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ABSTRACT: 
 
Multi-temporal building change detection is one of the most essential major issues of photogrammetry and remote sensing at current 
stage, which is of great significance for wide applications as offering real estate indicators as well as monitoring urban environment. 
Although current photogrammetry methodologies could be applicated to 2-D remote sensing imagery for rectification with sensor 
parameters, multi-temporal aerial or satellite imagery is not adequate to offer spectral and textual features for building change detection. 
Alongside recent development of Dense Image Matching (DIM) technology, the acquisition of 3-D point cloud and Digital Surface 
Model (DSM) has been generally realized, which could be combined with imagery, making building change detection more effective 
with greater spatial structure and texture information. Over the past years, scholars have put forward vast change detection techniques 
including traditional and model-based solutions. Nevertheless, existing appropriate methodology combined with Neural Networks (NN) 
for accurate building change detection with multi-temporal imagery and DSM remains to be of great research focus currently due to 
the inevitable limitations and omissions of existing NN-based methods, which is of great research prospect. This study proposed a 
novel end-to-end model framework based on deep learning for pixel-level building change detection from high-spatial resolution aerial 
ortho imagery and corresponding DSM sharing same resolution, which is from the dataset of Tokyo whole area.  
 
 

1. INTRODUCTION 

Change detection is the process of identifying differentiations in 
the state of an objector phenomenon by observing multi-
temporally. Essentially, it involves the ability to quantify 
temporal effects using data sets acquired at divergent time point. 
One of the major applications of remotely-sensed data obtained 
from Earth-orbiting satellites is change detection because of 
repetitive coverage at short intervals and consistent image quality 
(Singh, 1989).  Due to the wide range of application scenarios 
including video surveillance, remote sensing, medical diagnosis 
and treatment, civil infrastructure, under- water sensing, driver 
assistance systems and so on (Roysam, 2005),  imagery-based 
change detection related research and algorithm development has 
remained to be an active research focus at remote sensing and 
computer vision domain in recent years. 
 
Within the applications by applying multi-temporal remote 
sensing imagery to derive timely information on the earth’s 
environment and human activities, most of scholars concentrated 
on natural environment related ones including monitoring of 
shifting cultivation, assessment of deforestation, study of 
changes in vegetation phenology, seasonal changes in pasture 
production, damage assessment, crop stress detection and so 
on(Singh, 1989). Nevertheless, urban constructed environment 
multi-temporal change detection including building construction, 
traffic construction, urban facilities and other infrastructures 
timely change is significant for urban activities monitoring, real 
estate market mastery, resident’s mobility and then whole city 
development promotion. Our study will focus on the application 
scenario of urban construction change detection including 
building new construction, demolishment as well as continuation, 
which is aiming at urban construction legitimacy supervision and 
real estate commercial activity monitoring. 
                                                             
*  Corresponding author 
 

Along with the developing progression of remote sensing and 
photogrammetry, land cover change detection is not limited with 
the dataset utilization on on low- and medium-resolution remote 
sensing images based on single spectral features. Ortho urban 
remote sensing images derived from high-resolution aerial 
imagery could accommodate adequate spectral detailed 
information for spectral feature fusion and high-level feature 
extraction. Our study will execute experiments on the aerial ortho 
imagery dataset taken from part region Tokyo, Japan in 2015 and 
2016 respectively. As traditional metropolitan area, Tokyo has 
typical urban texture, divergent types of urban objects and high 
building density, which will raise the difficulty and provide solid 
validation for this study simultaneously. 
 
As a premise of change detection from radiance changes from 
spectral feature on imagery, disturbing factors from multi-
temporal aerial imagery including misalignment of pixel, 
radiance error caused by illumination and atmosphere condition 
difference should be eliminated. Although current 
photogrammetry methodologies could be applicated to 2-D 
remote sensing imagery for rectification with sensor parameters, 
multi-temporal aerial or satellite imagery is not adequate to offer 
spectral and textual features for building change detection. 
Alongside recent development of Dense Image Matching (DIM) 
technology, the acquisition of 3-D point cloud and Digital 
Surface Model (DSM) has been generally realized, which could 
be combined with imagery, making building change detection 
more effective with greater spatial structure and texture 
information. 
 
