
OBJECT DETECTION IN UAV-BORNE THERMAL IMAGES USING BOUNDARY-

AWARE SALIENCY MAPS 
 

 

Minglei Li1, *, Xingke Zhao1, Jiasong Li1, Daiyin Zhu1  

  
1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – 

 (minglei_li, zxk313, jeasonlee, zhudy)@nuaa.edu.com 

 

Commission II, WG II/III 

 

 

KEY WORDS: Thermal Image, Deep Learning, Object Detection, Saliency Map, YOLOv3 

 

ABSTRACT: 

 

In this paper, we propose a method of object detection based on thermal images acquired from unmanned aerial vehicles (UAV). 

Compared with visible images, thermal images have lower requirements for illumination conditions, but they have some problems, 

such as blurred edges and low contrast. To address these problems, we propose to use the saliency map of thermal images for image 

enhancement as the attention mechanism of the object detector. In the paper, the YOLOv3 network is trained as a detection benchmark 

and BASNet is used to generate saliency maps from the thermal images. We fuse the thermal images with their corresponding saliency 

maps through the pixel-level weighted fusion method. Experiment results tested on real data have shown that the proposed method 

could realize the task of object detection in UAV-borne thermal images. The statistical results show that the average precisions (AP) 

of pedestrians and vehicles are increased by 4.5% and 2.6% respectively, compared with the benchmark of the YOLOv3 model trained 

on only the thermal images. The proposed model provides reliable technical support for the application of thermal images with UAV 

platforms. 

 

1. INTRODUCTION 

Image-based object detection techniques have been widely used 

in several applications, such as environmental monitoring, 

emergency management, and traffic survey. However, most of 

the previous works focus on visible images, which might be 

influenced by illumination. On the contrary, thermal images have 

the capability of observing objects at night or in bad lighting 

conditions. Hence, more researchers are exploring the potential 

of using thermal images to build intelligent systems (Portmann et 

al., 2014; Wang, Bai, 2019; Li et al., 2019; Sun et al., 2019). 

Compared with visible images, thermal images have some 

defects, such as low contrast, edge blur, and strong noise, which 

make them less distinguishable. In addition, UAV jitter can cause 

image blur. To address the challenge in UAV-borne thermal 

images, we propose the use of boundary-aware saliency maps to 

enhance the data.  

 

The purpose of salient object detection is to highlight the most 

obvious objects in an image. These methods can guide machine 

vision systems to allocate limited computing resources to a few 

salient regions (Klein, Frintrop, 2011; Zhang et al., 2015; Cheng 

et al., 2015; Qin et al., 2019). Object-driven salient detection 

algorithms mainly focus on the image content based on the task 

requirements, and the results of saliency detection are determined 

by corresponding tasks. In recent years, deep convolutional 

neural networks (CNN) (Yann et al., 1998) have been used for 

salient object detection and achieved state-of-the-art 

performance. In this paper, we adopt the boundary-aware salient 

object detection network BASNet (Qin et al., 2019) to generate 

saliency maps from thermal images. Then, the saliency map is 

fused with the original thermal image. We suppose that the fusion 

images maintain texture information and clear boundaries of 

objects, which can enhance the recognition capability of the 

trained models using the fusion images. 

 

Our reference model is established by training a state-of-the-art 
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object detector YOLOv3 (Redmon, Farhadi, 2018). As the 

original thermal image is a single channel grayscale image, we 

first convert it to an indexed visible image (with 3 channels), 

simulating the hues of glowing iron, i.e. iron red color model. 

Then, we can adopt the existing deep CNNs to generate the 

saliency map. Our training data of saliency maps of thermal 

images are manually prepared by the Labelme toolbox (Kentaro, 

2016), which provides tools to generate pixel level image 

annotation.   

 

The main contributions of this paper are as follows:   

 

(1) This paper presents a method of fusing the thermal images 

with their corresponding saliency maps. Based on the fusion 

images, the trained deep learning model demonstrates the effect 

of saliency maps on improving object detection performance of 

thermal images from the perspective of UAV.  

 

(2) We release a dataset of thermal images with the annotation 

information, which is useful for the research of deep learning 

techniques based on thermal images. The data can be found in: 

https://drive.google.com/drive/folders/1vCxXsKnK3dVB-

bkT6XLbbQF7YTdS2CR0?usp=sharing. We provide saliency 

detection benchmarks on it using state-of-the-art networks. 

