t
= K

∂T

∂z
, (1)

assuming only orthogonal heat transfer. This is discretized in
depth z, i.e. the prism is split in layers of depth d. As lower
boundary condition, a fixed core temperature Tcore is assumed.
The upper boundary condition is given by the heat exchange
with the environment, including radiative and convective heat
exchange. This yields

cvρd
∂Ts

∂t
= A+ I + S +R, (2)

where cv = specific heat capacity
ρ = materials’ density
d = layer depth
Ts = temperature
r.h.s. = heat fluxes,

as heat equation for the surface triangle. The heat flux consists
of a convective term,

A = (h1 + h2vwind)(Tair − T ), (3)

where h1 = free convection heat coefficient
h2 = forced convection heat coefficient
vwind = average wind speed
Tair = average air temperature,

a conductive term,

I =
K

d
(Tin − T ) (4)

where K = thermal conductivity
Tin = inner temperature

and finally two radiative terms for solar (S) and atmospheric
(R) heat exchange,

S = (1− a)IcEsun cos(θ)γsun, (5)
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where a = solar albedo
Ic = clearness factor
Esun = solar irradiation above atmosphere level
θ = solar elevation angle
γsun = occlusion factor

and

R = εσγsky(T
4
sky − T 4), (6)

where ε = thermal emissivity
σ = Stefan-Boltzmann-constant
γsky = occlusion factor
Tsky = sky temperature.

The model does not consider latent heat or further heat sources
in order to keep computational complexity low and to be easily
adapted to other scenes. The material and semantic classifica-
tion results of the preceding scene reconstruction is employed
to assign generalized material parameters to each triangle of the
scene mesh, including e.g. the thermal emissivity, heat conduc-
tion, or core temperature. Finally, the differential equation 2
together with suitable initial conditions is solved by Forward-
Euler integration.

2.2 Generation and validation of thermal background for
anomaly detection

Once the temperature has been assigned to every triangle of the
mesh, a synthetic thermal image is rendered from the almost po-
sition as the input thermal image. In the two upcoming sections,
the details of the rendering procedure (particularly focusing on
the radiance image generation) and the evaluation strategy are
provided.

2.2.1 Synthetic Thermal Map Generation: The semantic
3D model was orthogonally projected in order to get the simu-
lated IR image of the scene. A simple Open GL renderer was
used to get the visible triangles from an orthogonal view on
the scene and to transfer the mesh of triangles to a 2D repre-
sentation corresponding to the measured thermal map in pixel
size and dimensions. Given an index image of visible triangles
at each pixel, we directly establish the synthetic thermal map
based on the thermal simulation results.

The resulting thermal map displays the simulated surface tem-
peratures, however, an actually measured thermal image under-
lies certain restrictions due to its remote sensing character. This
non-contact temperature measurement is based on an estima-
tion from the emitted heat radiation of a surface. Poor heat ra-
diators, e.g. polished metallic surfaces, therefore often result in
false measurements. I.e. they appear as very cold objects even
if their true temperature does not differ from their environment.
We thus estimate the emitted radiance from the simulated tem-
peratures in order to replicate this effect in the synthetic thermal
image. From the material classification, the material-dependent
heat emissivity is given and the heat radiance for each triangle
can be derived as

L = ε
σ

π
T 4 (7)

where σ = Stefan Boltzmann Constant
T = temperature
ε = thermal emissivity
L = heat radiance

Herein, we apply the well-known graybody-assumption. It im-
plies that the surface is radiating uniformly in all directions in-
dependent on its temperature, and that the emissivity is inde-
pendent on the wavelength.

2.2.2 Evaluation Finally, we evaluate the synthetic thermal
map in terms of average temperature difference, root mean squared
error (RMSE), and mutual information (MI) as reference for our
proposed anomaly detection method. While the average tem-
perature difference as well as the RMSE have to be determined
on the temperatures, MI can operate on the infrared images with
different modalities and intensity ranges. Evolving from infor-
mation theory, the MI of two images reflects their similarity
such that given one random distribution, i.e. one image, it mea-
sures the uncertainty of a second distribution, i.e. the second
image, (Viola, Wells, 1995). Zero MI therefore reflects inde-
pendence of both images and the higher the MI value, the more
similar the images.

