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ABSTRACT: 
 
Superpixel segmentation for PolSAR images can heavily decrease the number of primitives for subsequent interpretation while 
reducing the impact of speckle noise. However, traditional superpixel segmentation methods for PolSAR images only focus on the 
boundary adherence, the significance of superpixel segmentation will be lost when the accuracy is improved at the expense of 
computation efficiency. To solve this problem, this paper proposes a novel superpixel segmentation algorithm for PolSAR images 
based on hexagon initialization and edge refinement. First, the PolSAR image is initialized as hexagonal distribution, where the 
complexity of searching pixels for relabelling in the local regions can be reduced by 30% theoretically. Second, all pixels in the 
PolSAR image are initialized as unstable pixels based on the hexagonal superpixels, which can boost the segmentation performance 
in the heterogeneous regions and effectively maintain all the potential edge pixels. Third, the revised Wishart distance and the spatial 
distance are integrated as a distance measure to relabel all unstable pixels. Finally, the postprocessing procedure based on a 
dissimilarity measure is applied to generate the final superpixels. Extensive experiments conducted on both the simulated and real-
world PolSAR images demonstrate the superiority and effectiveness of our proposed algorithm in terms of computation efficiency 
and segmentation accuracy, compared to three other state-of-the-art methods. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION  

Polarimetric synthetic aperture radar (PolSAR) is appealing in 
virtue of containing richer scatter information and the excellent 
characteristics of all-day and all-weather operation (Debanshu 
et al., 2018). PolSAR utilizes vertical and horizontal 
polarization for alternately transmitting and receiving radar 
signals to obtain quad-polarization data. Since any target has a 
specified variable polarization effect on the radiated 
electromagnetic waves, PolSAR can obtain the abundant 
scattering information of ground objects, which has broad 
application prospects in the fields of earth resources, disaster 
monitoring, urban planning and military reconnaissance. 
Therefore, the interpretation of PolSAR images has been paid 
extensive attention. Specifically, object-based interpretation 
processing has received a considerable amount of concentration 
for reasons of better noise resistance and lower subsequent 
primitives (Zou et al., 2019). Furthermore, the superpixel 
segmentation method can effectively generate the controllable 
number, regular shape and compact regions, which attracts 
widespread attention. 
 
Superpixels have been widely used in various aspects, such as 
target tracking, change detection and classification. Superpixel 
segmentation methods can be generally categorized into two 
classes:  
1) Graph based methods: the typical algorithms mainly include 
Normalized Cuts (Ncut) (Ren et al., 2003), Entropy Rate (ER) 
Superpixels (Liu et al., 2011), and Proposals for Objects from 
Improved Seeds and Energies (Humayun et al., 2015), etc. 
2) Gradient ascent methods: include the classical algorithms of 
Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2010), 

Linear Spectral Clustering (LSC) (Li et al., 2015), Superpixels 
Extracted via Energy-Driven Sampling (Michaels et al., 2015), 
etc. 
 
However, all the algorithms mentioned above are proposed for 
optical images, and the poor performance may be obtained 
when they are directly applied to PolSAR images. Due to the 
unique imaging mechanism of the SAR system, there are 
amount of inherent speckle noise in PolSAR images which 
makes the regions of same class have severe internal fluctuation. 
However, optical images are not subject to such noise severely, 
then it is destined to need the difference between the superpixel 
generation in PolSAR and optical images. Therefore, some 
scholars have made improvements in the aforementioned 
algorithms for PolSAR images. 
 
Improvements on graph based methods: Liu et al. (2013) 
modified the Ncut algorithm by incorporating the revised 
Wishart distance and edge map to generate superpixels. 
However, the boundary adherence of small-sized regions is 
unsatisfactory due to the limitations of the algorithm framework. 
Wang et al. (2017) introduced an improved ER into PolSAR 
images, which take into account the uniformity of PolSAR 
images by combining Wishart distance and spherically invariant 
random vector (SIRV) distance. The integrated distance takes 
advantage of the SIRV model and the Gaussian model, but the 
operation simplicity is poor, which leads to lower computation 
efficiency. 
 