 

2. RELATED WORK 

To the best of our knowledge, there are few papers discussing 

deep learning methods with UAV-borne thermal images to detect 

objects. In the following, we review related literatures in the 

aspects of object detection and saliency maps. 

  

2.1 Object Detection 

Over the past 20 years, a great deal of research has been devoted 

to pedestrian and vehicle detection from visible images. Focusing 

on the problem of self-occlusion in the field of human motion 
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tracking, Yu et al. (2010) deal with an algorithm for detecting the 

pedestrian limbs self-occlusion probability model. This 

algorithm uses the Markov model and the ellipse skin color 

model to change the detection of pedestrian limbs self-occlusion 

to the calculation of the self-occlusion state transition probability. 

The result of the experiment shows that the algorithm has higher 

accuracy. Dollar et al. (2009) put forward the method of 

combining Integral Channel Feature with Boosting algorithm to 

improve the effect of vehicle detection. Compared with 

traditional detection algorithms, CNN has made a significant 

breakthrough in object detection in recent years. Object detection 

algorithms based on CNN are mainly divided into two categories: 

One-stage and Two-stage methods of object detection. The main 

difference between them is whether there is a cascade module 

that extracts region proposals. The representatives of two-stage 

object detection algorithms are the R-CNN series of detection 

algorithms (Girshick et al., 2014; Girshick, 2015; Ren et al., 

2017). They can make the network to detect objects in the 

suspected object area by using the cascade module. The cascaded 

module will increase the complexity of the model while 

increasing accuracy. It is lower than the one-stage detection 

algorithm in the detection speed and is not suitable for real-time 

object detection on UAV. Although the one-stage object 

detection algorithm performs poorly in detection accuracy, its 

detection speed is very fast. The most representative of them is 

the YOLO series of object detection algorithms (Redmon, 

Farhadi, 2018; Redmon et al., 2016; Redmon et al., 2017). The 

YOLOv3 algorithm divides images into S×S grids, and each grid 

is responsible for object detection whose center is in this grid. 

Detection and recognition are completed at the same time using 

regression methods. Based on this, we use the YOLOv3 

algorithm as the basic model for pedestrian and vehicle object 

detection and recognition in UAV thermal images.   

 

In recent years, more and more researches focus on the use of 

thermal images to realize the effective detection of pedestrians 

and vehicles. Zhang et al. (2010) proposed an automatic visual-

thermal image sequence registration method based on co-motion 

and the results showed that the proposed algorithm carried out 

precise image registration under the change of image rotation, 

translation, scaling and viewing angle. Li et al. (2019) introduced 

a neural network for light perception, which adaptively fused the 

optical and thermal subnetworks, and adopted a weighted scheme 

to fuse the results according to the light conditions. A regional 

reconstruction network was introduced by Xu et al. (2017), and 

CNN was used to model the relationship between visible and 

thermal data, and then these features were input into the multi-

scale detection network for robust object detection. In our context, 

however, we use only thermal images to design a general 

detection framework that works for day and night. 

 

2.2 Saliency Detection 

The purpose of salient object detection is to highlight the most 

obvious objects in an image. It can guide machine vision systems 

to allocate limited computing resources to a few salient regions, 

which provides great convenience for subsequent visual 

processing. Related research can be divided into two categories: 

data-driven and object-driven saliency detection. Data-driven 

salient region detection algorithms mainly focus on the visual 

stimulus caused by the underlying features of the image. These 

algorithms are driven by internal data and independent of the 

object task. On the contrary, object-driven salient detection 

algorithms mainly focus on the image content based on the task 

requirements, and the results of saliency detection are determined 

by corresponding tasks.  

 

Laurent et al. (1998) first proposed the visual attention model. In 

this model, multiscale image features are combined into a single 

topographical saliency map. A dynamical neural network then 

selects attended locations in order of decreasing saliency. Hou et 

al. (2007) proposed a spectral residual approach. By analyzing 

the log-spectrum of an input image, they extract the spectral 

residual of an image in the spectral domain and design a fast 

method to construct the corresponding saliency map in the spatial 

domain. Using deep learning techniques to generate a visual 

saliency map becomes a trend in recent studies. A novel super 

pixel-wise convolutional neural network approach, called 

SuperCNN, is proposed by He et al. (2015) to learn the internal 

representations of saliency in an efficient manner. In contrast to 

the classical convolutional networks, SuperCNN is able to learn 

the hierarchical contrast features, and saliency can be detected 

independent of region size by utilizing a multi-scale network 

structure. Hou et al. (2017) propose a new method for saliency 

detection by introducing short connections to the skip-layer 

structures within the Holistically-Nested Edge Detector 

architecture. This framework provides rich multi-scale feature 

maps at each layer, a property that is critically needed to perform 

segment detection. In this paper, we used the most advanced 

network BASNet to generate saliency maps from thermal images 

and to build a benchmark of saliency maps. 

