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ABSTRACT: 

This paper focus on traffic light distance measurement using stereo camera which is a very important and challenging task in image 

processing domain, where it is used in several systems such as Driving Safety Support Systems (DSSS), autonomous driving and traffic 

mobility. In this paper, we propose an integrated traffic light distance measurement system for self-driving based on stereo image 

processing. Therefore, an algorithm to spatially locate the detected traffic light is required in order to make these detections useful. In 

this paper, an algorithm to detect, classify the traffic light colours and spatially locate traffic light are integrated. Detection and colours 

classification are made simultaneously via YOLOv3, using RGB images. 3D traffic light localization is achieved by estimating the 

distance from the vehicle to the traffic light, by looking at detector 2D bounding boxes and the disparity map generated by stereo 

camera. Moreover, Gaussian YOLOv3 weights based on KITTI and Berkeley datasets has been replaced with the COCO dataset. 

Therefore, a detection algorithm that can cope with mislocalizations is required in autonomous driving applications. This paper 

proposes an integrated method for improving the detection accuracy and traffic lights colours classification while supporting a real-

time operation by modelling the bounding box (bbox) of YOLOv3. The obtained results show fair results within 20 meters away from 

the sensor, while misdetection and classification appeared in further distance. 

1. INTRODUCTION

Our transportation system must be autonomous to avoid 

accident scenarios. The vehicles should have eyes, not real 

eyes, but cameras for these things to happen. Traffic lights are 

also one of these important objects. Since the drivers are often 

wrong in complying with the rules of traffic light, traffic lights 

detection is considered to be very important because they are 

a part of public safety. 

 A variety of algorithms have been used for traffic signs and 

lights as well. Ultimately, integrating different methods, 

detection, color recognition and distance calculation, into one 

system is essential for an autonomous vehicle for safety 

reason. Safety is not only for drivers and passengers but also  

for pedestrians, other vehicles and two-wheelers. In order to 

be widely accepted, safety issues must be resolved to the full 

satisfaction of the people. Self-driving vehicles are now part 

of our transport network. The fast development of automotive 

technology focuses on giving us the best safety features and 

Automated Driving Systems (ADS) in vehicles can handle the 

entire work of driving when the person wants the vehicle to 

switch to an auto-driving mode or when the person is unsure 

of driving. Self-driving vehicles and trucks that drive us will 

become a reality instead of us driving them. Object detection 

is necessary to achieve all these things. 

Object detection is now commonly used as a major software 

system in self-driving cars for the detection of objects such as 

pedestrians, cars, traffic lights etc. The scenario is even worse 

in cases of drunk driving, where the driver would lose control  
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and hit other vehicles and will not stop at the traffic lights, 

leading to major accidents and even death. 

De Charette et al (Raoul de Charette, 2009)suggested a three-

step procedure. spotlight detection is executed in the grey level 

image by using top hat morphological operator to highlight 

high-intensity spots.  

Mu et al (G. Mu, 2015)proposed an image processing 

approach that converts the image color from red green blue 

(RGB) to hue-saturation value (HSV). Potential areas were 

then identified by scanning the scene using transcendental 

colour threshold with prior knowledge of the image. Finally, it 

was identified the location of the traffic lights using the 

Oriented Gradients (HOG) and Support Vector (SVM) 

functionalities. But before doing the traffic light classification 

YOLOv3 predicts an object score for each bounding box. 

Therefore, a detection algorithm that can cope with mis-

localizations is required in autonomous driving applications. 

This algorithm was applied for improving the detection 

accuracy while supporting a real-time operation of YOLOv3, 

which is the most representative of one-stage detectors, with a 

Gaussian parameter and redesigning the loss function (Lee J. 

C.-J., 2019). 

2. RELATED WORK

Traffic lights usually have startling colours so drivers can 

easily see them. These colours make them easily detectable 

using color filters (Fleyeh, 2004), however, these approaches 

require manual tuning of the thresholds for colour filtering, 

resulting in a difficult task because illumination and weather 
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conditions will affect the colors. Furthermore, traffic lights 

have different orientation in horizontal or vertical. 

