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ABSTRACT 

The purpose of this paper is to show how deep learning techniques, based on CNNs, can contribute to photogrammetry process to 

perform geometric inspections of risers on offshore platforms. The photogrammetry process has a problematic related to the relative 

movements presented in the scene where the images are being acquired (dynamic photogrammetry). As an alternative solution, this 

work proposes the use of the YOLOv2 architecture, because this detector complies with some requirements of speed and good 

performance considering the functional requisites of the study executed. Thus, the purpose of this model is to detect risers and i-tubes 

on offshore platforms, then extract an inspection riser from the scene. Finally, with the images obtained, a 3D reconstruction is 

performed, followed by the results’ analyses. 

1. INTRODUCTION

The integrity of equipment and structures is very important to 

ensure the safety of the operations in the oil, natural gas, energy 

and biofuels sector (Mercuri et al., 2015) (Jordan et al., 2018). In 

this context, one of the main components of oil and gas offshore 

platforms are the flexible risers, which are pipelines in charge of 

transporting oil, gas, water and cables between subsea structures 

and the platform on water surface (Wang et al., 2016). The visual 

inspection is necessary to guarantee the integrity of the risers, 

check its general conditions and identify possible damages in the 

external coating and accessories (e.g. twisting, looping, and 

bending). The inspection, as shown in Figure 1, is done by 

industrial climbers who perform manual measurements of riser 

geometry and photographic record of points of interest. This 

operation requires a large mobilization of resources for the 

preparation, inspection and disassembly of auxiliary equipment 

and structures (Mercuri et al., 2015). 

Figure 1. Riser inspection by industrial climber. 

Nowadays, RPAs (remotely operated aircrafts) equipped with 

cameras are being used in the oil and gas industry to perform 

visual inspection of structures and components such as flares 

(Marinho et al., 2012) and risers relatively quickly and 

economically. However, quantitative or geometric studies of the 

structures have not been done yet. Thus, with the purpose of 

making geometric measurements of risers from images captured 

* Corresponding author - tiago.pinto@ufsc.br

by RPAs, techniques such as photogrammetric 3D reconstruction 

can be used. 

To get a good measurement result using photogrammetry, a series 

of requirements must be met, such as sequential and overlapping 

image acquisitions, effective camera positioning (network 

design), spatial resolution and object texture (Thomas Luhman, 

Stuart Robson, Stephen Kyle, 2011). 

One of the problems presented by the photogrammetry process is 

related to the relative movements presented in the scene where 

the images are being acquired. This class of problems is 

attributed to dynamic photogrammetry (Thomas Luhman, Stuart 

Robson, Stephen Kyle, 2011). For example, in Figure 2 it is 

possible to observe a sequence of images acquired in a riser 

inspection process using a RPA. The relative movement between 

sea and riser can compromise the quality of the reconstruction, 

since a large portion of the scene is changing, reducing the 

number of homologous points between images (Thomas 

Luhman, Stuart Robson, Stephen Kyle, 2011) (Atkinson, 1996). 

Therefore, a potential solution for this, is to remove unwanted 

parts of the scene that hinder the measurement. This removal can 

be performed by manual task or by specialized tasks done 

through a computer vision system that captures images and, in 

addition, by analyzing each of the images, the system will be able 

to determine actions to follow, such as segmentation of unwanted 

regions within the image. 

Figure 2. Movement of the sea region compared to the riser. This 

kind of situation impair measurements. 
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Among the different computational techniques that can be used 

to process the images, deep learning techniques, and more 

specifically, those related to convolutional neural networks 

(CNNs), have emerged as a promising alternative that, when 

applied with RPAs, derive from the concept of deep learning - 

remotely pilot aircrafts (DL-RPAs). In this way, DL-RPAs 

systems can assist the photogrammetric inspection processes. In 

this study, the state-of-art proposal-free CNN-based model 

YOLO (version 2) (Redmon and Farhadi, 2017) is used for 

detecting risers and i-tubes present on the platform and then, 

extract the inspected riser from the scene. With the obtained 

images, a 3D reconstruction is performed in a commercial 

photogrammetric software. Finally, a geometric evaluation is 

performed using simulated 3D scene and images, comparing the 

3D result with the ground truth (GT), which is a riser (with some 

artificial defects) CAD model. 