2.3 Anomaly detection

Many different approaches on anomaly detection exist. To main-
tain our focus on the possibly usage analysis of simulation, we
chose basic methods for image comparison and anomaly detec-
tion since their results are well comprehensible and traceable.
In the following, the method of image differencing and our eval-
uation procedure are presented.

2.3.1 Image Differencing: In our approach, we define anoma-
lies as differences between the simulated target-state and the
measured actual state that deviate from the mean difference by
a fixed threshold. Differences are calculated pixel-wise for the
image pairs of measured and simulated thermal image and ther-
mal map respectively. For each difference image, the mean
value µ and standard deviation σ are determined. As in sim-
ple Gaussian-based outlier detection techniques, we chose a 3σ
distance to the mean value as threshold (Chandola et al., 2009),
i.e. every pixel representing a difference value being outside the
µ± 3σ range is marked as an anomalous pixel. We further per-
form class-wise anomaly detection in order to identify in-class
anomalies. To do so, the binary mask for each class is gener-
ated based on the landcover map and then used to determine
class-wise difference images. The mean and standard deviation
values of these are calculated and evaluated, as before, by a 3σ
distance measure.

2.3.2 Evaluation: Detected anomalies are evaluated in terms
of cross-validation. In our simulation-based approach, we re-
cieve four anomaly images to evaluate, which correspond to

• anomaly detection on the thermal map difference

• anomaly detection on the thermal image difference

• class-wise anomaly detection on the thermal map differ-
ence

• class-wise anomaly detection on the thermal image differ-
ence.
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Furthermore, we apply the RXD on the measured thermal im-
age and thermal map for reference. In the present case of uni-
modal data, image differencing with anomalies in the tails is
equivalent to the RXD with a corresponding threshold. Doing
so, we finally recieve eight anomaly maps for further evalua-
tion.

The anomalous pixels of each detection result are categorized
into their underlying class to identify the ones containing the
majority of anomalies. Absolute and relative frequencies of
anomalies are determined and compared. The temperature and
temperature gradients of anomalies are analysed by means of
histogram analysis in order to identify the correlations. Addi-
tionally, anomalous pixels are visually inspected.

3. RESULTS

In this section, we present the results of our method for two
urban areas. First, we introduce the dataset and the results of
the simulated IR images. Second, the anomaly detection results
including our proposed method and the RXD are presented and
evaluated.

3.1 Dataset

Data was provided by the City of Melville, Perth, Australia
(Council of City of Meville, 2017). It comprises multispec-
tral data covering 5 bands (blue, green, red, red-edge, near-
infrared), a LiDAR point cloud and a thermal image of the area
of the City of Melville. To translate the image pixel values to
actual temperature values, a look-up table was provided. With
this, we extract the corresponding thermal map. Two sub-areas
had been chosen as test datasets for our proposed method to
which we will refer to as area 1 and area 2 in the following.
Figure 1 displays the corresponding orthophotos. The areas of
size 2×1 km and 2,8×2 km respectively covers the most rele-
vant urban structures such as streets, buildings with different
kind of roofings in color, material, or shape, park areas, and
trees. Additionally, area 2 also covers more advanced struc-
tures such as small lakes surrounded by dense forest, a highway
bridge and seaside. Since the overall area of Melville had to be
covered in two nights, area 2 exhibits a region of higher temper-
ature due to a hotter day before flying and due to an earlier time
of flight, around the first night and 8:30 pm the second night.

3.2 Synthetic Thermal Map

The results of the synthetic LWIR image generation together
with the actual measured LWIR images are shown in Figures
2 and 3 for area 1 and area 2, respectively. From the thermal
simulation, a discrete point in time had to be chosen to gener-
ate the LWIR images. Based on the time of measurement of
the real LWIR images, the chosen point in time for simulated
temperatures in area 1 was 00:00 am. Considering area 2, a
slightly earlier time than the time of measurement was chosen,
i.e. 8:00 pm, due to a conclusion drawn from area 1 analysis
which will be clarified later in this section. At the coastal re-
gion of area 2, temperatures were only detected close to the
land surface. In order to perform the image-based comparison
to the simulation, the missing area, i.e. the sea water tempera-
tures, had been filled in by a modification of harmonic inpaint-
ing (Kottler et al., 2016). For area 1, an interactive procedure
for building outline correction using an OSM shapefile as sup-
plementary input has additionally been performed. Details of

Figure 1. Orthophotos of urban test areas in the City of Melville.
Note the different scales of areas.