 

Much research is taking place in the field of autonomous 

vehicle manufacturing, such as the detection by these vehicles 

of traffic lights and road signs. These vary with the techniques 

used, with regard to the environment and the cars to be used. 

Ozcelik et al proposed A Vision Based Traffic Light Detection 

and Intelligent Vehicle Recognition Approach (Ozcelik, 

2017). Images are taken using a camera, and processing to 

detect the traffic is performed stepwise. The color of the traffic 

light is easily identified through the classification model 

Support Vector Machines (SVM), which is a machine learning 

algorithm prepared beforehand, after the location of the traffic 

lights is determined in the image. Muller et al have proposed 

Detecting Traffic Lights through Single Shot Detection 

technique which performs object proposals creation and 

classification using a single CNN (Müller, 2018). 

 

A deep learning approach was proposed to Traffic Lights by 

detection, tracking, and classification (Behrendt, 2017). This 

proposed methodology provides a stable system consisting of 

a detector, tracker, and classifier depending on deep learning, 

stereo vision, and vehicle odometry that considers traffic lights 

in real-time. 

 

Li et al proposed a "Traffic Light Recognition Technique" for 

the Complex Scene with Fusion Detections (Li, 2018). Saini 

et al proposed a Vision-Based Traffic Light Detection and 

State Recognition Technique for Autonomous Vehicles (Saini, 

2017). It provides a vision-based technique for detecting 

traffic light structure using CNN that is based on a state 

recognition method that is considered to be reliable under 

different illumination and weather conditions. Shi et al. 

proposed the Adaptive Background Suppression Filter Real-

Time Traffic Light Detection (Shi, 2016). 

 

Hamdi et al have proposed an ANN Real-Time 

Implementation classification system for road signs (Hamdi, 

2017). This system provides a real-time algorithm to classify 

traffic signs by way of a driver alert system and recognize 

them. A traffic sign recognition system using hybrid descriptor 

features and an artificial neural network classifier has been 

suggested by Abedin et el (Abedin, 2016). 

 

Many methodologies for traffic light detection are presented 

in the research works mentioned here. But due to the presence 

of different drawbacks these methodologies are also 

hampered. The systems presented fail to consider a wide 

variety of data sets for both training and testing, which can be 

considered to scale the systems accuracy. 

 

3. PROPOSED INTEGRATED SYSTEM 

The proposed integrated system aims to detect, localize, and 

measure the distance between the camera and traffic light 

while performing real time traffic lights recognition. This can 

be achieved by implementing machine learning and image 

classification techniques. Artificial Neural Networks, 

Convolution Neural Networks and in specific, are one of the 

most accurate methods in order to achieve the desired result.  

 

 

 

Figure 1. shows the flow of integrated system  

 

CNNs have recently become popular because of their speed 

and precision in detecting objects. A popular CNN object 

detector is Faster R-CNN, which consists of two CNNs: the 

first one proposes input image regions of interest, and the 

second one refines and classifies those regions. In (Zuo, 2017), 

a plain Faster R-CNN was used to detect traffic signs in this 

research, but the detector struggled because signs are 

commonly a small part of the image, making the detection task 

more difficult.  

 

A modified Faster R-CNN was developed in (Wang, 2018), 

resulting in a more efficient process for detecting signs of 

traffic signs. Although it has a great performance, having two 

detection and classification stages makes the processing 

slower if it was one stage. 

 

One stage detectors are faster because they propose regions 

and at the same time classify them as high-speed detectors, 

such as OverFeat (Sermanet, 2013), SSD (Liu, et al., 2016) 

and YOLO (J. Redmon, 2016), (Redmon, 2016), (Redmon, 

2018). A simultaneous SSD-based traffic signal detection and 

classification method is presented in (Lee H. S., 2018), which 

results in high accuracy; however, its main drawback is that 

each image with a resolution of 533x300 is processed in 0.126 

seconds. 