In this paper, a total of 2400 aerial image samples of one offshore 

platform containing risers and i-tubes under different 

environment conditions were used. The images were obtained 

using a DJI M210 RPA (DJI, 2019a) with an DJI Z30 camera 

(DJI, 2019b). 

One of the biggest drawbacks of the images used to perform the 

research is that they were acquired using zoom in and without 

considering aspects such as photogrammetry network design, 

sequential and overlapping acquisition. This, as mentioned 

earlier, influences the result of the photogrammetric 

reconstruction. In that context, considering that the final purpose 

of the research is to execute an analysis of the risers’ 

photogrammetric reconstruction, a ROS/Gazebo simulation 

environment representing an offshore platform presented in the 

work of (Salazar et al., 2019), was used for acquire several virtual 

images (in total 600 images) considering different acquisition 

strategies and camera configurations. 

Therefore, the image dataset used in this paper consists in a total 

of 3000 virtual and real aerial image samples of an offshore 

platform that contains risers and i-tubes under different 

conditions. Furthermore, manual annotations of the images were 

performed to generate GTs of risers and i-tubes, which are the 

two classes that the model will detect. 

Due to the small training dataset, and to avoid overfitting by the 

detector, an expansion of the training data (data augmentation) is 

performed (Liu et al., 2018) (LeCun et al., 2015). Transfer 

learning is also used on the ConvNet, in this case the darknet 

(Redmon and Farhadi, 2017), trained in the COCO dataset (Lin 

et al., 2014). 

2. RELATED WORK

Object detection is one of the most important and challenging 

tasks in computer vision. An object detection model aims to 

determine instances of objects of a certain class (categories) in an 

image or video, providing not only the classes of the objects in 

the image but also additional information such as spatial location 

of those objects trough the centroids or bounding boxes (Zhao et 

al., 2019) (Liu et al., 2018). 

With the emergence of deep convolutional neural networks 

(DCNN), especially, due to the success of AlexNet (Krizhevsky 

et al., 2012) architecture in the Large Scale Visual Recognition 

1 Object proposals, also called region proposals or detection proposals, 

are a set of candidate regions or bounding boxes in an image that may 

potentially contain an object. 

Challenge (ILSVRC 2012)  for image classification, many deep 

learning based methods have been proposed in the domain of 

generic object detection. In this context, generic object detection 

methods can be categorized into two types: (i) regions proposal-

based method (two stage) and (ii) proposal-free methods (one 

stage). 

2.1 Method based on regions proposal 

The method based on regions proposal-based method is a two-

stage process. In the first stage, regions proposals1 that may 

contain objects are generated from an input image. In the second 

stage, CNN features are extracted from the regions and then, a 

classification process is carried out in each of the regions to 

determine its category labels or classes. R-CNN (Girshick et al., 

2014) is one of the most popular object detection method that 

uses CNN (AlexNet), region proposals and a linear SVM (Chang 

and Lin, 2013) for classification. 

Although R-CNN introduces CNN for practical object detection, 

it requires high computational costs since each region is 

processed by the CNN network separately. Fast R-CNN 

(Girshick, 2015) improve the efficiency by sharing the 

computation of convolution across all the region proposals. Thus, 

the model runs over the entire image only once instead of 

thousands of times like R-CNN. 