Improvements on gradient ascent methods: SLIC is popular 
because of its good segmentation performance and flexibility. 
Qin et al. (2015) incorporated the revised Wishart distance into 
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the distance measure of the SLIC algorithm (POL-SLIC 
algorithm) with better boundary adherence but poor regularity. 
Song et al. (2019) utilized hybrid discriminative random field 
model to improve the distance measurement of SLIC, but didn't 
attention to the flexibility and time consumption. Considering 
the importance of 1-D image entropy (Tirandaz et al., 2020), 
the entropy of the image is calculated and used to determine the 
number of superpixels based on SLIC. Gadhiya et al. (2020) 
utilized the Pauli decomposition of a PolSAR image as an input 
to the SLIC algorithm, and applied the generated superpixels to 
the classification.  
 
Zhu et al. (2015) introduced a fast superpixel segmentation 
algorithm by iterative edge refinement (IER), which is fast, 
homogeneous regular and boundary-adherent for optical images. 
Zhang et al. (2017) replaced the distance of the CIELAB space 
in the IER algorithm with a revised Wishart distance, which is 
called POL-IER. Compared with other algorithms, POL-IER 
can achieve higher segmentation accuracy, and meanwhile, the 
computation efficiency is also improved to some extent. But 
there is still no good balance between the accuracy and time 
consumption. The superpixel segmentation algorithm for 
PolSAR images is designed to decrease subsequent primitives 
for interpretation while reducing the impact of speckle noise. 
As a preprocessing step, lower segmentation accuracy can 
directly affect the interpretation results. However, the 
significance of superpixels will be lost as the accuracy is 
improved at the expense of computation efficiency. 
 
In order to balance the segmentation results and computation 
efficiency, this paper proposes a novel superpixel segmentation 
algorithm for PolSAR images based on hexagon initialization. 
Different from the IER originally designed for the superpixel 
generation of optical images, the PolSAR image is firstly 
initialized into multiple regular hexagonal superpixels. 
Compared with the original square distribution, the number of 
searchable pixels can be reduced by 30% in the local searching 
regions, which greatly reduces the unnecessary time 
consumption. Next, fully considering the particularity of slim 
and small-size regions for PolSAR images, all of pixels are 
initialized as unstable points based on hexagons. This is 
beneficial for generating superpixels both in the heterogeneous 
and homogeneous regions and further boosting the boundary 
adherence. Thirdly, the integrated distance combined with 
revised Wishart distance and spatial distance is applied to 
relabel unstable points. Finally, the postprocessing by 
dissimilarity measure is utilized to obtain the final superpixels. 
The main contributions of our work are summarized as follows: 
1) The hexagon initialization is firstly introduced into the 
superpixel generation for PolSAR images. 2)The experimental 
results conducted on both the simulated and real-world PolSAR 
images effectively demonstrate that our algorithm can provide 
better balanced trade-offs between the computation efficiency 
and segmentation accuracy, compared to three other 
competitive state-of-the-art methods. 
 

2. METHODOLOGY  

The proposed method contains three modularized steps. First, 
the PolSAR image is initialized as hexagonal distribution. Then, 
based on hexagonal distribution, all of pixels are initialized as 
unstable points for relabelling by integrated distance measure. 
Finally, the postprocessing is performed to eliminate isolated 
small regions. 
 

2.1 Hexagon Initialization   

In an image, unstable pixels (Zhu et al., 2015) are those pixels 
whose labels are likely to change and should be checked in the 
next iteration. The definition of unstable pixels is given as 
follows: 

          UP = | and ,p nt p nt q nt q t q q Nb p    (1)

where p  and q  represent pixels in the image domain.  Nb p  

is the neighborhood function and a 4-connected neighborhood 

is utilized in the experiments.  t i  represents the label of i and 

 nt i represents the new label after one iteration, i = p,q . 

 
Both in IER and POL-IER methods, the images are initialized 
as square distribution shown as Fig. 1(a). Rectangles in a black 
solid line are initialized superpixels. Centers Ci0, Ci1, Ci2, Ci3, 
Ci4, Ci5, Ci6, Ci7 and Ci8 are sampled with an interval of S pixels. 
Square superpixels display central symmetry, but the regions 
containing the image edges are generally asymmetric. 
Considering the boundary adherence of superpixels across 
image edges, it can better meet the complex terrain condition 
while the initialized superpixel is a polygon. On the other hand, 
the symmetry of hexagons is both central symmetry and axial 
symmetry. 
 
