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ABSTRACT:

Several 3D reconstruction pipelines are being developed around the world for satellite imagery. Most of them implement their own
versions of Semi-Global Matching, as an option for the matching step. However, deep learning based solutions already outperform
every SGM derived algorithms on Kitti and Middlebury stereo datasets. But these deep learning based solutions need huge quantities
of ground truths for training. This implies that the generation of ground truth stereo datasets, from satellite imagery and lidar, seems
to be of great interest for the scientific community. It will aim at reducing the potential transfer learning difficulties, that could arise
from a training done on datasets such as Middlebury or Kitti. In this work, we present a new ground truth generation pipeline. It
produces stereo-rectified images and ground truth disparity maps, from satellite imagery and lidar. We also assess the rectification
and the disparity accuracies of these outputs. We finally train a deep learning network on our preliminary ground truth dataset.

1. INTRODUCTION

Several 3D reconstruction pipelines are being developed around
the world for satellite imagery. One can quote ASP for AMES
Stereo Pipeline (Shean et al., 2016), Catena (d’Angelo, Kuschk,
2012), MicMac (Rupnik et al., 2018), RSP for RPC Stereo Pi-
peline (Qin, 2016), or S2P for Satellite Stereo Pipeline (de Fran-
chis et al., 2014). In the frame of the CNES / Airbus CO3D mis-
sion (Lebegue et al., 2020), CNES, the French space agency, is
also developing its own pipeline, called CARS (Youssefi et al.,
2020). This new multi-view stereo pipeline is focused on ro-
bustness and scalability, as it will be used for massive DSM
production (Melet et al., 2020).

For all those pipelines, two key factors of the 3D restitution
accuracy are the image geometry modelling and the image mat-
ching, which is also the more time consuming.

Most of these pipelines implement their own versions of Semi-
Global Matching, as an option for the matching step (Hirsch-
muller, 2008). SGM based solutions won the 2016 IARPA
Multi-View Stereo 3D Mapping Challenge (Bosch et al., 2017).
SGM based solutions also reached the top 3 entries of the multi-
view semantic stereo challenge of the 2019 Data Fusion Con-
test (Le Saux et al., 2019), as noticed by the winners (d’Angelo
et al., 2019).

However, deep learning based solutions already outperform eve-
ry SGM derived algorithms on Kitti and Middlebury stereo data-
sets (Menze et al., 2018) (Scharstein, Szeliski, 2002). It means
that multi-view stereo pipelines users could be interested in
testing the most promising deep-learning approaches for the
stereo-matching step (just replacing SGM based solutions by
these ones). But these deep learning based solutions need huge
quantities of ground truths for training. This implies that the
generation of ground truth stereo datasets, from satellite ima-
gery and lidar, seems to be of great interest for the scientific
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community. It will aim at reducing the potential transfer lear-
ning difficulties, that could arise from a training done on data-
sets such as Middlebury or Kitti.

In this publication, we first present a new pipeline to produce a
ground truth dataset from optical satellite imagery and lidar ras-
ter. The main outputs of our pipeline are stereo-rectified images
pairs, and their corresponding disparity maps. The rectification
step is based on a strategy recently introduced by the CARS pi-
peline (Michel et al., 2020). The disparity estimation relies on
a new methodology presented in this paper.

In this work, we also evaluate the main outputs of our ground
truth pipeline. We focus on the assessment of the rectification
error of the stereo-rectified images pairs; and on the accuracy
of the disparity maps.

Finally, we present a use case, in which a preliminary groud
truth dataset is used to train a deep-learning stereo-matching al-
gorithm. This algorithm is implemented in our stereo matching
framework, called Pandora. Pandora will be publicly available
as an open-source software; and it will be the stereo-matching
tool of the future CO3D mission ground segment.