Fast R-CNN speeds up the training and testing time, but it still 

depends on a set of external regions proposals, causing a 

bottleneck in the detection process. To solve this problem, (Ren 

et al., 2015) proposed Faster R-CNN. This model adopts a fast 

module to generate region proposals instead of the slow selective 

search or edgebox algorithms. Faster R-CNN consists of two 

modules: the first module is a fully convolutional network called 

Region Proposal Network (RPN) for generating region 

proposals. The second module is a Fast R-CNN used for 

classification and regression of the ROIs (regions proposals) that 

were generated in the first module. Thanks to the inclusion of the 

region proposal based in CNN architecture, Faster R-CNN obtain 

a frame rate of 5 FPS (Frame Per Second) in a GPU. Also achieve 

state-of-art object detection accuracy in PASCAL VOC 2007 and 

2012, employing 300 regions proposals for image (Zhao et al., 

2019). 

2.2 Proposal-free (one shot) methods 

The region proposals methods are composed of several correlated 

stages, including region proposal generation, feature extraction 

with CNNs, classification and bounding box regression, which 

are trained separately. As a result, those methods are 

computationally expensive for real time applications and current 

mobile/wearable devices (LeCun et al., 2015) (Carrio et al., 

2017) (Zhao et al., 2019). In order to solve this problem, 

researchers introduced the second type of generic object 

detection methods, called proposal-free or one-shot (one-step). 

Proposal-free methods are based on global 

regression/classification idea, directly mapping the bounding box 

and class probabilities from the feature maps generated by a 

single network. Since the whole pipeline is a single network and 

does not involve region proposals generation and the subsequent 

feature resampling stage, it can reduce time expense. 
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The YOLO (You Only Look Once) (Redmon et al., 2016), SSD 

(Single Shot Multi Box Detector) (Liu et al., 2016) and RetinaNet 

(Lin et al., 2017) frameworks are the state-of-the-art proposal-

free methods for real time object detection. In this paper, YOLO 

version 2 (YOLOv2) (Redmon and Farhadi, 2017) is used for 

risers and i-tubes detection. This approach outperforms SSD and 

RetinaNet in terms of speed and it is competitive in terms of 

accuracy in detecting large objects2 (Liu et al., 2018) (Li et al., 

2020). Moreover, recent works such as (Hossain and Lee, 2019), 

(Sadykova et al., 2019), (Opromolla et al., 2019) and (Chen and 

Miao, 2020) achieved good performance in applications 

involving RPAs and real-time object detection using YOLOv2. 

3. METHODOLOGY AND PROPOSED WORK

3.1 YOLO and YOLOv2 architectures 

YOLO (Redmon et al., 2016) adopts a single CNN backbone to 

directly predict bounding boxes and class probabilities from the 

entire images in one evaluation. As shown in Figure 3, YOLO 

divides an input image into a 𝑆 × 𝑆 grid and each grid cell is 

responsible for predicting only one object. If the center of the 

object falls into a grid cell (for example, the yellow dot represents 

the center of the riser in the input image), that cell is responsible 

for the detection of that object. Each grid cell predicts B bounding 

boxes and their confidence scores. Confidence scores are defined 

as 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ, which reflects how likely the box

contains an object (𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ≥ 0) and how accurate is the

boundary box (𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ). The (𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ) determines the IoU

(intersection of union) of the bounding prediction (𝑏𝑝𝑟𝑒𝑑) boxes

and the GT (𝑏𝑡𝑟𝑢𝑡ℎ). Simultaneously, C conditional class

probabilities (Pr⁡(𝐶𝑙𝑎𝑠𝑠|𝑂𝑏𝑗𝑒𝑐𝑡)) are predicted in each cell, 

regardless of the number of the bounding box number (B). The 

conditional class probability is the probability that the detected 

object belongs to a particular class (for each grid cell there are 

one probability per category). 

Figure 3. YOLO. The input is divided into a grid, followed by the 

multiplication of the confidence prediction of the bounding boxes 

and the class probabilities, generating a final detection result. 

Each boundary box contains five components: (𝑥, 𝑦, 𝑤, ℎ, 𝑐𝑜𝑛𝑓). 
The (𝑥, 𝑦) coordinates represent the center of the box, relative to 

the grid cell location (the grid cell responsible for the object). The 

(𝑤, ℎ) represents the width and height of the predicted box. The 

last component is the prediction confidence (𝑐𝑜𝑛𝑓). Lastly, 

adding the class predictions to the output vector, the YOLO 

algorithm produces a tensor output with the shape (𝑆 × 𝑆(𝐵 ∗

2 In this work, the images were captured by a RPA at a maximum distance 

of 10 meters from the target objects. Thus, risers and i-tubes have a large 

size within the images.   