Current 3-D remote sensing-based change detection methods 
typically appertain to one of following approaches: direct 
comparison, classification, object-oriented method, model  
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method and time-series analysis or hybrid method combining two 
or more of them (Roysam, 2005). With corresponding advantages 
and shortcomings of great divergence of existing methods, 
considering the requirements of building change detection 
research and practical application scenario, our study proposes a 
novel end-to-end change detection model based on neural 
network for urban ortho aerial imagery. Instead of applying 
models for only classification or segmentation, the core feature 
of end-to-end network is also appropriate for this task. By 
reducing manual preprocessing and postprocessing, end-to-end 
model will make the input and output to the original value, give 
the model more auto adjustment space and increase the overall 
compatibility. 
 
The main objective of this study is to generate change map 
classified into three classes including new construction, 
demolishment and continuation by end-to-end model based on 
Feature Pyramid Network (FPN) with ortho aerial urban imagery. 
The rest of the paper is structured as follows: Section 2 bring 
forward related works for related tasks with previous informative 
methods. Section 3 describes the main body of proposed end-to-
end change detection model architecture and framework. Model 
hyperparameters and specific methodology are presented in 
Section 4. Empirical results are discussed in Section 5, followed 
by conclusions and potential topics for future research in Section 
6. The last part of acknowledgement and references will be the 
final Sections. 
 

2. RELATED WORKS 

Over the past years, scholars have put forward large numbers of 
change detection techniques of remote sensing image and 
summarized or classified them from different viewpoints. Gong 
has assorted change detection algorithms, a complicated and 
integrated process, into comparison, classification, object-
oriented method, model method, time-series analysis and Hybrid 
methods, indicated the existing challenge over the exterior and 
interior steps (Gong, 2008).  
 
As a hybrid method combining comparison and classification, 
Wang proposed a method based on levene-test and fuzzy 
evaluation especially for high-resolution remote sensing imagery,  

 

 
which could decrease omissions and deficiencies, improve the 
precision of change detection (Wang, 2018). However, in this 
traditional method, inadequate data quality and fine-tuning of 
threshold as well as relative parameters remain to be the intrinsic 
challenge and drawback.  
 
With the introduction of techniques in the domain of data science, 
machine learning and deep learning, neural network-based model 
methods, which reduces manual fine-tuning, have become a hot 
research direction in the past few years. Kevin utilized CNN 
based U-Net for semantic segmentation to extract compressed 
image features, as well as to classify the detected changes into 
the correct semantic classes, with which a difference map 
indicating building change information is generated as result 
(Kevin, 2019). The proposal of unsupervised method using 
pretrained model eliminates costly training process and acquires 
high accuracy as well as robustness. However, the separation of 
processing and pretrained model parameters also lead to 
unoptimizable model because of low comparability of 
corresponding tasks and datasets. 
 
To eliminate the problems including inadequate model 
comparability, process separation and different optimizing space 
of pretrained weights, instead of employing model technique as 
one of the compositions, an end-to-end model with sufficient 
training dataset could be an optimal resolution. Wang presents a 
general end-to-end 2-D convolutional neural network (CNN) 
framework with the name short as GETNET for hyperspectral 
image change detection (HSI-CD). Mixed-affinity matrices from 
abundance maps obtained by linear and nonlinear spectral 
unmixing interacting with the HSI are processed by the GETNET. 
Change map as final output will be generated after another 
feature extraction network (Wang, 2019). This method has 
relatively accurate performance on the test dataset of natural 
land-cover imagery with 242spectral bands. Although the 
novelty of mixed-affinity matrices provides informative data 
fusion technique, the unmixing technique and network 
architecture is not robust for other imagery data type. 
Comprehensive change detection model-based researches and 
methods were innovated but limited to case studies and need to 
be further explored. End-to-end model for change detection still 
has enormous development space with divergent 3-D dataset. 