As shown in Fig. 1 (b), there is the hexagonal initialization with 
the clustering centers Cj0, Cj1, Cj2, Cj3, Cj4 and Cj5. Hexagons in 
a black solid line are initialized superpixels, which are sampled 

horizontally at intervals of S
h

 pixels and S
v

 pixels in the 

vertical direction. To facilitate subsequent comparisons, set the 
hexagon superpixel equal to the square superpixel in area, then 
the side length of the square and hexagon need to satisfy the 
following geometric relationship: 

3 3

2


2

2

S

H
 （2）

According to the geometric characteristics of the hexagonal 
distribution, the horizontal and vertical distances of adjacent 
superpixels are: 

3HhS  （3）

3

2v
HS  （4）

Combined Eq.(2)-(4), the horizontal distance S
h

 and vertical 

distance S
v

 can be obtained as follows, respectively: 

2

3
 hS S  （5）

3

2
 vS S  （6）

Specifically, our proposed method searches the superpixel 
center for a certain unstable pixel within the size of 2 2S S . As 
for square distribution, there are nine clustering centers Ci0, Ci1, 
Ci2 Ci3, Ci4, Ci5, Ci6, Ci7 and Ci8 in the local regions. Fig. 1(a) 
depicts that the search range of the unstable pixel i is the 
rectangle marked by the blue dotted. In consequence, the 
integrated distance need to be calculated up to nine times for 
final assignment. When the input pixel of the PolSAR image is 
N, the complexity of each clustering iteration is 9N. 
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Figure 1. Distribution of Cluster Centers. (a) Square distribution. 
(b) Hexagonal distribution. 

With regard to hexagonal distribution shown as Fig. 1(b), there 
are six adjacent superpixels (Cj0, Cj1, Cj2, Cj3, Cj4 and Cj5) in the 
local regions. This means that, at most, just six distance 
calculations needed for determining the superpixel which the 
unstable pixel j belongs. Compared with square distribution, the 
hexagonal distribution owns a lower complexity of 6N for one 
iteration of the clustering, which significantly improves the 
computation efficiency. Meanwhile, polygonal distribution can 
be more efficiently attached to edges for the heterogeneous 
areas of PolSAR images. At the same time, not any regular 
polygon can initialize the image completely (close to cover the 
entire plane), and the time consumption will increase as the 
number of edges increases. The hexagon initialization can just 
avoid the aforementioned defects, furthermore, it is negligible 
for the construction of hexagons compared with the time saved 
by using hexagon initialization. 
 
2.2 Initialization of unstable Pixels 

Fig. 2(a) displays that IER method divides the image into 
squares and initializes the unstable pixels as the square edge 
pixels with red regions. Due to optical images always contain 
several regions of regularity and homogeneity, this kind of 
initialization has slight effect on the boundary adherence of the 
final superpixels.  
 

Ci0

 

Cj0

 

(a) (b) 

Figure 2. The sketch map of unstable pixels initialization of two 
methods. (a) IER method; (b) proposed method. 

By contrast, PolSAR images usually include many small 
regions, slim regions and strong point targets, which can 
provide important information for image processing. When 
applied to PolSAR images, this implementation of initialization 
may provide poor superpixels with losing many potential edges. 
In addition, the properties of good boundary adherence and 
homogeneous regularity should be obtained with as few 
superpixels as possible. However, the final results of IER can 
be severely affected by the initial square width. When the 
original square width is large relative to the image size, many 

real edge pixels may locate in the middle of the square, thus 
leading to missing some edges. Therefore, with small grid width, 
IER may work well, and otherwise the opposite, which is not 
expected. 
 
Therefore, we initialize the unstable pixels as all the pixels 
based on hexagonal distribution in PolSAR images, instead of 
the square edges. As Shown in Fig. 2(b), our proposed initial 
unstable pixels consist of the red pixels, green pixels and the 
corresponding cluster center filled by black. By doing so, all the 
potential edges in PolSAR images will be maintained, resulting 
in accurate boundary adherence and thus accurate superpixels. 
Although boundary adherence of the POL-IER method has 
improved, in the face of complex terrain distribution of PolSAR 
images, it still cannot meet demand. While the proposed method 
optimizes the code to achieve the accomplishment that all of 
pixels are initialized to unstable pixels based on the hexagons. 
Consequently, both in the heterogeneous and homogeneous 
regions can be segmented availably, resulting in accurate 
boundary adherence and thus accurate superpixels. 
 