5 + 𝐶)). YOLO uses its own CNN, which is inspired by 

GoogleNet. This architecture has 24 convolutional layers 

followed by 2 FC. Since YOLO uses 𝑆 × 𝑆 grid, if an object 

occupies more than one grid cell, this object may be detected in 

more than one grid cell. Thus, there are a lot of bounding boxes 

without any object, that is, duplicate detections for the same 

object. To fix this, The Non-Maximum Suppression (NMS) 

(Rothe et al., 2015) method is applied at the end of the network. 

It consists in merging highly overlapping bounding boxes of a 

same object into a single one. 

By eliminating the proposal region stage, YOLO can process 

images in real-time at 45 FPS with better results than other real-

time detectors. However, its accuracy is less compared to other 

detectors such as Faster R-CNN and SSD. YOLO may fail to 

localize some objects, especially small-sized objects, possibly 

because of the coarse grid cell division, and that each grid cell 

can only contain one object (Liu et al., 2018). In order to improve 

the trade-off between the speed and accuracy, (Redmon and 

Farhadi, 2017) proposed the YOLOv2, in which the YOLO 

network is replaced with the simpler DarkNet19 network. 

Darknet has 19 convolutional layers, without FC layers, and uses 

mostly 3 × 3 filters to extract features and 1 × 1 filters to reduce 

output channels. YOLOv2 also add batch normalization (Ioffe 

and Szegedy, 2015) in all of the convolutional layers for prevent 

overfitting without using dropout. Moreover, YOLOv2 improves 

performance using anchor boxes3 learned via K-means and 

multiscale training adjusting the input image size from 

224 × 224 to 448 × 448, thus, detecting more small-sized 

object in the image than YOLO (Liu et al., 2018) (Li et al., 2020). 

Finally, for an input image on the PASCAL VOC 2007 dataset 

test, YOLOv2 achieves 78.6% mAP (mean average precision) at 

40 FPS versus SSD500 mAP 76,8% / 19 FPS or YOLO mAP 

63.4% / 45 FPS or Faster R-CNN mAP 73.2% / 7 FPS. 

3.2 Data preparation 

In this work, two types of images datasets representing an 

offshore platform (containing risers and i-tubes) were used. The 

first, with real aerial images to carry out the training and testing 

of the YOLOv2 object detector. The second, composed of 

synthetic images acquired from a virtual scene, to perform 

different types of experiments and photogrammetric analysis. 

3.2.1 Real dataset: The real image dataset used in this paper 

(Figure 4) consists in total of 2400 aerial image samples under 

different conditions, such as distinct backgrounds, variation in 

the size target objects, illumination changes (e.g. presence of 

shadows, non-uniform light distribution, etc.), various types of 

texture and different acquisition angles. The images were 

obtained using a DJI M210 RPA system equipped with a DJI 

30X optical zoom Z30 camera at the resolution of 1920 × 1080 

pixels (2 MP). Furthermore, manual annotations of the images 

were performed to generate GTs of risers and i-tubes, which are 

the two classes that the model will detect. 

One of the most challenging problems within deep learning area 

is the lack of training data. Deep learning models for mapping 

and inspection of components require a considerable amount of 

training (Nguyen et al., 2018) (Liu et al., 2018). Thus, due to the 

small training dataset, and to avoid overfitting by the detector, an 

expansion of the training data (data augmentation) is executed, 

3 Boxes of various sizes and aspect ratios that serve as object candidates. 
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applying distortions to the images, changes in brightness, 

saturation, rotations, etc. (Liu et al., 2018) (LeCun et al., 2015). 

Figure 4. Real dataset for risers inspection process. 