Figure. 1 Overview Framework of Proposed End-to-End Change Detection Model 
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3. END-TO-END CHANGE DETECTION MODEL 

The overview framework of our proposed end-to-end change 
detection model is shown in Figure.1. Generally, the proposed 
framework comprises three components:  
 
� DSM generating with raw aerial image by photogrammetry 

algorithm  
� Image pre-processing including image registration and image 

colour normalization  
� End-to-end dual change detection model based on Feature 

Pyramid Network (FPN).  
 
The model architecture and composition principle will be given 
in this Section as followed and the algorithm explanation and 
detailed implementation of the first two components will be 
given in the next Section of Methodology. As the major dual 
change detection deep learning model, based on CNN 
(Convolutional Neural Network), we adapt FPN (Feature 
Pyramid Network) to implement domain feature extraction on 
multi scales for urban objects. The model is modified to accept 
four inputs including pre-processed ortho image and DSM of 
T1(Time1) and T2(Time2) and three outputs including building 
segmentation map of T1 and T2 and the 3-Class Change map. 
 
As the training dataset generator, normalized ortho imagery and 
DSM will be clipped into patches with the width and height of 
(224, 224) . The RGB imagery has 3 channels will be 
transformed to tensor in &𝑁()*+,, 224, 224, 3.  with value in 
[0, 255]  and the DSM will become tensor in 
&𝑁()*+,, 224, 224, 1. with only 1 channel as elevation value in 
[−1, 1] , where 𝑁()*+,  represents the number of patches. The 
ground truth dataset, including building segmentation map and 
change map share the same original size of width and height, as 
well as patch number.  
 

 
 
Figure 2. Overall Framework of Shape transformation and 
feature composition   
 
The framework of shape transformation processing and feature 
composition is shown in Figure 2. As the segmentation is binary 
classification problem, the generator will make them tensors in 
the shape of  &𝑁()*+,, 224, 224, 2. with one-hot encoding and 
the change map ground truth will be transformed to  
&𝑁()*+,, 224, 224, 3. with 3 classes. In the process of DSM, a 
subtraction layer operates element-wised subtraction between 

input DSM T1 tensor and DSM T2 tensor and generate a tensor 
also with the shape of &𝑁()*+,, 224, 224, 1.	 in [−1, 1] . The 
intermediate output from FPN will be two binary classified 
tensors with shape &𝑁()*+,, 224, 224, 2.	 and value in {0,1} . 
Later a subtraction layer merges these two tensors with element-
wised subtraction and get one tensor with &𝑁()*+,, 224, 224, 2. 
shape and value in {−1, 0,1} . A concatenate layer will 
concatenate DSM subtracted tensor and segmentation subtracted 
tensor in 𝑎𝑥𝑖𝑠 = 3 then generate tensor in &𝑁()*+,, 224, 224, 3. 
combined imagery low-level feature, high-level feature and DSM 
feature. It will go through a convolutional block comprises 3 
convolutional layers with (3,3) kernel, 32 channels and same 
padding, then output change map tensor in &𝑁()*+,, 224, 224, 3. 
as final output. The spatial size as well as resolution will remain 
same with original input. 
 
The loss function is another crucial part except model 
architecture, which comprises two binary cross entropy loss for 
segmentation intermediate outputs and focal loss for final output 
as change map, with equal loss weights as [1,1,1]. The biggest 
challenge in the training process in this model is the severe label 
imbalance in change map prediction, with the ratio between the 
amount of continuation label and the new 
construction/demolishment label over 1000. Under these 
circumstances, balancing approaches are brought out. The 
significance of cross entropy losses is to optimize the 
segmentation to provide building foreground and background 
feature to keep the object semantics but not just final pixel-wised 
prediction. Also, the focal loss is an efficient loss function 
targeted at training data label imbalance problem, which will be 
introduced in next Section particularly.  
 