2. RELATED WORK

Two satellite stereo datasets have been recently published: the
Urban Semantic 3D (US3D) dataset (Bosch et al., 2019), and
the SatStereo dataset (Patil et al., 2019). To our knowledge,
these two datasets are the only ones that include stereo-rectified
images pairs and ground truth disparities, generated from satel-
lite imagery and lidar. These two datasets are great initiatives,
as they help promoting machine learning for remote sensing
stereo reconstruction.

We understand that both are based on the affine sensor assump-
tion for the stereo-rectification step. This implies that the rec-
tification is done on a small tile basis (around 1000 × 1000-
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pixel size). Following the methodology described in (de Fran-
chis et al., 2014), the rectifying similarities are computed from
an affine fundamental matrix, that is derived from matches. The
US3D uses Rational Polynomial Coefficients (RPC) virtual mat-
ches, whereas the SatStereo uses SIFT matches to compute these
rectifying similarities. That could explain the difference in the
observed rectification errors of the two datasets. As mentioned
by Bosch et al., some residual y parallax exists in the US3D
stereo-rectified image pairs, that is directly linked to the RPC
relative pointing accuracy. As mentioned by Patil et al., the
SatStereo dataset achieves an average rectification error within
half a pixel. Their rectifying similarities computation is based
on SIFT matches. That makes this rectification process in-
sensitive to the RPC relative pointing accuracy, but SIFT de-
pendant, and therefore image content dependant. Note that SatSte-
reo is stitching rectified tiles, to produce larger rectified chips
(around 5000× 5000-pixel size).

Then, in the SatStereo, the disparity estimation is based on a
colocalization using the lidar. Each point of the left rectified
image is mapped into the left original sensor image coordinates
using the inverse left rectifying similarity. Then, the original
sensor image corresponding point is localized onto the aligned
lidar. Next, this 3D point is projected into the right original
sensor image coordinates; and into the right rectified image co-
ordinates using the right rectifying similarity. The disparity is
finally computed by subtracting the column indices of the po-
sitions in the right and left rectified images. (Notations: In our
paper, the RPC model projection function gives the 2D image
position of a 3D space point; while the localization function is
its inverse. The colocalization function gives the 2D image po-
sition in image B of a 2D image position in image A, using the
localization function of image A and the projection function of
image B)

The validation of the disparity accuracy is a tricky task. (Patil
et al., 2019) use human annotated tie points, measuring an ave-
rage disparity error higher than 1.2 pixel. The US3D ground
truth disparities are given as integers, and the disparity accur-
acy is not evaluated. Obtaining a subpixel disparity accuracy is
necessary for remote sensing 3D reconstruction, but it seems to
be a great challenge.

Our stereo-rectification process differs from the US3D and Sat-
Stereo ones, as it does not rely on the affine sensor assumption.
Thus easing the ground truth pipeline with no specific tile bor-
ders management. It also combines RPC with a SIFT-based
correction to improve the rectification accuracy. Then, we use
a novel approach to create the disparity maps and show that it
achieves a systematic sub-pixel median absolute disparity error
on the building class.

3. REMOTE SENSING GROUND TRUTH
GENERATION

Here we present a new methodology to produce a ground truth
dataset from optical satellite imagery and lidar raster. The in-
puts are two optical satellite images acquired on the same area
with different viewing angles, their RPC models, and a lidar
ground truth in raster format. The outputs are stereo-rectified
images and ground truth disparity with occlusion mask. The
output dataset can then be used to assess stereo-matching al-
gorithms, and/or to train machine learning based solutions.

Figure 1. Ground truth pipeline overview on small areas of
interest (where bundle adjustment can be safely bypassed). The

inputs are a satellite imagery pair and lidar. The outputs are
stereo-rectified images pair and a ground truth disparity map

3.1 Challenges

Whatever the methodology, some difficulties arise while gene-
rating this kind of ground truth dataset from pushbroom images.
Here is a non-exhaustive list:

1. the geometric models errors lead to bad alignment between
the lidar and the satellite images, and between the images
themselves;

2. the pushbroom acquisition complicates the stereo-rectifica-
tion process, as the epipolar curves are neither straight
lines, nor conjugated;

3. the insufficient spatial resolution of the lidar data implies
either height or disparity interpolation, according to the
selected disparity map generation methodology;

4. using a lidar that is sampled at a finer step than the stereo-
rectified images can lead to disparity aliasing;

5. the date difference between the lidar and the images, or
even between the images themselves, can generate land-
scape changes (e.g.: vegetation or buildings changes).