 

The modified YOLOv2 achieved 0,017 seconds per image 

608x608 with a processing rate of 0,017 seconds, maintaining 

a high level of precision in the detection of traffic signs (J. 

Zhang, 2017). This shows that YOLOv2 can be used in the 

detection of traffic lights as well and that YOLOv3 has 

improved its function extractor and network architecture 

(lowering its processing speed), thus providing traffic lights 

detention tasks using YOLOv3 better accuracy but rather 

slower results. 

 

3.1 Detection  

YOLOv3 is a real-time detector and classifier based on CNN 

that has great performance in detecting small objects and is a 

perfect choice for this task due to the usual size of the traffic 

lights. But because YOLOv3 uses the sum of the squared error 

loss for bbox, it results with noisy data. However, utilize new 

model that cope with the loss function of bbox makes the 

model more robust against the noisy environment. Therefore, 

Gaussian YOLOv3 can obtain the uncertainty of bbox for 

every detection object in an image (Lee J. C.-J., 2019). By 

utilizing Gaussian YOLOv3, an improvement in the mean 

average precision (mAP) by 3.09 and 3.5 on the KITTI and 
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Berkeley deep drive (BDD) datasets, respectively. This 

pretrained model has been selected as it is capable of real-time 

detection at faster than 42 frames per second (fps) and shows 

a higher accuracy than previous approaches with a similar fps. 

Therefore, the proposed algorithm is the most suitable 

pretrained model for autonomous driving applications and 

localize traffic light position (Jiwoong Choi, 2019).  

 

The performance of the selected pretrained model using the 

KITTI validation set compared to YOLOv3, the Gaussian 

YOLOv3 mAP improves by 3.09, with a detection speed of 

43.13 fps, allowing real-time detection with a slight variation 

from YOLOv3. Gaussian YOLOv3 is 3.93 fps faster than 

RFBNet (Songtao Liu, 2018), which has the fastest operating 

speed in previous studies with the exception of YOLOv3, 

although Gaussian YOLOv3's mAP exceeds RFBNet 

(Songtao Liu, 2018) by more than 10.17. 
 

3.2 Localization  

The 2D position of the traffic lights acquired during the 

detection phase does not provide enough information for an 

autonomous vehicle to make a decision. A method for 

obtaining their depth is required to locate traffic light 

correctly, which means that the decision-making algorithm 

receives more information and therefore improves 

autonomous driving. Although CNNs have been included with 

the neural detection network for the estimation of the 

monocular camera depth (I. Laina, 2016), (L. He, 2018), (D. 

Eigen, 2014), it will slow the entire procedure; because 

computer resources are distributed. Therefore, the optimal 

solution is an end-to-end CNN which detects and predicts at 

the same time the distance from the vehicle; however, this 

cannot be trained because no data set with traffic light 

boundary boxes and their distance is available. 

 

On the other hand, with low computational resources, stereo 

vision approaches are fast enough to post-process the 

detections in real-time. Moreover, the calculation of depth 

with small errors is precise enough. Figure 2(a), shows an 

example of one stereo camera frame. 

 

 
 

(a) Left and Right stereo image 

 
 

(b) Saturation mask 

  
 

(c) Disparity map with 

the detected bounding 

boxes 

Fig. 2. Stereo images and their corresponding disparity map 

3.3 Traffic Light Recognition   

The recognition of traffic light and its colours can be divided 

into two steps. Firstly, locate the traffic light accurately and 

cut out the area of interest (ROI) around the location to reduce 

the calculation, and then through the image processing to 

achieve the final identification of traffic light (Xiaoqiang 

Wang, 2018).In this part an effective traffic light identification 

and colour classification  scheme based on TensorFlow API 

and HSV color space was integrated. 