Figure 2. LWIR images in white-hot color scale of area 1. Left:
Simulated temperatures. Middle: Measured LWIR image. Right:

Simulated LWIR image.

Figure 3. LWIR images in white-hot color scale of area 2. Left:
Simulated temperatures. Middle: Measured LWIR image. Right:

Simulated LWIR image.

this procedure as well as performance are presented in (Bulatov
et al., 2020).

Simulation and measurement likewise show that natural land-
covers such as grass or trees have already cooled down in the
early evening, in contrast to man-made surfaces such as streets
or roofs that remain warm for a longer period of time. The sim-
ulated temperatures of the roofs in area 1, representing the tem-
peratures at midnight, however appear overestimated. There-
fore, we conclude that a deviation of the roofings heat capacity
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(a) Area 1 (b) Area 2

Figure 4. Temperature Difference Distributions

from ground truth seems a reasonable cause and chose an earlier
time of the simulation than given by the measurement for area
2, as stated earlier in this section. As expected, cold signatures,
i.e. black spots in the measured LWIR images, are only repro-
ducible in the simulated LWIR image and not in the simulated
surface temperatures, since only in this case the heat emissivity
is considered.

Area 1 Area 2
RMSE ( ◦C) 5.3899 5.6478
MIT 0.5913 0.5266
MIR 0.6018 0.4122

Table 1. Root mean squared error (RMSE) and mutual
information (MI) of the measured and simulated temperatures

and LWIR images respectively.

From the measured and simulated surface temperatures, area 1
exhibits a temperature difference distribution with mean µ =
0.7429 ◦C and standard deviation σ = 5.3475, cp. Figure 4a.
Area 2 yields a temperature difference distribution with an av-
erage value of µ = 4.1402 ◦C with a standard deviation of
σ = 3.8415, cp. Figure 4b. The RMSE and MI are listed in
Table 1. Taking into consideration the objective of the under-
lying thermal model, i.e. large-scale and fast simulation rather
then high precision, the RMSE lie in a suitable range. The MI
for area 1 increases with improvement of the simulation, i.e. re-
garding the radiance instead of the surface temperatures. On the
contrary, area 2 shows a degradation by usage of radiance val-
ues. This agrees with the fact that area 2 shows many complex
structures and steel roofs with high variance. A broader temper-
ature distribution of steel roofs is caused by the increasing avail-
ability of modern surface treating, and thermal parameters (such
as emissivity values) vary more than currently supposed by the
model, which handles only constant parameter values. This ef-
fect is further increased by the classification results reaching not
the precision as for area 1. Classification errors due to missed
buildings or building parts pass not through the additional inter-
active post-processing step as was carried out for area 1. Since
the consideration of the radiance strongly highlights metallic
surfaces, and often new belatedly attached building parts imply
metallic roofing, the decrease of radiance MI against tempera-
ture MI is reproducible.

3.3 Anomaly Detection

From the simulated temperatures and LWIR image, anomaly
detection on the difference image of simulation and measure-
ment is performed, to which we will refer to as CDT (change
detection between temperatures) and CDR (change detection
between LWIR images). CDTc and CDRc respectively indicate
the corresponding inner-class anomaly detection. Furthermore,
the RXD is applied on the LWIR image and the thereof de-
duced surface temperatures, to which we will refer to as RXT

and RXR with the corresponding in-class approaches RXTc and
RXRc.

The relative frequencies of anomalous pixels from each method
for areas 1 and 2 are visualized in Figure 5 and Figure 6. They
show a similar distribution, however the relative frequencies in
area 2 are higher in each case, being based on the less precise
classification results, cp. Sec. 3.2. The RXR and RXT lead to
the lowest amount of detected anomalous pixels. These anoma-
lies coincide with coldly appearing surfaces that significantly
deviate from the residual, see Figure 7 (top and middle row,
left). Thus, the output of the RXD on the measured data covers
the expectation. Considering the RXTc and RXRc, the assump-
tion of an anomaly appearing rare in the whole images is weakly
satisfied, particularly in area 2, which might indicate necessary
adaption of the anomaly threshold. However, the full percent-
age of anomalies is given by adding up all detected inner-class
anomalies, thus the inner-class percentage of anomalies is bet-
ter suited as parameter for threshold evaluation and will be re-
garded later on.