4. METHODOLOGY 

This section discusses the methodology used to conduct the study. 
Section 4.1 describes the image-preprocessing measures 
including image registration and radiometric correction 
employed in this study. Section 4.2 discusses the characters of 
FPN as feature extraction network and its superiority for change 
detection task. Section 4.3 describes the calculation and theory of 
the novel multi focal loss as a crucial loss function used in model 
training optimizer. 
 
4.1 Image-Preprocessing 

4.1.1 Image Registration 
 
Image registration aims at integrating multi-temporal aerial ortho 
image into optimal geometric alignment and georeferencing 
condition, which is widely used in a variety of applications in 
remote sensing field. Basically, we adapt Scale-Invariant Feature 
Transform (SIFT) algorithm to corresponding patches of original 
image for feature key points localization and matching.  
 
The SIFT keypoints are particularly useful for our image 
registration problem due to their distinctiveness, which enables 
the correct match for a keypoint to be selected from a large 
database of other keypoints. This distinctiveness is achieved by 
assembling a high-dimensional vector representing the image 
gradients within a local region of the image. The keypoints have 
been shown to be invariant to image rotation and scale and robust 
across a substantial range of affine distortion, addition of noise, 
and change in illumination. Large numbers of keypoints can be 
extracted from typical images, which leads to robustness in 
extracting small objects among clutter. The fact that keypoints 
are detected over a complete range of scales means that small 
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local features are available for matching small and highly 
occluded objects, while large keypoints perform well for images 
subject to noise and blur. Their computation is efficient, so that 
several thousand keypoints can be extracted from a typical image 
with near real-time performance on standard PC hardware (David, 
2004). Figure 3. shows the key points matching results with ortho 
aerial imagery of same region in Tokyo taken in 2015 and 2016. 
The green lines connect corresponding matched key points and a   
linear homography matrix will be generated for the whole image 
transformation, aiming at image registration. 

 
Figure 3. Matched Key points with SIFT on Tokyo Region 
 
4.1.2 Radiometric Correction 
 
Given the fact that the layer parameters will be shared in the 
feature extraction network for input ortho images of T1 and T2, 
the radiometric divergence of aerial images caused by disturbing 
factors will become one of the significant factors during neural 
network training period. In order to unify the difference in color 
balance conditions caused by imaging seasons or dates, different 
solar altitudes and illumination, different angles, different 
meteorological conditions and different cover areas of cloud, rain 
or snow etc., for optimized model performance, raising the 
accuracy and effectiveness, radiometric correction and color 
normalization methodology will be utilized. 
 
Radiometric corrections serve to remove the effects that alter the 
spectral characteristics of land features, except for actual changes 
in ground target, becoming mandatory in multi-sensor, multi-date 
studies (Paolini, L., 2006). Radiometric correction methods of 
satellite images can be grouped in two major categories: absolute 
and relative (Thome et al. 1997). In our study, relative 
radiometric which is relatively appropriate for multi-temporal 
radiometric divergence of aerial imagery. 
 
The relative radiometric correction method normalizes images of 
the same area and different dates by using landscape elements 
(pixels) whose reflectance values are nearly constant over time. 
This procedure assumes that the pixels sampled at Time 2 are 
linearly related to the pixels, of the same locations, sampled at 
Time 1, and that the spectral reflectance properties of the sampled 
pixels have not changed during the time interval (no actual 
change during this period). The sampled pixels are considered 
pseudo-invariant features (PIFs) and are the key to the image 
regression method used in the normalization process. (Paolini, L., 
2006).  
 
4.2 Feature Pyramid Network (FPN) 

For the building change detection problems, the greatest 
challenges consist of object differentiation including buildings, 
river, roads and moving objects, as well as the high density and 
scale difference of buildings. In the whole End-to-End model 
framework, the feature extraction network is required to extract 
object-based feature for urban objects with large scale divergence 
and segment building boundaries accurately and efficiently. 