 

3. ALGORITHM 

3.1 Baseline for Pedestrian and Vehicle Detection in 

Thermal Images using YOLOv3 

We adapt the YOLOv3 network for the task of objection 

detection. Specifically, our current targets are pedestrians and 

vehicles, and the network we used has been pre-trained on the 

COCO dataset (Lin et al., 2014). YOLOv3 adopts DarkNet53 

with higher accuracy as the image feature extraction network and 

designs a multi-scale detection structure, which has good 

adaptability to small objects suitable for UAV-borne data. As 

shown in Figure 1, we fine-tuned the traditional YOLOv3 

network on the original thermal images to generate the retrained 

model that serves as the benchmark, then the retrained model on 

only saliency maps and the model on only fusion images are 

compared with the benchmark.  

 

 
Figure 1. Comparison mechanism between the traditional 

YOLOv3 model, saliency map detection model, and the 

proposed model. 

 

3.2 Saliency Map Generation 

Deep CNN has been used in salient object detection and achieved 

good performance. But most previous works are focused on the 

accuracy of areas, not the quality of boundaries. As we propose 

to enhance the thermal image from the perspective of UAV by 

using the saliency map, the boundary of the salient object will 

have a great impact on the image enhancement effect. Therefore, 

we adapt the BASNet network, which is more concerned with 
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boundary quality, as the base network for generating saliency 

maps. 

 

As shown in Figure 2, the architecture of the salient object 

detection network BASNet is composed of (1) a prediction 

module and (2) a residual refinement module.  

 

The prediction module is similar to U-shape-Net (Olaf et al., 

2015). First, it has an encoder phase consisting of a convolution 

layer and six basic res-blocks adopted from ResNet-34. As 

symmetry, the module then runs a decoding phase, which also 

has six stages. Each stage consists of convolution layers followed 

by a batch normalization (BN) and a ReLU activation function. 

The input of each stage is the concatenated feature maps of the 

up-sampled output from its previous stage and its corresponding 

stage in the encoder. This module yields a coarse saliency map, 

where the boundaries of objects are inaccuracy.  

 

Then, the residual refinement module refines the saliency map 

of the prediction module by learning the residuals between the 

predicted saliency map and the ground truth. This model also has 

an encoder phase and a decoder phase. Different from the predict 

module, both encoder and decoder have four stages. Each stage 

only has one convolution layer followed by a BN and a ReLU. 

Non-overlapping max pooling and bilinear interpolation are 

utilized in the res-sampling stages. The final output is the refined 

saliency map, which will be used to fuse with the original thermal 

image. 

 

 
Figure 2. Architecture of the boundary-aware saliency map 

detection network BASNet. 

 

Different from other prediction networks, BASNet uses the 

mixed loss of Binary Cross Entropy (BCE), Structural SIMilarity 

(SSIM) and Intersection-over-Union (IoU) to design the loss 

function for each layer, so the network pays more attention to 

boundary quality instead of only focusing on regional accuracy. 

The loss is defined as: 

                                 𝐿 = 𝐿𝑏𝑐𝑒 + 𝐿𝑠𝑠𝑖𝑚 + 𝐿𝑖𝑜𝑢                           (1)                                              

𝐿𝑏𝑐𝑒  denotes BCE loss, corresponding to pixel level supervision: 

             𝐿𝑏𝑐𝑒 = − ∑ [𝐺(𝑟, 𝑐) log(𝑆(𝑟, 𝑐)) + (1 −(𝑟,𝑐)

𝐺(𝑟, 𝑐)) log(1 − 𝑆(𝑟, 𝑐))]                                                           (2) 

where 𝐺(𝑟, 𝑐) ∈ {0,1} is the ground truth label of the pixel (𝑟, 𝑐), 

and 𝑆(𝑟, 𝑐) is the predicted probability of being salient objects. 