Figure 5. Area 1: Relative frequencies of anomalies. RXT:
RX-Detector applied on the determined temperatures. RXR:

RX-Detector applied on the LWIR image. CDT: change
detection between the determined and simulated temperatures.
CDR: change detection between the given and simulated LWIR
image. RXTc, RXRc, CDTc, CDRc: as before, but with each

class considered separately and finally merged.

Going into further detail, we analyze the classes of the detected
anomalies. Table 2 summarizes the top three classes for each
area. In five out of the eight anomaly detection approaches,
including all non-classwise approaches, metal roofing appears
most frequently as anomalies. However, the detection result
of these five approaches do not coincide. Inspection of the
resulting binary masks of each method and the corresponding
temperature distribution yields cold surfaces being marked as
anomalies in case of the RXT and RXR, which is, as stated be-
fore, conform to our expectation of steel roofings having cold
LWIR signatures. In case of area 2, a small amount of very hot
pixels is detected too, however, this still meets our expectation
of RXD results since they lie in the upper temperature range of
the whole image. Considering our proposed method of change
detection between measurement and simulation, a shift of de-
tected anomalies within the steel roof class occurs. While the
CDT emphasizes 13.82% and 11.41%, respectively for area 1
and area 2, of all steel roofs as anomalous, which lies in the
same range than the RXT and RXR, the CDR detects 78.9%
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Figure 6. Area 2: Relative frequencies of anomalies. RXT:
RX-Detector applied on the determined temperatures. RXR:

RX-Detector applied on the LWIR image. CDT: change
detection between the determined and simulated temperatures.
CDR: change detection between the given and simulated LWIR
image. RXTc, RXRc, CDTc, CDRc: as before, but with each

class considered separately and finally merged.

Area 1 Area 2

RXT
Steel (71.7%) Steel (62.2%)
Tiles (12.2%) Tiles (16.1%)
Street (10.4%) Street (10.7%)

RXR
Steel (70.2%) Steel (69.0%)
Tiles (13.2%) Tiles (17.0%)
Street (10.2%) Street (8.7%)

CDT
Steel (72.8%) Steel (76.3%)
Tiles (19.2%) Tiles (17.1%)
Street (7.8%) Street (4.1%)

CDR
Steel (97.4%) Steel (99.7%)
Street (1.6%) Tiles (0.1%)
Tiles (0.9%) Soil (0.1%)

RXTc
Soil (32.2%) Soil (16.7%)

Grass (20.8%) Street (16.5%)
Tiles (13.1%) Grass (13.3%)

RXRc
Soil (32.4%) Grass (18.4%)

Grass (18.8%) Soil (17.8%)
Tiles (14.7%) Street (13.5%)

CDTc
Steel (32.5%) Steel (28.8%)
Tiles (19.5%) Water (25.8%)
Grass (13.7%) Tiles (14.9%)

CDRc
Tiles (23.9%) Water (34.0%)
Grass (18.3%) Tiles (19.0%)
Soil (17.7%) Soil (13.6%)

Table 2. The three most frequent classes of the detected
anomalies for each detection method. Steel and Tiles refer to the

roofing materials.

and 88.7% for area 1 and 2 respectively. A temperature his-
togram analysis of the CDR anomalies shows less anomalies at
temperatures below 20 ◦C, at which most anomalies had been
detected by the RXT and RXR. Now with CDR, most anoma-
lies appear around 20 ◦C to 30 ◦C. In conclusion, the RXT,
RXR and CDT yield similar results which are complementary
to the CDR results. Figure 7 (middle row) displays a close-up
view of area 2 and exemplifies these complementary findings of
RXR and CDR. The CDR highlights the steel roofings with high
emissivity values. i.e. not appearing as black spots in the LWIR
image, most probably due to surface treatment and weathering
and thus deviating from our simulation model. Therefore, our

Figure 7. Detail of area 2. Top row: measured LWIR image
(left) and difference image of measured and simulated LWIR
image (right). Middle row: RXR results on measured LWIR

image (left) and CDR result on difference image (right). Bottom
row: RXRc result on measured LWIR image (left) and CDRc

result on difference image (right).