 

Hence, to track the precise bounding box of the traffic light in 

the image. The obtained corner information is recorded for 

cropping region of interest (ROI) image from the original 

input. OpenCV is then used to smooth the ROI image and 

improve contrast. After converting the ROI image from BGR 

to HSV colour space, the result of the  traffic light can be 

consulted on the H channel according to the area of the 

connected domain (Xiaoqiang Wang, 2018). The ROI image 

is transferred from the BGR space to the HSV colour space, 

and then the H (hue) component is separated therefrom to 

make a traffic light determination (Su X, 2017), (G, 2014) as 

shown in Figure 2. 

 

Figure 2. HSV colour model. 

 

Then after detecting a traffic light we use the HSV method to 

classify the colour, isolating the saturation channel and 

visualizing the distribution. Figure3(a, b, and c), we find that 

saturation is high at most of the area as the traffic light body is 

very good shaped. Choosing the area with the high saturation 

and high hue values as the area to mask yielded a good result 

as expected as shown in Figure3 (d, e, and f). Then plotting the 

hue image at the area of the light, it's obvious that's green is 

the highest ratio of them all as shown in Figure3 (g, h, and i).  

 

 
(a) Original 

 
(b) Saturation 

  
 

(c) Saturation Plotting 
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(d) Hsv 

 
 

(e) 0.9 

threshold 

 
 

(f) Result 

 
 

(g) Hue 

 
 

(h) Masked 

 
 

(i) Hue plotting 

 

Fig. 3. HSV classification method  

 

Finally, we extract the H channel and the results can be 

obtained by calculating the connected domain area and setting 

the threshold on the H channel as shown in Figure 4. 

 
Figure 4. Results of traffic light detection and colour 

classification 

 

3.4 Disparity Map Generation  

Recreation of a three-dimensional representation of our 

images, we need to estimate the distance of every point. In the 

scene (which corresponds to a pixel in the image) of our 

cameras. The first thing we need is a disparity map. To 

calculate this, we initially implemented a simple block 

matching algorithm, using the Sum of Absolute Distances 

(SAD) metrics to match each pixel of the image captured from 

our right camera to a pixel in the image captured from our left 

camera.  

 

The idea behind the algorithm is to find how much each pixel 

has shifted horizontally from one image to the other and from 

this information triangulate the corresponding point in space. 

The amount of shift is inversely proportional to the pixel’s 

distance from the cameras: objects closer to the cameras will 

shift more from one image to the other, while our infinity point 

won’t move at all. 

 

The precision to which we can estimate the disparity value of 

a pixel (and consequently its depth in the scene) is limited by 

the pixel density of our image. To go beyond this limitation 

that restricts our disparity to scalar values, we can apply 

"Subpixel Estimation". Once we have identified our best 

match with the basic block matching algorithm, we take the 

corresponding minimum SAD and the SAD values of the 

neighbouring pixels and estimate a quadratic curve connecting 

the three. We then compute the minimum of this function by 

zeroing the derivative and this will be our new disparity value. 

Applying Subpixel Estimation yields a slightly smoother 

depth transition which especially enhances flat surfaces. 

 

The stereo images are processed by looking at the position 

difference of each pixel in both images, generating a disparity 

map as shown in Figure 2(c). This disparity map shows the 

apparent motion of each pixel between the two stereo images. 

A higher motion indicates a pixel near, and a lower motion 

indicates a further pixel. Equation 1 is used for depth 

calculation of each pixel of two parallel cameras in metric 

units. 

 

𝑍 =  
𝑓𝑇

𝑑
   (1) 

 

Where Z represents the depth of the selected pixel in the metric 

units. f is the focal length, i.e. the distance from the focal point 

to the optical center of the lens. T is the baseline, that is, the 

distance between the two cameras. Both f and T are obtained 

by the process of camera calibration. The camera used for this 

experiment is the ZED stereo camera; The images have a 

resolution of 2x (1280x720 pixels resolution), 60fps and have 

the following characteristics: focal length f 2.8mm (0.11")- 

f/2.0, baseline T of 120 mm (4.7''), and pixel size 2 μm. 