 
Figure 4. FPN Feature Extraction Architecture for Object 
Segment 
 
Feature pyramids built upon image pyramids form the basis of a 
standard solution. These pyramids are scale-invariant in the sense 
that an object’s scale change is offset by shifting its level in the 
pyramid. Intuitively, this property enables a model to detect 
objects across a large range of scales by scanning the model over 
both positions and pyramid levels (Lin, 2017). FPN architecture 
and feature extraction process is shown in Figure 4. 
 
Aiming at leveraging a ConvNet’s pyramidal feature hierarchy, 
which has semantics from low to high levels, and build a feature 
pyramid with high-level semantics through-out. The Feature 
Pyramid Network is created general-purpose, so it could be 
applied flexibly for our building change detection problem 
without obvious limitations. 
 

 
Figure 5. A building block illustrating the lateral connection and 
the top-down pathway, merged by addition. 
 
For the network architecture, generally, FPN takes a single-scale 
image of an arbitrary size as input, and outputs proportionally 
sized feature maps at multiple levels, in a fully convolutional 
fashion. This process is independent of the backbone 
convolutional architectures. A bottom-up pathway, a top-down 
pathway, and lateral connections make construction for FPN 
pyramid. A building block illustrating the lateral connection and 
the top-down pathway is displayed in Figure 5. The utilization of 
FPN acquires the benefits that lateral connections between 
reconstructed layers and the corresponding feature maps could 
help the detector to predict the locations more precise, with 
skipping connections to make training easier. 
 
4.3 Focal Loss for Multi-Class Classification 

The Focal Loss (Lin, 2018) is designed to address the one-stage 
object detection scenario in which there is an extreme imbalance 
between foreground and background classes during training (e.g., 
1:1000). Lin introduced the focal loss starting from the cross 
entropy (CE) loss for binary classification: 
 

𝐶𝐸(𝑝, 𝑦) = 	 A
− log(𝑝) 										𝑖𝑓	𝑦 = 1

− log(1 − 𝑝) 						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒				(1) 
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In the above 𝑦 ∈ {±1} specifies the ground-truth class and  
𝑝 ∈ [0, 1] is the model’s estimated probability for the class with 
label 𝑦 = 1. For notational convenience, we define 𝑝*: 
 

𝑝* = 	 A
𝑝													𝑖𝑓	𝑦 = 1	
1 − 𝑝							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒				(2)			 

 
A common method for addressing class imbalance is to introduce 
a weighting factor α ∈ [0, 1] for class 1 and 1−α for class −1. The 
α-balanced CE loss is written as: 
 

𝐶𝐸(𝑝*) = 	−𝛼* log(𝑝*)				(3) 
 
However, the large class imbalance encountered during training 
of dense detectors overwhelms the cross-entropy loss. Easily 
classified negatives comprise the majority of the loss and 
dominate the gradient. While 𝛼  balances the importance of 
positive/negative examples, it does not differentiate between 
easy/hard examples. Instead, they propose to reshape the loss 
function to down-weight easy examples and thus focus training 
on hard negatives. More formally, we propose to add a 
modulating factor  (1 − 𝑝*)𝛾  to the cross entropy loss, with 
tunable focusing parameter 𝛾 ≥ 0 . In practice, an 𝛼 -balanced 
variant of the focal loss is used. 
 

𝐹𝐿(𝑝*) = 	−𝛼*(1 − 𝑝*)Q log(𝑝*)				(4) 
 
In our end-to-end change detection model, as a multi-class 
classification problem, an adjusted multi-class focal loss is used 
for change detection model with imbalanced datasets. α  is 
defined as a 2-D array in the shape of (3,1). 
 