2.3 Local Relabeling and Postprocessing 

Concerning the inherent speckle noise for PolSAR images, we 
utilize the revised Wishart distance (Qin et al., 2015) combined 
with spatial distance. The revised Wishart distance between a 

pixel i with the coherency matrix T
i

 and the jth cluster 
j

R  

with the center coherency matrices 
1

/

N

n



 
 
 


j

j j
n

NC T  is: 

   Tri
 
  
 

j -1

RW j j i

i

d ,R = In + - q
C

C T
T

 (7)

The spatial distance is defined by 

     2 2

s j i j id i, j = x - x + y - y  (8)

where the subscript i and j represent the cluster center of the ith 
superpixel and the jth unstable pixel, respectively. 
Because the revised Wishart distance will be calculated many 
times in the local relabeling step, a large amount of time will be 
cost in the computation. Therefore, a fast implementation 
(Zhang et al., 2017) of the revised Wishart distance is employed 
in this paper to further increase the computation efficiency. Let 

  -1=
j j

T
fw T  and  i i

 Tt f , where  . T  means a matrix 

transpose without conjugation, and  f .  be a function that 

arranges all the elements of the matrix into a vector. Then it is 

easy to notice the fact that    Tr -1

j i j
C T w t

i

T
, where both 

jw  and 
i

t  are 9-dim vectors. Contrary to the high-computation 

of -1
jC T , only 9 multiplication operations and 8 addition 

operations are needed to calculate  j
w t

i

T
, which is only one-

third of what  Tr -1

j i
C T  needs in traditional way. Therefore, 

the revised Wishart distance can be represented by 

   j

RW j j

i

d i,R = In + - q
 
  
 

C
w t

T i

T
 (9) 

Then, the integrated distance is shown as follows: 
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     2 2

RW j s j

j

d i,R d i,R
D i,R = +

m S

   
      
   

 (10)

Where S is the half of the search range width and m is the 
compactness parameter.  
 
Finally, in order to merge the generated small isolated regions 
as well as to preserve the strong point targets, a postprocessing 
procedure based on dissimilarity measure (Zhang et al., 2017) is 
adopted in this paper. When the size of a superpixel is smaller 

than 2= / 4
th

N S , the dissimilarities between this superpixel 

and the superpixels in its 8-neighborhood will be calculated. If 
the smallest dissimilarity value is smaller than a predefined 

threshold 
th

G , we merge this superpixel into the neighbor with 

the smallest dissimilarity between them. If not, move to the next 
superpixel. The dissimilarity measure between two superpixels 

i
R  and 

j
R  is defined as follows: 

 
1

1
diag diag

i j

i j diag diag

i j

-
G R ,R =

q +

C C

C C
 (11)

where diagC  means the vector consisting of the diagonal 

elements of the center coherency matrix of a superpixel and 
1

.  

denotes 1-norm of a matrix. Since the dissimilarity G  belongs 

to [0,1], 
th

G  is set as 0.3 in all the experiments throughout this 

paper. The main steps of our algorithm for PolSAR data can be 

summarized as follow. 

Input: The initial width S, PolSAR image I 

Step 1. Initialization 

Initialize the image as hexagonal distribution.  

Initialize all the pixels as the unstable pixels based on hexagonal 

superpixels. Set the iteration index iter = 0. 

Step 2. Local relabeling  

If iter≥itermax, or the unstable point set is empty, then the 

algorithm ends and goes to Step 4. Or relabel all the unstable 

pixels by the integrated distance defined in Equation (10). 
Assign each unstable pixel whose searching area is 2 2S S  to 

the closest cluster whose location is covered by the searching 

area. 

Step 3. Updating  

Update the superpixel models and the unstable pixel set by the 

definition (1). Set iter = iter + 1 and return to Step2. 

Step 4. Postprocessing  

Search the superpixels with the size smaller than 
th

N . If the 

smallest dissimilarity calculated by Equation (11) is smaller than 

th
G , merge it into the closest adjacent superpixel. If not, move to 

the next superpixel until each superpixel is checked. 