3.2 Steps of this ground truth pipeline

Following (Patil et al., 2019), our ground truth pipeline is based
on: i) Data Alignment - Bundle adjustment, ii) DSM generation
from satellite imagery, including rectifying grids and stereo-
rectified images pair, iii) Data Alignment - Lidar alignment
on the DSM, iiii) Disparity map generation from aligned lidar.
Note that algorithms used in each step are different than the
ones selected by Patil et al.. Our overall pipeline is also more
straightforward, as the tile stitching is useless in our case. A
pipeline overview is shown Fig. 1.
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3.2.1 Data Alignment - Bundle adjustment The ground
truth generation pipeline begins by correcting the pointing er-
ror of the RPC models in a bundle adjustment step. This geo-
location correction can be done either in a relative way, using
tie points; or in an absolute way, using also Ground Control
Points. The aim of the relative correction is to increase the
stereo-rectification accuracy; while the objective of the abso-
lute correction is also to improve the alignment of the satellite
images pair on the lidar raster. This bundle adjustment step
is done by an in-house tool. It is optional, and can be safely
bypassed on small areas of interest, where the affine camera
model assumption is valid. In that case, we just apply a transla-
tion to the right stereo-rectified image, and a 3D translation to
the lidar (Facciolo et al., 2017).

3.2.2 DSM generation from satellite imagery, including rec-
tifying grids and stereo-rectified images pair Then, the pi-
peline produces a DSM from the satellite images and their RPC
geometric models. The aim of this step is two-fold:

1. to generate the stereo-rectifying grids, and the satellite DSM.
These two data are intermediary products. The grids will
be used in section 4.2.2; while the DSM will be used in
section 4.2.1.

2. to produce the stereo-rectified images, that are direct out-
puts of this ground truth dataset.

The DSM is generated via CARS, a new multi-view stereo 3D
reconstruction pipeline. An exhaustive algorithmic description
of CARS can be found in (Michel et al., 2020). Here, we briefly
introduce this tool, with a quick focus on the CARS rectification
process, as the rectified images are part of the outputs of this
ground truth pipeline. CARS is based on two main steps: a
preparation step and a DSM computation step.

The CARS preparation part aims at computing the left and right
rectifying grids, and the disparity search range. Each rectifying
grid is regular in the rectified image geometry, and it gives the
original sensor image positions. A displacement along a row
in the epipolar grids corresponds to 2D displacements along
the two epipolar curves in the original sensor images. These
2D displacements in the original sensor images are computed,
jointly and iteratively, using the localization and the projection
functions of the two RPC models, and a low resolution DSM
(e.g.: SRTM). This stereo-rectification process makes it pos-
sible to rectify whole pushbroom images, without the need for
tiling that is induced by the affine camera assumption. If the
bundle adjustment step is bypassed, the right rectifying grid can
be corrected using SIFT matches, following the RPC and SIFT
combined approach proposed in (de Franchis et al., 2014). In
that case, the SIFT correction amounts to applying a translation
(or a more complex transformation) in image space to the right
rectified image. It aims at reducing the relative pointing error
between the two RPC models, in order to improve the stereo-
rectification accuracy.

Then, the CARS DSM computation part begins by stereo-mat-
ching the stereo-rectified images; next, it triangulates the ho-
mologous points found; finally, it rasterizes the 3D point cloud.
Note that the stereo-matching step is done while using Pandora
(here in the SGM configuration), cf section 5.2.