𝑎 = [[𝑎S], [𝛼T], [𝛼U]]				(5) 
 
where  𝑎S, 𝑎T, 𝑎U = 	𝑤𝑒𝑖𝑔ℎ𝑡	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑐𝑙𝑎𝑠𝑠			  
 
To do element-wised loss calculation without 𝛼-balanced variant 
for will be written as: 
 

𝐹𝐿𝐸(𝑦[, 𝑦*) = 	
∑ −	(1 − 𝑝]*)Qlog	(𝑝]*)^
]_T

𝑁 				(6) 
 
where  𝑦[ = 	predicted	result	tensor	  

		𝑦* = 	ground	truth	tensor  

 𝑝* = 	 A
𝑝													𝑖𝑓	𝑦 = 1	
1 − 𝑝							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		   

		𝑁 = 	tensor	elements	number     
 

And the loss calculation we implemented is written as: 
 

𝐹𝐿𝑀(𝑦[, 𝑦*opq) = 	𝐹𝐿𝐸(𝑦[, 𝑦*opq) ∗ 	𝛼				(7) 
 

5. EXPERIMENTS 

Following the principle of inflation study, except for our 
proposed methodology, two baseline methods are conducted 
simultaneously for the empirical results, performances of which 
are also expressed in this Section. Section 5.1 describes the two 
baseline methods, algorithm and principles. Dataset introduction 
is given in Section 5.2. And Section 5.3 lists all used 
hyperparameters and the empirical results including visual ones 
as well as statistical measures and metrics. 
 

5.1 Baselines 

Due to the significant difference of dataset and task between our 
study and other scholars, in order to evaluate the change 
indicators and validity of procedures, we implemented image 
differencing post-classification method and similar dual 
framework with only 2-D imagery, which is following the 
methodology of Ablation Study. 
 
5.1.1 Post-Classification Method  
 

 
Figure 6. Framework of Post-Classification Methods as 
Baseline1 
 
Baseline1 could be summarized as a hybrid pixel-based method 
combining post-classification with segmentation model. Multi-
temporal ortho aerial image of T1 and T2, without DSM, will be 
inputted into FPN semantic segmentation network after pre-
processing consisting of SIFT image registration and image 
radiometric correction. The two outputted building masks will 
take element-wised subtraction operation. However, pixel-based 
methods all have a problem called salt and pepper effect which 
means independent pixels that are classified wrong will cause bad 
performance of the whole map, even the accuracy is not low. 
Therefore, the morphological filtering algorithm will be 
employed to reduce noise for the intermediate result then we will 
get the final change map. The general framework of baseline1 is 
shown in Figure 6. 
 
The biggest advantage of this method lies in the employing of 
existing advanced segmentation network to accurately extract 
building features. Nevertheless, manual fine-tuning of thresholds 
and pixel-wised subtraction could not guarantee the robustness of 
this method.  
 
5.1.2 Dual-Input End-to-End Model  
 
Baseline2 is an end-to-end model-based method with dual inputs 
and three outputs. Multi-temporal ortho aerial image of T1 and 
T2, without DSM, will be inputted into the FPN-based model 
after same pre-processing process. The model architecture is 
similar with our proposed method and this baseline is mainly for 
the validation of DSM data introduction effectiveness. 
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The whole model comprises FPN architecture, one subtraction 
layer and one convolutional block consisting of three 
convolutional layers with (3,3) kernel size and 32 channels. All 
the layers share parameters for from two input pipelines and be 
trained simultaneously. For the optimizer of this model, the 
overall loss includes two binary cross entropy losses between 
intermediate outputs and building segmentation ground truth as 
well as the focal loss between final output and change map 
ground truth. Loss weights are distributed equally as [1,1,1]. The 
general framework of baseline1 is shown in Figure 7. 
 
5.2 Dataset Description 

The dataset used for all experiments conducted is Tokyo aerial 
imagery dataset provides by NTT Spatial Information Company, 
Japan. For experimental results verifying the effectiveness and 
generality of our proposed framework, we used the dataset 
covering the area of Setagaya-Ku, Tokyo, Japan, consisting of 15 
ortho imagery grids that acquires 2000m×1500m field size, 
12500×9375pixels and 0.16m resolution as well as 1050 raw 
aerial imagery with sufficient overlap rate over 70%. The 
building segmentation ground truth is binary-labelled per-pixel 
to foreground and background classes representing building label 
and no-building label. And the change map ground truth is 
classified into three labels representing building new 
construction, construction continuation and building 
demolishment. In summary, the training dataset is made up for 
2015 and 2016 datasets, each of which consists of 2 ortho aerial 
images, corresponding building segmentation labels ground truth, 
5 DSM images in the same size, as well as change map ground 
truth with same width and height, as shown in Figure 8. The area 
we use for testing is part of Arakawa-Ku which is a typical urban 
area with constructions, road networks, rivers and other urban 
infrastructures. 
 