𝐿𝑠𝑠𝑖𝑚 denotes SSIM loss, corresponding to the supervision at the 

patch level:                                                               

  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                               (3) 

                       

where 𝑥 = {𝑥𝑗: 𝑗 = 1, ⋯ , 𝑁2}  and 𝑦 = {𝑦𝑗: 𝑗 = 1, ⋯ , 𝑁2}  are 

the pixel values of two corresponding patches (size:  𝑁 × 𝑁 ) 

cropped from the predicted probability map 𝑆  and the binary 

ground truth mask 𝐺 respectively. 𝜇𝑥 , 𝜇𝑦 and 𝜎𝑥, 𝜎𝑦 are the mean 

and standard deviations of 𝑥 and 𝑦, 𝜎𝑥𝑦 is their covariance, and 

𝐶1 = 0.012, 𝐶2 = 0.032 are used to avoid dividing by zero. 

𝐿𝑖𝑜𝑢  denotes IoU loss, corresponding to the supervision at the 

level of map: 

                            
∑ ∑ 𝑆(𝑟,𝑐)𝐺(𝑟,𝑐)𝑊

𝑐=1
𝐻
𝑟=1

∑ ∑ [𝑆(𝑟,𝑐)+𝐺(𝑟,𝑐)−𝑆(𝑟,𝑐)𝐺(𝑟,𝑐)]𝑊
𝑐=1

𝐻
𝑟=1

                     (4)                           

where 𝑆(𝑟, 𝑐)  and 𝐺(𝑟, 𝑐) are consistent with those represented 

in 𝐿𝑠𝑠𝑖𝑚. 

 

3.3 Fusion of Thermal Images with Saliency Maps 

The saliency map serves as an attention mechanism, but it 

discards all textural information. We augment the thermal images 

with the corresponding saliency maps to create a new fusion 

image. The 3-channels of the fusion image are built by combining 

the saliency map values and the values in thermal image channels. 

As shown in Figure 3, the fusion image strengthens the salient 

parts of the image, while retaining the textural information.  

 

 
Figure 3. The fusion of the thermal image with the 

corresponding saliency map.  

 

4. EXPERIMENTS 

4.1 Datasets and Evaluation Protocols  

In order to train a deep neural network, a large number of 

data samples are needed. However, at present, there is no 

publicly available thermal dataset for pedestrians and vehicles 

from the perspective of UAV. In addition, salient object 

detection also requires pixel-level annotations of the salient 

objects. Therefore, we made the pedestrian and vehicle dataset 

based on thermal images under UAV, and we made it publicly 

available to facilitate further research on multispectral 

pedestrian and vehicle saliency detection technology. It is worth 

noting that the original image received by the thermal camera 

has only brightness and is a single-channel grayscale image. In 

order to facilitate the research of pedestrian and vehicle object 

detection, thermal images received are converted into a three-

channel pseudo-color image of RGB format after temperature 

mapping. The pixel with value 0 in single-channel grayscale 

images is mapped to blue and the pixel with value 255 in single-

channel grayscale images is mapped to red, with a smooth 

gradation in the middle, that uses the warm and cold tones of 

the color to display low and high temperature areas.  

 

The imaging system is built on a DJI M600Pro UAV carrying a 

FLIR vue pro thermal camera. It captured data in the daytime and 

at night. The dataset contains 2975 thermal infrared images, 

including 4768 pedestrian instances and 3856 vehicle instances. 

Labelme toolbox is used to manually annotate these images to 

generate the required training data and evaluation data. The 
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annotation here includes not only the border information of target 

locations and categories but also the pixel level annotation for 

saliency object detection. Even though the volume of the thermal 

image dataset is not huge, our networks can converge efficiently, 

as both YOLOv3 and the boundary-aware saliency detection 

network have pre-trained models for pedestrians and vehicles. 

Figure 4 shows some example images and annotations of the 

dataset we made.  

 

In order to evaluate the results of pedestrian and vehicle detection, 

AP and frame per second (FPS) are used as the evaluation 

indexes of accuracy and speed respectively. In addition, F-

measure ( 𝐹𝛽 ) and Mean absolute error (MAE) are used to 

evaluate the saliency detection results of the model. Where, 𝐹𝛽 is 

the weighted harmonic mean of precision and recall under the 

condition of non-negative weighted degree 𝛽, and the higher 𝐹𝛽 

is, the better the model is. The specific formula is as follows: 

𝐹𝛽 =
(1+𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                              (5)                                    

𝛽2 is generally 0.3. 

 

MAE is to directly calculate the pixel error between the saliency 

map output by the model and its corresponding ground truth 

value: 

                     𝑀𝐴𝐸 =
1

𝑊×𝐻
∑ ∑ |𝑆̅(𝑥, 𝑦) − �̅�(𝑥, 𝑦)|𝐻

𝑦=1
𝑊
𝑥=1         (6)                              

Where, 𝑊 and 𝐻 are the width and height of the image, 𝑆̅(𝑥, 𝑦) 

and �̅�(𝑥, 𝑦) are the pixel values of the output saliency map and 

its corresponding ground truth. 