3.2.3 Data Alignment – lidar alignment on the DSM This
step is optional, and it consists in aligning the lidar on the satel-
lite Digital Surface Model (DSM), produced via CARS. This

step is needed if the bundle adjustment step did not include any
Ground Control Points. The goal of this alignment is to com-
pensate the absolute pointing error of the RPC models. Note
that, neither our current bundle adjustment, nor this lidar 3D
translation compensate the potential impact of acquisition vi-
brations, that were not stored in the geometric model.

As shown in (Facciolo et al., 2017) on small areas of interest,
where the affine camera model assumption is valid, the pointing
error generates a translation in 3D. This implies that, on these
small regions, the bundle adjustment can be skipped, in favour
of a 3D translation of the output DSM. Note that (Shean et al.,
2016) generally bypass the bundle adjustment step for 3D re-
construction using ASP, on WorldView-1 and WorldView-2 im-
ages, noticing that a 3D translation of the entire DSM is almost
always sufficient.

The lidar alignment consists in applying a 3D translation to the
lidar. The x-y translation is estimated via the Nuth and Kääb
methodology (Nuth, Kääb, 2011). The z-translation corres-
ponds to the median height difference between the DSM and the
lidar (this median being computed on the coherent low slopes
between the DSM and the lidar). Note that the x-y translation is
applied by shifting the lidar geotransform origin (i.e.: without
lidar resampling).

3.2.4 Disparity map generation from aligned lidar The
aim of this step is to produce the left and right disparity maps
from aligned lidar (the lidar alignment can be optional, cf sec-
tion 3.2.3). The inputs are a stereo-rectified images pair, the
rectifying grids, the aligned lidar, the original sensor images
and their (adjusted) RPC models. The outputs are left and right
disparity maps, and occlusion mask.

Even if the colocalization strategy proposed by (Patil et al.,
2019) in the SatStereo is the more intuitive methodology (cf
section 2 for a description), it exists other ways for estimating a
disparity map from the above listed inputs. Each one presenting
its own advantages and shortcomings. Here we propose and
evaluate another method, that we call localization and height to
disp (cf Fig. 2). It follows three main steps:

1. The left disparity map has the same geometry as the left
stereo-rectified image. Each pixel (i, j) of the left stereo-
rectified image is mapped into the original sensor image
coordinates using the left rectifying grid. Then, the ori-
ginal sensor image corresponding point is localized onto
the aligned lidar. Next, the corresponding height is stored
into the left disparity map at each position (i, j).

2. We apply pixel-wise bias and ratio to the heights stored
into the left disparity map. That gives the disparity map
in the left stereo-rectified image geometry. Local ratio and
local bias are computed for each pixel of the left stereo-
rectified image. The local bias is the local height corres-
ponding to a local disparity equals to 0. The local ratio
is the local height delta corresponding to a local disparity
step of one pixel. These local ratio and local bias are com-
puted while triangulating the corresponding points in the
original sensor images.

disparity[i, j] =
height[i, j]–bias[i, j]

ratio[i, j]
(1)

With the CARS rectification methodology, using SRTM
as input, the bias can be considered as a SRTM elevation
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Figure 2. Overview of the disparity map generation process, that
we call localization and height to disp, cf detailed description in

3.2.4

sampling, whose elevation has been converted to a height
above ellipsoid; while the ratio could be approximated by
the resolution divided by the stereoscopic angle between
the two views. But we remind that we apply bias and ratio
computed in a pixel-wise manner. By applying a local ra-
tio, as described above, we make the assumption that the
local ratio is valid for every disparity range, which is an
approximation.

3. Finally, we perform the same two previous steps on the
right stereo-rectified image. That leads to the disparity
map in the right stereo-rectified image geometry; and to
an occlusion mask thanks to cross-checking.

Note that the step 1 of this localization and height to disp pro-
cess is common with the colocalization methodology. They dif-
fer in the second step, where the colocalization projects the 3D
point into the right image, then in the right rectified image u-
sing the right similarity; and finally computes the disparity (cf
section 2).