Output: Superpixels 
 

Algorithm 1. Proposed Algorithm 

 

3. EXPERIMENTS  

To evaluate our proposed method, extensive experiments on 
two simulated PolSAR images and one real-world image from 

AirSAR were conducted. Section 3.1 introduced the comparison 
experiments of the square distribution and hexagonal 
distribution, evaluation on the initialization of unstable pixels 
and comparison experiments on three state-of-the-art algorithms 
based on the simulated PolSAR data. The experiments 
demonstrated that the proposed method showed good 
performance with respect to the four commonly used criterions. 
In Section 3.2, experiments and discussions on the real-world 
PolSAR image were contained and the results showed that the 
proposed method can provide better balanced trade-offs 
between the computational efficiency and boundary adherence 
compared with other three methods. All the experiments were 
performed on the computer with 3.30 GHz Intel Pentium CPU, 
64 GB memory and MATLAB Code except for POL-LSC 
method is implied by MATLAB mixed with C Code. 
 
3.1 Evaluation on Simulated PolSAR Images 

In our experiments, two simulated PolSAR images with three 
same regular regions but different sizes were employed. The 
generation of PolSAR simulated images is based on the inverse 
transform method (Qin et al., 2015), with 400×400 pixels and 
500×500 pixels. The simulated image with the size of 400×400 
is shown as Fig. 3(a) and corresponding ground truth is given in 
Fig. 3(b). 

 

（a） （b） 
Figure 3. The simulated image with the size of 400×400 and 

corresponding ground truth. (a) Pauli-RGB image of the 
simulated PolSAR data. (b) The corresponding ground truth. 

To evaluate the performance of different methods for 
superpixels’ generation, all the experiments on the PolSAR 
images mentioned above were assessed on four criterions: 
Boundary Recall (BR), Under-segmentation Error (USE), 
Achievable Segmentation Accuracy (ASA) and the running 
time. 
 
3.1.1 Evaluation on Hexagon Initialization 
Our proposed method initializes the PolSAR image into 
hexagons instead of squares. So as to validate the hexagonal 
distribution, we improved the initialization of POL-IER method 
to hexagons (POL-IER+ Hexagon) compared with the original 
square distribution. The compactness parameter m was set as 
1.4 (the best) for the two methods. The results on the two 
criterions are shown in Fig. 4. The abscissa was set as the half 
of the search range that is the value of S, and the corresponding 
hexagon width can be calculated according to Equation (2). 

 
（a） 
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（b） 

Figure 4. The comparison of POL-IER with two different 
distributions, i.e., square distribution and hexagonal distribution 

with respect to two criterions of (a) BR, (b) Running Time. 

We can find that the hexagonal distribution was greatly superior 
to the square distribution in terms of computation efficiency, as 
well as the average running time can be significantly reduced 
by 30%, which is the expected property for superpixel. Fig. 4(b) 
intuitively shows that the time consumption of hexagonal 
distribution for the data of 500×500 is same as the square for 
the data of 400×400. This means that hexagon initialization can 
effectively reduce the number of searchable clustering centers 
in the same search range which leads to reducing the number of 
distance calculations. Therefore, the hexagonal distribution is 
chosen as the initialization in our proposed method. Fig. 4(a) 
shows that the boundary recall decreased slightly, but the 
difference is basically about 0.01. This is owing to that it is 
faced with the pixels when the image is initialized to hexagons, 
ideal situation for geometric structure cannot be achieved. In 
this way, it is more necessary to initialize all the pixels into 
unstable pixels for the sake of eliminating the above drawback. 
 
3.1.2 Evaluation on Initialization of Unstable Pixels 
Superpixel segmentation for PolSAR images, as a preprocessing 
step, must own the good accuracy while maintaining the high 
computation efficiency. Obviously, it will make the serve 
impact on subsequent interpretation results with the existence of 
improper segmentation. IER method only initializes the 
unstable pixels as the square edge pixels, while the proposed 
method optimizes the code to achieve the accomplishment that 
all of pixels are initialized to unstable pixels based on hexagons.  
As a result, proposed method was compared with the POL-IER 
to verify the segmentation performance. The number of 
iterations for proposed method is set to 20 in this paper. It can 
be clearly seen from Fig. 5 that in the implementation of all 
pixels are initialized to the unstable pixels, boundary recall is 
significantly improved, especially when the S is greater than 9. 
 