Area 1 Area 2

RXTc
Water (45.4%) Forest (32.9%)
Forest (14.0%) Steel (19.7%)
Steel (12.1%) Grass (13.8%)

RXRc
Water (44.3%) Forest (33.9%)
Forest (13.6%) Steel (20.0%)
Steel (13.3%) Grass (17.1%)

CDTc
Steel (11.1%) Steel (9.1%)
Forest (1.9%) Water (5.3%)
Tree (1.5%) Tiles (1.4%)

CDRc
Steel (4.5%) Water (5.4%)
Forest (1.9%) Steel (1.7%)
Grass (1.6%) Tiles, Tree (1.4%)

Table 3. Percentage of in-class anomalies for each class.

definition of an anomaly as deviation from the expected, i.e. the
simulation, is fulfilled.

For classwise anomaly detection, the inner-class percentage of
detected anomalies is of additional interest and listed in Table 3.
The amount of detected anomalies within a class allows to eval-
uate the quality of the chosen anomaly threshold. In the case of
RXTc and RXRc, the hypothesis of an anomaly occurring rare
within a class does not hold, i.e. the threshold would need sig-
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nificant adaption, in particular considering the water and forest
classes.

The overall anomaly detection results, cp. Table 2, exhibit an
emphasis of smaller structures by class-wise RXTc and RXRc.
Soil and grass state the main anomalies whereas steel roofs dis-
appear from the top three anomaly classes. From class-wise
temperature histogram analysis and binary mask investigation,
we conclude that the boundary area of connected pixels having
the same class are detected as anomalous. Since a real LWIR
image does imply softened borders or edges in comparison to a
visual image, the environment of each regarded pixel per class
influences the anomaly detection result. These softened bor-
ders arise from a combination of temperature gradients between
adjoined surface materials and sensor resolution. The predom-
inant detection of anomalies in boundary pixels becomes re-
duced in case of CDTc and CDRc.

The class-wise anomaly detection collectively shows a strong
influence by the temperature jump in the measured thermal im-
age due to the earlier time of data-taking as stated in Sec.3.1, in
contrast to the non-classwise approaches.

4. CONCLUSIONS AND FUTURE WORK

Using simulation in order to estimate the thermal background
for anomaly detection is considered as challenging task, since
simulation mostly underlies certain errors in comparison to the
ground truth. In this paper, we have shown that despite of these
challenges, anomaly detection on a difference image of a mea-
sured and simulated thermal image can lead to complementary
and expanded information. We did not restrict ourselves to a
further definition of anomalies, i.e. labeling a certain class or
object in the scene as anomalous. This allowed us to evaluate
the proposed method in terms of what has been detected that
would not have been detected otherwise. For the two given ur-
ban areas, conventional anomaly detection highlights cold sur-
faces such as metallic roofs. Our approach for LWIR images
does not detect these, however steel roofings with warm signa-
tures are detected. We conclude that these detection results rep-
resent modern steel roofings with adapted and optimized heat
properties, which are common within the urban areas we tested
and which are not considered by the underlying thermal model.
This outcome could be interesting for today’s city planners or
city councils, e.g. to update or expand existing data records of
their cities or to track urbanization relying on more sustainable
and less heat-absorbing materials.

The class-wise evaluation showed rather disadvantages in our
approach compared to the full-image evaluation. Sensitivity
towards an overall continuous temperature change was higher,
and most of the detected anomalous pixels were found in the
boundary regions of the corresponding binary mask. The latter
is stated by the fact that a measured LWIR image does not pro-
vide sharp edges, as it is given in the binary masks. We suggest
to exclude a boundary layer or to add additional sensor-like blur
to the simulated image in future work, which might also opti-
mize the full-image results.

In summary, our approach makes use of commonly known and
easy to implement algorithms such as the Reed-Xiaoli-Detector
and image differencing. With these basic tools, extraction of
new information was however possible. For future work, we
pursue, on the one hand, the application of advanced anomalous
change detection techniques, and, on the other hand, improve-
ment of the thermal map generation.
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