Here is a non-exhaustive list of the shortcomings of these two
disparity map generation methods (colocalization and localiz-
ation and height to disp). Both depend on the rectification ac-
curacy of the stereo-rectified images. Both depend on the ac-
curacy of the lidar alignment. Both will suffer from the time
delta between the lidar and the images. The colocalization also
directly depends on the relative pointing error of the two (adjus-
ted) RPC models, while our method applies local bias and local
ratio that are source of approximations.

Our current pipeline also deals with lidar in raster format. That
means that our method depends on the quality of the lidar ras-
terization. We also interpolate the lidar height during the loc-
alization. Note that even if these lidar rasterization and height
interpolation could blur the disparity, they could help reducing
aliasing, contrary to lidar point cloud sub-sampling. An exam-
ple of our ground truth outputs and input lidar can be found is
Fig. 3. It illustrates few method shortcomings.

4. GROUND TRUTH EVALUATION

In this work, we favour automatic methods to evaluate our ground
truth pipeline outputs (stereo-rectified images and disparity maps).
The evaluation focuses on the rectification error measure between
the left and right stereo-rectified images; and on the accuracy of
the disparity maps.

Figure 3. Top 4 images: Outputs of our ground truth pipeline
produced from the US3D JAX 068 011 012. Bottom: input

lidar raster with a 50cm resolution. It shows our disparity maps
dependance on the input lidar raster accuracy (cf red circles
added on the lidar, and corresponding areas in the disparity

maps); and illustrates the time discrepancy between the inputs
(cf cars).

Our assessment is based on 122 Track3 US3D sensor imagery
pairs and lidar, as inputs (Le Saux et al., 2019). Track3 US3D
sensor imagery is made of DigitalGlobe WorldView-3 images
over Jacksonville in Florida, and over Omaha in Nebraska (Bosch
et al., 2019). Our pair selection is quasi-random, we aimed
at computing the whole Track3 US3D database, but we lacked
time for this publication. The stereoscopic angles range of these
122 pairs is really large [0.087; 0.6], that is worst case for our
pipeline evaluation. US3D lidar size is around 512× 512-pixel
with a 50cm resolution. As the lidar areas are small enough, in
the following tests, we skip the bundle adjustment step in fa-
vour of a SIFT based correction of the right rectifying grid, and
a 3D translation of the lidar. In the following tests, we also use a
local ratios median instead of the local ratios, assuming that the
image resolution and the stereoscopic angle between the views
are nearly constants on such small areas (around 853 × 853-
pixel size on WV3 images with a 30cm nadir resolution). Fu-
ture tests on this dataset, and obviously on wider areas, will be
done while using the pixel-wise ratio, presented Eq. 1.
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Pairs
nb.

Matches
nb.

Mean of
the mean

rectification
errors
(pix)

Mean of
the mean
absolute

rectification
errors
(pix)

SIFT 122 106284 -0.009 0.76
SURF 122 143381 -0.011 0.56

Table 1. Rectification errors (in pixels) computed using SIFT or
SURF matches over 122 stereo-rectified images pairs, generated
from Track3 US3D sensor imagery pairs and lidar by our ground

truth pipeline.

4.1 Rectification error

The rectification error corresponds to the row delta between two
homologous points in the left and right stereo-rectified images.
Using the aboved mentioned 122 Track3 US3D sensor imagery
pairs as inputs of our ground truth pipeline, we compute the
residual rectification error of our stereo-rectified images, using
SIFT and SURF measures. Note that the rectification accuracy
presented below is related to these SIFT and SURF matches
precision.

We remind that the rectification error is directly computed be-
fore and after the right stereo-rectifying grid correction, using a
vlfeat implementation of SIFT (cf section 3.2.2).

In this rectification error assessment, we are using another SIFT
implementation than the vlfeat one. Because SIFTs are also
involved in CARS rectification process, and though we do not
share the same implementation, we also present results obtained
with SURF matches (Bay et al., 2008). These SIFT and SURF
matches implementations are available in the opensource Orfeo
ToolBox.