3.2.2 Virtual Dataset: One of the biggest drawbacks of the 

real dataset used to perform the research, is that the images were 

acquired only for visual inspection without considering 

photogrammetry requisites, as network design, image 

overlapping, spatial resolution, type of sensor and object texture 

(Thomas Luhman, Stuart Robson, Stephen Kyle, 2011) 

(Atkinson, 1996) (Marcellino et al., 2019),. And as mentioned 

earlier, this influences the result of 3D reconstructions. To 

overcome this, a ROS/Gazebo simulation environment (Salazar 

et al., 2019) was used for acquire different types of images. The 

virtual scenario, as illustrated in Figure 5, represents a real 

offshore platform and includes a DJI M210 RPA system, riser 

balcony, variation of sea surface, illumination and different 

camera models with parameters that can be modified. The risers 

used in the experiments were modelled using CAD, with some 

artificial defects and artifacts. Thus, during the CAD (GT) versus 

measurement comparison, it is possible to evaluate the quality of 

the reconstructed object. 

Figure 5. Virtual environment containing the M210 RPA, riser 

balcony and the serpentine trajectory (in red) for inspection 

process. 

In order to perform experiments and analyses, two types of 

cameras were used for virtual image acquisition: a DJI Z30 (2MP 

resolution) used in the real offshore platform for real dataset 

acquisition, and a FLIR Blackfly S equipped with a 40 mm focal 

length lens at the resolution of 4093 x 3000 (12 MP). The main 

specifications of the cameras used in simulation are shown in 

Table 1. 

Based on the experimental results of (Salazar et al., 2019), for 

virtual images acquisition, important factors were considered to 

obtain good results using photogrammetry. In that context, the 

RPA performed a serpentine trajectory (a combination of vertical 

and horizontal displacements and yaw rotation) maintaining 

constant distance to the riser, and for better points 

correspondence between the images, 80% image overlap and 

sequence acquisitions were performed. Figure 6 shows some 

examples of the virtual dataset obtained. Finally, the virtual 

dataset is composed of 600 images. 

Item \ Camera DJI Z30 FLIR Blackfly S 

Sensor type 1/2.8” 1.1” 

Sensor size 5.3 mm x 3.0 mm 14.1 mm x 10.4 mm 

Resolution [px] 1920 x 1080 (2 MP) 4096 x 3000 (12 MP) 

f (focal length) 15 mm 40 mm 

f (for 35 mm eq.) 102 mm 102 mm 

AoV [°] 20.0° x 11.3° 20.0° x 14.7° 

FoV @ 5 m 1.8 m x 1.0 m 1.8 m x 1.3 m 

Table 1. Cameras specifications during simulation. Where: Angle 

of view (AoV) and field of view (FoV). Both focal lengths were 

adjusted to result in a 20º horizontal AoV and 1.8 mm FoV @ 

5 m. 

Figure 6. Example of the virtual dataset for riser inspection. 

3.3 Performance evaluation 

To evaluate the performance of the CNN-based model, the mAP 

metric was used. It has become the most  used metric in detection 

competitions (Zhao et al., 2019) (Liu et al., 2018). The mAP is 

calculated by computing the AP (Average Precision) for different 

classes and averaging them. The AP is based on two underlying 

metrics: precision and recall. They are defined as follows. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡(𝑃) = ⁡
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

𝑟𝑒𝑐𝑎𝑙𝑙⁡(𝑅) = ⁡
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

In equation (1) and (2), TP (True Positive), FP (False Positive) 

and FN (False Negative) correspond to right detections, wrong 

detections and missed target, respectively. Thus, P represents the 

percentage of right risers and i-tubes detections among all those 

identified as risers and i-tubes. R refers to the correct rate of 

detections among all the GT in the dataset. Finally, the AP is 

approximate to the area under the precision-recall curve.  

4. EXPERIMENTAL ANALYSIS AND RESULTS

The experiments and analysis were divided into two parts. The 

first part, evaluates the CNN-based approach (YOLOv2) for 

risers and i-tubes detection, using the real and virtual datasets. 