 

4.2 Implementation Details of Network Models 

We train the YOLOv3 model on NVIDIA 1080ti GPU with 

12GB video memory. The image size is adjusted from 640×512 

to 416×416 by bilinear interpolation and then input into network 

models. We fine-tune the network for 100 epochs with a learning 

rate of 0.001 and batch size of 8, using original images, saliency 

images, and fusion images respectively. Besides, we augment the 

training images with random mirror flipping and random crops.  

 The IoU threshold is set to 0.5, and the final prediction result is 

output after the non-maximum suppression (NMS) operation. 

 

We use pixel-level labeled thermal images to train BASNet and 

maintains the same network architecture as in the original paper. 

In the training phase, the size of each image in the training set is 

first adjusted to 256 × 256, and the training set images are 

enhanced by random flipping and cropping. The weights of the 

ResNet-34 network are used to initialize the parameters of the 

feature extraction network, the decoding network is trained from 

0, and the learning rate is 0.01. Without using a validation set and 

a batch size of 8, the loss function converges after 60,000 

iterations, and the entire training process takes about 7 hours. In 

 
Figure 4. Sample annotations from pedestrian and vehicle thermal dataset. Top: Original images. Bottom: Pixel 

level annotations. 

 
                 (a)                                       (b)                                           (c)                                          (d) 

Figure 5. Example results of the detection results of different model trained only on (1st row) origianl thermal 

images, (2nd row) saliency maps, and (3rd row) fusion images. The arrows indicate some missing objects. 
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the test phase, input image size is also adjusted to 256 × 256, and 

then the images are input to the network to obtain predicted 

saliency maps. In the end, the down-sampled saliency map is 

resized to the size of the original input image. Both adjustments 

use bilinear interpolation. 

 

5. RESULTS AND ANALYSIS 

5.1 Detection Effect of Deep Saliency Network BASNet on 

Thermal Image Dataset 

In order to provide effective support for the following saliency 

map study, the performance of BASNet in the annotated UAV 

thermal pedestrian and vehicle saliency dataset is evaluated. The 

evaluation results show that 𝐹𝛽 is 0.767 and MAE is 0.008. It can 

be seen that the detection result of the model is very good.  

 

5.2 Object Detection Analysis of Fusion Saliency Maps 

In Figure 5, we have shown the detection results of the different 

models trained only on origianl thermal images (1st row), 

saliency maps (2nd row), and fusion images (3rd row). We can 

observe that the saliency maps indeed contribute to improved 

performance, as some missing objects in the thermal images and 

the saliency maps are found out in the fusion images. It can be 

seen in images (a) and (c) that a pedestrian and a track have been 

lost in the detection results in thermal images. The saliency maps 

(b)-2nd row and (c)-2nd row for image enhancement are helpful 

to capture the missed detection of pedestrians and vehicles in the 

original thermal images. This shown the potential of saliency 

maps applied to object detection in complex scenes. On the other 

hand, using only saliency maps to do the detection also might 

miss some potential objects, as shown in the 2nd row of (b) and 

(d). After the fusion of thermal images, these objects are captured 

successfully. The above results have shown the complementarity 

between thermal images and saliency maps, which proves the 

hypothesis that the fusion of saliency maps can improve the 

object detection accuracy of thermal images. 

 

Furthermore, a quantitative comparison of the Average Precision 

(AP) of different networks is given in Table 1. The proposed 

model achieves the AP of 0.881 and 0.899 for pedestrians and 

vehicles that are superior over the other two.  

 

Table 1. The average precision (AP) of the different models 

trained on different data. 

Model training data Pedestrian  Vehicle 

Only thermal image 0.836 0.873 

Only saliency map image 0.771 0.820 

Fusion image 0.881 0.899 

 

6. CONCLUSIONS 

In this paper, we proposed an approach based on the fusion 

images of thermal images and the saliency maps to improve the 

performance of object detection (e.g. pedestrians and vehicles). 

Specifically, we get the boundary aware saliency maps by 

BASNet. As thermal-visible image pairs might not always be 

available, our research is focused on using only thermal images, 

eliminating the need for coupled visible images. Experimental 

results show that this method has a high potential for applications. 

The proposed technique can be used in multi-monitoring and 

emergency management tasks.  
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