Over the 122 stereo-rectified images pairs, we obtained 106284
SIFT matches and 143381 SURF matches, after outliers rejec-
tion step based on the matches distance in the vertical and ho-
rizontal directions. The vertical filtering is a 10-pix vertical
threshold between two SIFT matches, assuming that the rec-
tification error is less than 10 pixels. The horizontal filtering
is deduced from the lidar heights. The SIFT and SURF based
statistics were computed independently for each images pair.

According to these SIFT and SURF measures, the rectification
error is well centered, cf the global mean of the 122 mean recti-
fication errors in Tab. 1 (-0.009 pixel for SIFT and -0.011 pixel
for SURF). Note that we obtain a difference of 35% between
the SIFT and SURF estimations of the global mean of the 122
mean absolute rectification errors (0.76 pixel for SIFT vs 0.56
pixel for SURF). With this difference in mind, it appears diffi-
cult to give an accurate estimation of the global mean absolute
rectification error over the 122 pairs, but we can guess it is sub-
pixel.

Next, we present the histogram of the median absolute recti-
fication errors obtained by SIFT and SURF, on the 122 pairs
cf Fig. 4. According to SIFT measures, 79% of the 122 pairs
have a median absolute rectification error, that is less than 0.5
pixel. According to SURF measures, 80% of the 122 pairs have
a median absolute rectification error, that is less than 0.4 pixel.

4.2 Disparity accuracy

4.2.1 Image warping The first method is based on inverse
warping (Scharstein, Szeliski, 2002). We resample the right

Figure 4. Histograms of median absolute rectification errors (in
pixels), using SIFT on the left, and SURF on the right, over the

same 122 pairs as in Tab. 1.

stereo-rectified image in the left stereo-rectified image geometry,
using the left disparity map. Then, we compare the right re-
sampled image to the left stereo-rectified image. The delta ob-
served between the two images is due to radiometric differences
between left and right original images, rectification errors, dis-
parity map errors, occlusions and resampling approximations.
In our case, the disparity map errors are linked to the dispa-
rity map generation method, but also to the time discrepancy
between the lidar and the images. We mainly use inverse warp-
ing as a qualitative tool. Fig. 5 shows an example of inverse
warping.

4.2.2 SIFT matches on ground or buildings class Then,
the second method consists in comparing the disparity map,
with the horizontal distance between SIFT matches. To deal
with time discrepancy between the lidar and the images, we se-
lect keypoints belonging to classes with suspected fewer time
changes (e.g.: ground, buildings), than the vegetation. Note
that Fig. 3 shows that even ground is subjected to changes (due
to cars on parkings for instead). To evaluate the left disparity
map, we need a disparity measure at integer positions in the left
stereo-rectified images. SIFT points are seldom located at in-
teger positions. We decide to select SIFT matches belonging
to areas with locally nearly constant disparity, and to apply the
disparity of one SIFT keypoint to its nearer integer position in
the left stereo-rectified image. That means that we make the as-
sumption that the selected class has a half-pixel piecewise con-
stant disparity (with a pixel size corresponding to the pixel size
of the left stereo-rectified image).

In this evaluation, we use the ground and buildings classes of
the Track3 US3D classification. This classification seems to
have been done on lidar. That means that we still suffer from
the time discrepancy between the lidar and the images. This
classification has also its own shortcomings (some lidar buil-
dings pixels being classified as ground, or the contrary). But
it was available, and useful. Then we project this classifica-
tion into the stereo-rectified images pairs geometries. Due to
these classification approximations, the following class-driven
statistics should be considered as preliminary work. Finally we
assume that the half-pixel piecewise constant disparity is satis-
fied on the ground class, and on the buildings class, but it can
sometimes be false on both.

Over the 122 stereo-rectified images pairs, we use the same
SIFT and SURF keypoints as in section 3.2.2. We just select
the ones belonging either to the ground class, or to the buildings
class. We also discard the pairs that have less than 33 matches
for each pair in the considered class, for statistical representa-
tiveness. Regarding SIFT, it gives 77 pairs for the ground class,
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Pairs
nb.