 
（a） 

 
（b） 

 
（c） 

 
（d） 

Figure 5. The comparison of two different initializations of 
unstable pixels, with respect to four criterions of (a) BR, (b) 

Running Time, (c) the ratio of unstable pixels to all the pixels in 
the simulated PolSAR image with size 400×400 and (d) with 

size 500×500. 

As can be seen from Fig. 5(e-f), although the number of 
unstable pixels for the POL-IER method drop sharply in the 
first few iterations, after three iterations, the falling speed for 
unstable pixels’ number of the proposed method exceeds the 
POL-IER on account of the superpixels’ center of proposed 
method is placed in the hexagon. 
 
3.1.3 Evaluation on Four Algorithms 
Four algorithms including POL-SLIC, POL-LSC (Li et al., 
2015), POL-IER (Zhang et al., 2017) and proposed method 
were evaluated on the two simulated images. These four 
algorithms all belong to gradient ascent methods, which own 
high computational efficiency so that to fair and objective in 
comparison. For these methods, the weighting factor of POL-
LSC was set as 0.2, the compactness parameter m was set as 1.2 
for POL-SLIC, 1.4 for POL-IER and proposed method. Fig. 6 
illustrates the results of the four algorithms on two simulated 
images. For BR, Pol-IER outperforms SLIC-GC, and proposed 
method is the best of the results, which indicates that the 
superpixels generated by proposed method have the boundaries 
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closest to the real edges among the four methods. POL-LSC 
method display the worst boundary adherence, the BR of 
proposed method is about 11% higher than it when the value of 
S is 13 with the size 500×500. 

 
（a） 

 
（b） 

 
（c） 

 
（d） 

Figure 6. The results of four algorithms: POL-SLIC, POL-LSC, 
POL-IER and proposed method. (a) BR. (b) USE. (c) ASA. (d) 

Running Time. 

On the contrary, the BR of the POL-SLIC and POL-LSC 
methods for simulated images is very low which can occur the 
more terrible results for the real world images. Apparently, it 
gives rise to the poor performance on subsequent interpretation 
steps, which the significance of superpixel segmentation is lost. 
As shown in Fig. 6(b-c), there is no big difference about USE 

and ASA of four methods. On account of that the POL-LSC 
method was applied by MATLAB mixed with C Code, the 
requirement of time costs is lower, but the significance is also 
lost with the terrible boundary adherence. The running time of 
Fig. 6(d) once again illustrates that the proposed method 
maintains the higher computation efficiency along with greater 
boundary adherence. 
 
3.2 Evaluation on Real-world PolSAR Images 

The real-world data set is a 4-look AirSAR L-Band PolSAR 
image with size 750×1024 from Flevoland, the Netherlands, 
and the Pauli color-coded image is shown in Fig. 7. The POL-
SLIC, POL-LSC, POL-IER and proposed method were 
performed on the real-world image for comparison. The initial 
width is generally set according to the complexity of terrains 
empirically. In the experiments, all of the initial widths were set 
as S=6. For these methods, the weighting factor of POL-LSC 
was set as 0.3, the compactness parameter m was set as 0.1 for 
POL-SLIC, 0.4 for POL-IER and proposed method. Fig. 8 
shows the generated superpixels of four methods. The first 
column denotes the final superpixel maps of different methods 
as well as the red lines superimposed onto the Pauli images for 
depicting the superpixel boundaries. 

A

B

C

 
Figure 7. The Pauli-RGB image of the real-world PolSAR data. 

 

B

CA

（a） （b） 

 

B

C
A

（c） （d） 

B

CA

（e） （f） 
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A

B

C

（g） （h） 
Figure 8. The generated superpixels of the four competitive 
methods. (a)-(b) are the results of POL-SLIC, (c)-(d) are the 

results of POL-LSC, (e)-(f) are the results of POL-IER and (g)-
(h) are the results of proposed method.  

 

 

（a） （b） 

 

（c） （d） 

 

（e） （f） 

 

（g） （h） 

 

（i） （j） 

Figure 9. Superpixels results by POL-SLIC (first line), POL-
LSC (second line), POL-IER (third line), proposed method 

(fifth line) and two image patches B and C (fifth line) of Fig. 7. 