All the training and testing data are clipped into small patches in 
224×224 pixels in order to reduce the random data noise, improve 
the model compatibility and make flexibility for data 
augmentation. All the DSM data is normalized to the range [-1,1] 
and the ground truth labels will be transferred to one-hot 
encoding. In the training process, the validation set occupies 20% 
of whole training set and stay still in every epoch for comparison. 

 
For the output tensor, the value in each channel of each output 
pixel thus represented the confidence of the model in classifying 
the pixel as belonging to a specific class. In order to determine 
the class that the model finds most likely for a pixel, the argmax 
function, which returns the class with the highest confidence 
value, was applied to the output tensor. 
 
5.3 Empirical Results 

Given that the baselines and proposed method are all model-
based, the model initial settings and hyperparameters will be 
described as followed. For the implementation of three models of 
above methods, we adapt Adam optimizer with learning rate as 
0.00011 and momentum ratio as 0.9, with batch size as 32 and 
training epoch number as 200. Early stopping mechanism was set 
as 10 epoch patience from validation loss value. Checkpoint was 
also set according to validation loss to save optimal model 
weights. Relu is used as activation function in convolutional 
layers and Softmax function is used for output layers. For FPN, 
VGG16 was used as backbone pre-trained model. All 
convolution operations in the model had a kernel size of 3×3, a 
stride of 1, and batch normalization. Upsampling operations had 
kernel sizes including (8,8), (4,4) and (2,2), as well as the nearest-
neighbour interpolation method. The input and output tensor 
dimensionality are (4710, 224, 224, C) where C means channel 
number differentiates according to data type.  
 
In Baseline1, the model is only for semantic segmentation task. 
As a post-classification method, the model was trained and tested 
with 2015 dataset and 2016 dataset separately. Binary cross 
entropy was the only loss function employed to segmentation 
output. In the morphological filtering part, open operation was 
implemented to reduce salt-and-pepper noises with erosion 
kernel size and dilation kernel size set as 15 and 20 respectively. 
In baseline2, as an end-to-end model method, it was trained with 
2015 and 2016 dataset together, sharing parameters. Our 
proposed end-to-end model was also trained with 2015 and 2016 
dataset including imagery and DSM together. All concatenate 
operations were implemented by axis 3 and all subtraction layers 
are merging operation with no parameters trained. 
 
 

Figure 8. Training Dataset Composition Examples (a) Ortho 
Image taken in 2015 (b) Ortho Image taken in 2016 (c) Building 
Segmentation Ground Truth of 2015 (d) Building Segmentation 
Ground Truth of 2016 (e) Change Map Ground Truth  

Figure 7. Framework of Dual-Input End-to-End Model Method 
as Baseline2 
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Figure 9. shows part of experiments testing results of baselines 
and our proposed method, including building semantic 
segmentation results, change detection results and corresponding 
comparison to ground truth. In the fourth column, change map 
comparison color map of three methods are displayed in which 
blue represents true prediction and red represents false. 
 