The second part focuses on the evaluation of the influence of 

parameters such as network design, sensor resolution, relative 

movements (dynamic photogrammetry), overlap and sequence 

image acquisition, through extensive experiments considering 

geometric evaluations and object segmentation results. 
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4.1 Object detection experimental setup 

The YOLOv2 performance evaluation was realized employing 

the real and virtual datasets. Thus, the total of 3000 images were 

divided into training and test sets according to the ratio 9:1. To 

avoid overfitting, a simple data augmentation is performed 

randomly in the training dataset. In this context, considering the 

constant vertical positions of risers within the capture images, 

random images were pre-processed in terms of brightness, zoom 

and vertical flip as shown in Figure 7. 

a) b) c) d) 

Figure 7. Data augmentation: a) original image; b) Zoom in; c) 

horizontal mirror; and d) brightness transformation. 

Due to the fact that CNNs require a lot of training data before 

achieve a good performance, it is common to pre-train a CNN in 

benchmark datasets like COCO (Lin et al., 2014) or VOC 

(Everingham et al., 2010), and then use the CNN as an 

initialization or a fixed feature extractor for the task of interest. 

The low-level and high-level features learned by the CNN in a 

source domain (the large datasets) can be transferred or fine-

tuned in a different, but related, target domain (in this case, Risers 

and i-tubes), usually by training only the last few layers. This is 

known as transfer learning (Yosinski et al., 2014) and is usually 

enough to obtain good performance in the new domain as long as 

it does not differ drastically from the original. In this study, the 

Darknet19 CNN pre-train was used in the COCO dataset. The 

weights to carry out transfer learning are available on the YOLO 

website4. 

The YOLOv2 CNN-based detector containing the Darknet19 

CNN was modified using the darkflow framework (Thtrieu, 

2017). It is an implementation based in tensorflow (Abadi et al., 

2016) and python, and it was implemented on a laptop5. Given 

the memory constraints of the CPU, the batch size was set to 8. 

The number of epochs and initial learning rate were set to 150, 

and 10-4, respectively. Parameters such as momentum and weight 

decay refer to the original parameters in the YOLOv2 paper. 

As previously mentioned, the test set to verify the performance 

of the model consists of 300 virtual and real RGB images with 

1920x1080 and 4096x3000 resolution. They were randomly 

selected and contain a total of 330 risers and 78 i-tubes, 

generating a total of 408 object instances, or GTs. The GT 

bounding boxes of these images are represented in the Figure 8 

(a). Note that the risers distribution is greater than the i-tubes 

distribution, this is mainly due to the fact that the main purpose 

of the RPA system is the inspection of risers on the offshore 

platform. True-false positive predictions for each of the classes 

are illustrated in Figure 8 (b). The few number of FP represents 

a high precision of the model detecting risers and i-tubes. Thus, 

the number of risers and i-tubes detected using an IoU of 0.5 is 

321 and 75, respectively. 

The Figure 8 (c-d) shows the area under the curve measured for 

AP calculation of individual class, 96.84% for risers and 96.04% 

for i-tubes. Note that YOLOv2 maintains 100% precision over a 

fairly wide range of recall, demonstrating the few number of FN 

4 https://pjreddie.com/darknet/yolo/ 
5 Computer specifications: intel i5-8300H processor at 2.3 GHz with 

16 GB RAM and a GTX 1050 Ti GPU with 6 GB memory. 

in the predictions. Finally, the detector was able to recognize 

risers and i-tubes objects in the dataset with 96.44% mAP, which 

confirms the excellent generalization capability of the model to 

detect those two types of classes. This high performance is due 

to aspects such as: the data augmentation in the training dataset; 

the use of transfer learning with a darknet CNN pre-trained on 

COCO dataset by learning low level features in the first layers 

such as corners, line, shapes and the fact of the geometrical 

shapes of risers and i-tubes; and the relation of large dimension 

objects with the image by performing the inspection at a close 

distance from the target. 