The second column gives the representation maps, where the 
coherency matrix of each pixel is replaced by the average value 
of the superpixel this pixel belongs to. To further evaluate the 
performance of proposed method, extensive experiments and 
discussions were conducted on the real-world PolSAR image. It 
can be seen from Fig. 8 that proposed method performs best 
with the smoothest boundary of superpixels. For visual clarity, 
the small regions B and C in Fig. 8(b, d, f, h) are enlarged and 
shown in Fig. 9. The results of Fig. 9(a-b, c-d) shows that POL-
LSC and POL-SLIC cannot preserve the boundaries of slim 
regions with irregular generated superpixels, such as the road. 

On the one hand, it will make the serve impact on subsequent 
interpretation results with the existence of improper 
segmentation. POL-IER and proposed method show the better 
performance with respect to boundary adherence than other 
methods. 

（a） （b） 

（c） （d） 

（e） （f） 

（g） （h） 
Figure 10. The enlarged superpixels for region A of the four 

competitive methods. (a)-(b) are the results of POL-SLIC, (c)-
(d) are the results of POL-LSC, (e)-(f) are the results of POL-

IER and (g)-(h) are the results of proposed method. 

The performance of these four competitive algorithms on the 
real-world PolSAR image was evaluated by the visual 
observation and quantitative evaluation, which the region A by 
the red rectangle was selected to evaluate quantitatively. 
Moreover, it is not difficult to find that both in the 
heterogeneous and homogeneous regions, the results of 
proposed method are more detailed by comparing Fig. 9(e-g, f-
h).  
 

Algorithm Clustering  Postprocessing Total

POL-SLIC 839 124 963 

POL-LSC 371 - 371 

POL-IER 641 65 706 

Proposed Method 556 64 620 

Table 1. Running Time(s) of four methods for the real-world 
PolSAR image. 
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Algorithm BR USE ASA Time(s)

POL-SLIC 0.6958 0.2558 0.9600 58 
POL-LSC 0.5872 0.2276 0.9593 5 
POL-IER 0.7762 0.2268 0.9602 32 

Proposed Method 0.7880 0.2165 0.9607 29 
 

Table 2. Four criteria of four methods for the region A of the 
real-world PolSAR image. 

Especially the regions marked with the red rectangle, which 
demonstrates the superiority of our proposed method in 
boundary adherence. Furthermore, the running time of proposed 
method is 12% faster than the POL-IER by Table 1, with the 
better preservation on boundaries of ground terrains. The 
generated superpixels of region A is shown as Fig. 10, Table 2 
displays the corresponding quantitative evaluation. Intuitively, 
proposed method obtain the highest boundary recall, which is 
0.2008 higher than the POL-LSC method, and further verifies 
the hexagon initialization is more suitable for the complex 
terrain situation of PolSAR images. Similarly, computation 
efficiency for proposed method gets the improvement of 9% 
than the POL-IER based on the excellent boundary adherence, 
which validates the effectiveness of hexagon initialization as 
well as better balanced trade-offs between the computation 
efficiency and segmentation accuracy. 

4. CONCLUSION 

Most of superpixel segmentation algorithms for optical images 
are basically perform well, however, without considering the 
inherent speckle noise for PolSAR images. Although more and 
more scholars improve the methods for the characters of 
PolSAR images, there is also a greater need for time 
consumption with dissatisfactory results of slim regions. For 
above, a fast superpixel segmentation framework based on the 
hexagon initialization for PolSAR images is proposed in this 
paper. To enhance the computation efficiency and decrease the 
number of distance calculation in the local clustering, proposed 
method initializes the cluster center into the hexagons which 
engenders the reduction of searchable pixels. Then, all of pixels 
were initialized unstable pixels for relabelling by utilizing the 
integrated distance, fully considering the impact of slim or 
small regions as well as complex terrain distribution for 
PolSAR images. Finally, the postprocessing based on 
dissimilarity measure is adopted to obtain the final superpixels. 
The experiments conducted on simulated and real-world 
PolSAR images show that proposed method outperforms the 
other three competitive methods in boundary adherence, 
regularity and strong point targets’ preservation, especially the 
time consumption. Although the running time is longer than 
POL-LSC, it is quite short compared with other methods of 
superpixel generation for PolSAR images. Furthermore, the 
significance of superpixel segmentation will be lost with the 
terrible boundary adherence, such as POL-LSC. 
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