As shown in Figure1, for the building semantic segmentation 
results, the baseline1 had much better performance than the other 
two because of the model loss concentrating on the segmentation 
task only. The optimizer tends to optimize this binary 
classification for higher accuracy and lower noise. Nevertheless, 
the performance of post classification methods heavily relies on 
the capability of segmentation model and much noises arise due 
to the misalignment even though the segmentation has high 
accuracy, which need to be eliminated by morphological filtering.  
Our method behaves relatively better than the baseline2 in 
segmentation results. Despite the two end-to-end models also 
distribute the optimizing concentration to change map by hyper 
losses, the DSM introduction also contribute to exact 
construction features by importing elevation details information. 
For the change detection results, by visual inspection, the result 
of baselin1 generates severe noises due to the sample 
misalignment and inadequate morphological filtering in spite of 
the pre-processing and manual fine-tuning. Two end-to-end 
models have much better performances and our proposed method 
increased the ratio of True Positive and True Negative.  
 
In order to evaluate the performance of all the methods 
quantificationally, we use evaluation metrics to compare the 
change difference images with ground-truth maps, in which 
white pixels represent new construction, black pixels mean 
demolishment and grey pixels means continuation. Generally, 
through pixel-level evaluation, this paper adopts three evaluation 
criteria: overall accuracy (OA), precision, recall, F1 score. In 
their calculation, there are four indexes: 1) true positives, i.e., the 
number of correctly detected changed pixels; 2) true negatives, 
i.e., the number of correctly detected unchanged pixels; 3) false 
positives, i.e., the number of false-alarm pixels; and 4) the false 
negatives, i.e., the number of missed changed pixels.  

 
The OA is defined as: 

𝑂𝐴 =	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 
The Precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 
The Recall is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 
The F1 score is defined as: 

𝐹1 = 	2 ∗	
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

 
  

Post-
Classification 

End-to-End 
Model(2-D) 

End-to-End 
Model(3-D) 

OA 0.954 0.960 0.971 

Precision 0.479 0.634 0.680 

Recall 0.371 0.520 0.511 

F1 Score 0.418 0.571 0.583 

 

Table 1. Evaluation Metrics of Change Detection Methods 
From quantitative analysis results shown in Table1., after overall 
consideration of OA, precision, recall and F1 score, it could be 
obviously found out that our proposed 4-input end-to-end model 
with imagery and DSM is an effective method for building 
change detection. Besides, the overall situation is that imbalanced 
dataset problem is severe that overall accuracy shows quite good 
performance, but other measurements calculated for all classes 
separately evaluate models worse. The post classification method 
got severe false positive samples situation and model with only 
imagery inputs got relatively low TP, which means it was not 
strong enough to have optimal prediction performance.  

Figure9. Testing Results of Comparison Experiments (a-1) 2015 Segmentation Result of Baselin1 (a-2) 2016 Segmentation Result of 
Baselin1 (a-3) Change Map Result of Baseline1(a-4) Change Map Visual Evaluation of Baseline2 (b-1) 2015 Segmentation Result of 
Baselin2 (b-2) 2016 Segmentation Result of Baselin2 (b-3) Change Detection Result of Baseline2 (b-4) Change Map Visual Evaluation 
of Baseline2 (c-1) 2015 Segmentation Result of Proposed Method (c-2) 2016 Segmentation Result of Proposed Method (c-3) Change 
Detection Result of Proposed Method (c-4) Change Map Visual Evaluation of Proposed Method (d) 2015 Segmentation Map Ground 
Truth (d) 2016 Segmentation Map Ground Truth (d) Change Map Ground Truth 
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6. CONCLUSIONS AND FUTURE WORKS 

This paper proposed an efficient end-to-end model with the 
utilization of DSM for building change detection task for urban 
environment, trained and verified on the dataset of Setagaya-Ku, 
Tokyo aerial imagery. The novel empirical study confirmed that 
creating a Change Map with proposed method could give 
relatively high accuracy and performance. End-to-end FPN-
based building change detection model offers the following 
contributions. First, this unsupervised method eliminates costly 
manual finetuning of thresholds and parameters. The skipping 
connection structure also offers lower parameter amount and high 
training effectiveness. Second, adaptive image pre-processing 
step and weight combination of model optimize the change 
performance and minimize the noise simultaneously. The future 
works of this study will focus on more appropriate network layer 
structure and loss function that is more suitable for change 
detection task. 
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