Figure 8. mAP evaluation6. 

As shown in Figure 9, partial occlusion and overlapping 

situations can occur. In this particular case, the model is able to 

detect all the target objects in the image considering a min IoU 

value of 0.5. The IoU values of the large objects (in the image 

foreground) are greater than 80%. For i-tubes in the background 

of the image, the value of IoU decreases. 

Figure 9. Quantitative results detection. 

Figure 10 summarizes the results for several virtual and real 

testing images. The model detects risers (the principal object for 

inspection) and i-tubes under different lighting and contrast 

conditions, although the relative movements (a problem in 

dynamic photogrammetry) of sea and risers. Note the background 

variation through the different frames and how the model can 

detect the target objects. Objects with remarkably similar texture 

can also appear in the images (Figure 10 e-f). In these cases the 

model also maintains a good performance. Detecting this type of 

objects using classical image processing techniques such as, 

color space transformation and line detection with Hough 

transform (Lin and Otobe, 2001), is a very complex task, 

consumes a large processing and generates many false positives. 

On the other hand, using techniques based in deep learning, it is 

possible to make complex detections due to specialization of the 

6 Results generated with: https://github.com/Cartucho/mAP 
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system (without generating overfitting), by learning complex 

features through the convolutional layers.  

Figure 10. Detection results of risers and i-tubes from real and 

virtual images. 

4.2 Photogrammetric analysis 

To analyze the influence of factors such as: relative movements 

between camera, riser, platform and sea; sensors resolution and 

network design in the riser inspection process, several 

photogrammetric reconstructions were performed using Agisoft 

Metashape (Agisoft, 2020) and analyzed using GOM Inspect 

(GOM, 2018).     

Using a sequence of real images from the training dataset, a 3D 

reconstruction of the riser inspection scene was obtained. The 

result is shown in Figure 11. Note that the software is unable to 

reconstruct the scene. This is influenced by aspects such as: the 

lack of overlap between the images acquisition; bad network 

design configuration; zoom in acquisitions and presence of 

relative movements between the sea and the riser. 

Figure 11. Photogrammetric 3D dense cloud for the real images. 

Based on the images captured in the virtual scenario, another 3D 

reconstruction of the scene containing a riser was performed. In 

this case, acquisition strategies presented in (Salazar et al., 2019) 

were used, as: the use of RPA serpentine trajectory and 80% 

overlapping between acquisitions to improve point matching. 

Moreover, relative movements between the sea and the risers 

were not considered in the simulation. The camera configuration 

used was the DJI Z30, which replicates the especifications of the 

real images acquisition. As shown in Figure 12, a succesful 

reconstruction was obteined, demonstrating the influence of the 

acquisition strategies in the reconstruction. 

Figure 12. Photogrammetric 3D dense cloud for the virtual 

images acquired with DJI Z30 camera parameters.  

In order to demostrate only the influence of relative movements 

in the quality of reconstruction, virtual images acquisitions were 

performed using configurations of Z30 (res. 1920x1080) and 

Blackfly S (res. 4096x3000) cameras within the virtual scenario, 

as well as the same acquisition estrategies used in the 

reconstruction shown in Figure 12. However, movements at sea 

and ±50 mm horizontal lateral movements (parallel to platform 

wall) of the riser were added, emulating real capture conditions. 

Figure 13 shows the result of the 3D reconstructions. It is possible 

to observe that the software was unable to reconstruct the 

inspected riser for both resolutions, evidencing the influence of 

the relative movements in the reconstruction. 

a) DJI Z30. b) FLIR Blackfly. 

Figure 13. Unsatisfactory 3D reconstruction from simulated 

acquisition of an inspection scene (with riser and sea movement) 

without background removal. The riser was not reconstructed. 