 

Combining equation (1) and the detected bounding boxes, the 

distance from each traffic light to the camera in the image can 

be estimated as follows: First, the 2D coordinates of each 

bounding box are projected in the disparity map of the Region 

of Interest (ROI) as shown in Figure 2(c). Then equation (1) is 

applied to each pixel inside that ROI and, finally, a histogram 

with distance intervals of 0.1 meters versus the number of 

pixels representing each distance is constructed. The distance 

for each bounding box is the most repeated value in the 

histogram. The histogram containing the distance values 

within the prediction bounding box is shown in Figure 5. 

Histograms of further traffic lights show that the most frequent 

value is less dominant than the histograms of closer traffic 

lights. 

 

Fig. 5. Histogram of pixels inside the traffic light bounding 

box  
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4. EXPERIMENTAL RESULTS  

4.1 Experiment Platform  

The platform is a portable tripod and is equipped with a front 

stereo camera described in section 3.4. The processing unit is 

equipped with an AMD Ryzen 73700X8-Core Processor and 

NVIDIA GeForce RTX 2060. 

4.2 Results and Evaluation 

3D Localization: Table 1 shows the real coordinates of each 

camera positions and the traffic light as shown in Figure1 (a) 

for different distance ranges.  

 

Positions X(N) Y(E) Z(H) 

Traffic light  553771.850 204838.802 41.212 

Camera position1 553761.480 204904.980 36.942 

Camera position2 553757.984 204880.639 36.854 

Camera position3 553764.804 204860.660 36.603 

Camera position4 553766.846 204850.749 36.528 

Table 1. Different 4 positions on different distance were 

measured away from one traffic light 

 

To calculate the distance, enter two sets of coordinates in the 

three-dimensional Cartesian coordinate system, (X1, Y1, Z1) 

and (X2, Y2, Z2), to get the distance formula calculation for 

the 2 points and calculate distance between the 2 points. The 

distance between two points is the length of the path 

connecting them. The shortest path distance is a straight line. 

 

 In a 3-dimensional plane, the distance between points (X1, 

Y1, Z1) and (X2, Y2, Z2) is given by distance of each traffic 

sign was measured using the Total Station; Tie 

Distances calculates the distance and height differences 

between our stereo camera and the traffic light. This missing 

line measurement represents the real distance between our 

stereo camera as a centre point and multiple existed traffic 

light. This radial function can accurately calculate 

the distances to points P1 and Px, and the total 

station calculates both distance d and height difference H as 

shown in Figure 6.  

 

Figure 6. shows how to calculate different distance in 

different position  

 

Positions 
Measured 

distance(m) 

Estimated 

distance(m) 

Camera position 1 67.132 0.0 

Camera position 2 44.289 0.0 

Camera position 3 24.359 21.518 

Camera position 4 13.773 10.845 

Table 2. shows 4 positions on different distance away from 

one traffic light 

 

5. CONCLUSION  

The Gaussian YOLO network is good for real time execution, 

but the Map isn’t very good compared to Faster RCNN which 

appeared during the 2D detection part. The Zed camera faces 

accuracy problems when measuring points depth greater than 

3 metres. The Zed camera didn’t pick up certain features in the 

outdoor experiment that the monocular cameras can see 

particularly in locations where piles of material are positioned 

with shadows. Under different lighting conditions we captured 

the scene at varying speeds, framerates and resolution without 

any significant changes. 

 

Using HSV yields a good accuracy but could not recognize 

and classify the colour of traffic lights from a far distance. 

Moreover, the disparity map for depth prediction is good for 

urban environments, but it is not very efficient in a very wide 

environment where you want to get the depth of a very distant 

object. 

 

If real time execution won’t be a problem replacing Gaussian 

YOLOV3 with Faster RCNN or SSD will be better. Trying to 

Add traffic light color classification to our Network by 

combining multiple datasets. Using sensor fusion, unscented 

Kalman Filter (UKF) by fusing the predicted depth for an 

object from the stereo camera disparity map and the lidar 

readings. Adding the Two-point clouds of both the camera and 

the LiDAR together and predicting the depth from the 

corrected output. 
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