To solve this problem, the YOLOv2 detector was used in the 

acquired images. Figure 14 illustrates an example of the 

segmentation process of the inspected riser within the capture 

scenario. First, the riser is detected through YOLOv2. With this 

result, a binaryized mask is created that represents the region of 

interest (the riser). Thus, the inputs for the reconstruction 

software are the original image and the mask that represents the 

object to be reconstructed (the riser), this way, eliminating the 

impact of the relative movements by the riser and the sea within 

the scenario capture. The main parameters for the two 

reconstructions are listed in the Table 2 and the result is 

illustrated in Figure 15. Here, it is possible to see that the 

reconstructions were successful, both for acquisitions with the 

Z30 camera (lower resolution) and for Blackfly (higher 

resolution). This result allows to perform a geometrical analysis 

of the reconstruction. 

a) Input image b) Detection result c) Obtained mask 

Figure 14. Developed CNN-based segmentation process. 

Item \ Camera DJI Z30 FLIR Blackfly S 

# of images 232 220 

# of points (millions) 0.91 4.7 

Spatial resolution [mm/px] 0.95 0.46 

Reconstruction time (hours) 0:38 2:46 

Table 2. 3D reconstructions result for segmented virtual images. 

a) b) c) d)

e) f) g) h)

i) j) k) l) m)
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a) DJI Z30. 

b) FLIR Blackfly. 

Figure 15. Horizontal view of the successful reconstructed 3D 

textured meshes of the riser from simulated acquisition of an 

inspection scene (with riser and sea movement) using the 

developed CNN-based strategy for riser background removal. 

Once the objective of eliminating relative movement has been 

achieved, it is possible to make an evaluation of the impact of the 

used cameras resolution. For this, it was performed a surface 

comparison between the reconstructed riser and the GT. This 

evaluation is performed by a point-to-point mesh comparison. 

Figure 16 shows the deviation map generated by the GOM 

Inspect software. It is possible to find a low (green), negative 

(blue) or positive (red) deviation of the reconstructed mesh in 

relation to the GT. 

As a quality parameter, the standard deviation for the deviations 

between surfaces was found, being 3.4 mm for the lowest 

resolution camera and 0.15 mm for the highest resolution camera. 

These values show the relationship between the quality of the 

reconstruction and camera resolution. The lower error is mainly 

due to the better spatial resolution [mm/px] obtained using a 

higher resolution camera for a similar FoV.  

a) GT CAD b) Result for Z30 c) Result for Blackfly 

Figure 16. Deviation maps of the reconstructed riser to GT. 

5. CONCLUSION

In this paper, a 3D optical riser inspection using RPAs and 

photogrammetry was improved by incorporating the CNN-based 

detector YOLOv2 in the 3D photogrammetric reconstruction 

process. The CNN-model detected risers and i-tubes in a scenario 

that presents relative movements and different environment 

conditions with 96.44% mAP in a dataset containing real and 

virtual images. Real images were acquired with a M210 RPAs 

equipped with a DJI Z30 camera, however, without considering 

photogrammetric strategies. To obtain virtual images, a 

ROS/Gazebo simulation environment was used considering 

acquisition strategies such as: serpentine trajectory, 80% overlap, 

sequence acquisition and DJI Z30 and FLIR Blackfly cameras 

parametrization. It was not possible to obtain a good 

reconstruction result using the real images samples, mainly 

because they were acquired only for visual inspection and no 

photogrammetry procedure were followed. The 3D 

reconstructions were successful for acquisition in the virtual 

environment with no relative movement (static sea and risers). 

However, with an inspection scene including relative 

movements, it was not possible to obtain a dense point cloud. 

With the developed detection model, the relative movements 

were eliminated by removing the background using a mask 

created from the detected riser in the inspected scenario, resulting 

in a successful 3D reconstruction. Finally, geometric evaluations 

for the 3D reconstructions were performed showing that the 

standard deviation error for the Blackfly camera (0.15 mm) is less 

than the error of the Z30 camera (3.37 mm), mainly due to 

different spatial resolution between the simulated cameras. 

Future work will focus on testing the detection model in real 

images acquired with photogrammetric acquisition strategies. In 

addition, an onboard model detection implementation for the 

RPA will be implemented. 
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