Matches
nb.

Mean of
the mean
disparity

errors
(pix)

Mean of
the mean
absolute
disparity

errors
(pix)

SIFT
Ground 77 8824 0.43 1.26

SIFT
Buildings 49 3750 -0.20 0.89
SURF

Ground 95 13103 0.13 1.24
SURF

Buildings 53 4674 -0.10 0.71

Table 2. Disparity errors (in pixels), computed using SIFT or
SURF matches, over stereo-rectified images pairs and disparity

maps, extracted from the 122 pairs of Tab. 1, with the 33
matches minimum threshold per class and per keypoints type.

Figure 5. Left and middle: Outputs of our ground truth pipeline
produced from the US3D JAX 214 008 004. Right: inverse

warping and input lidar raster. This pair obtains the worse mean
disparity error on buildings class according to SIFT (0.71 pix).
Time discrepancy is visible on roof tops and a little on ground.

Top left building in the left disparity map also shows an example
of façade reconstruction from the nadir lidar.

and 49 pairs for the buildings class. The statistics were com-
puted independently for each images pair. Here below we focus
on the SIFT based results, as the SURF estimations are almost
always more favourable than the SIFT ones.

Using SIFT, we first present the global mean of the mean dispar-
ity errors (0.43 for ground class, and 0.20 for buildings class);
and the global mean of the mean absolute disparity errors (1.26
for ground class, and 0.89 for buildings class), cf Tab. 2. The
global disparity accuracy is finally worse on ground class than
on buildings class. These ground class statistics could be worsen
by classification mistakes (building edges being sometimes clas-
sifed as ground). This ground class is also probably more sub-
jected to changes than the buildings class on this urban dataset
(cf cars on parkings in Fig. 3, even if there are also parkings on
roof tops, such as on Fig. 5). Note that the global mean dispar-
ity error is sub-pixel for the buildings class, even for the mean
of the mean absolute errors.

Then, we present the histogram of the median absolute disparity
errors, obtained using SIFT matches on ground and buildings

Figure 6. Histograms of median absolute disparity errors (in
pixels), computed using SIFT matches, on ground class on the
left (77 pairs), and on buildings class on the right (49 pairs).

Same pairs as in Tab. 2.

classes, cf Fig. 6. Regarding the ground class, 83% of the 77
pairs have a sub-pixel median absolute disparity error. Regar-
ding the buildings class, all 49 pairs present a sub-pixel median
absolute disparity error, with 57% having a median absolute
disparity error that is less than 0.5 pixel.

5. GROUND TRUTH USE CASE

In this section, we briefly present the Pandora stereo-matching
framework, that will be made publicly available as an open-
source software. Then we introduce qualitative results obtained
with a Pandora MC-CNN network implementation, trained on
a preliminary ground truth dataset.

5.1 Foreword: Pandora framework in a nutshell

Pandora is a new stereo-matching framework, inspired by the
work of (Scharstein, Szeliski, 2002). To estimate a disparity
map from two stereo-rectified images, Pandora provides the
following steps: matching cost computation, cost aggregation,
cost optimization, disparity computation, subpixel disparity re-
finement, disparity filtering and validation.

Pandora is easy to configure. One Pandora configuration can
for instance emulate a SGM-like behaviour. Another one can
emulate a MC-CNN-like one (Žbontar, LeCun, 2015), while a
third one can simply perform standard block-matching (i.e.: a
pure local approach without optimization).

Pandora modularity and easy configuration make this software
a useful tool for the stereo-matching step of 3D restitution pi-
pelines, as the stereo-matching configuration can be adapted to
the area to reconstruct.

Pandora will be the stereo-matching algorithm of the CO3D
ground segment. The Pandora framework will be made pub-
licly available on https://github.com/CNES/Pandora.

5.2 Ground truth use case for training

Regarding the ground truth use case, we first aim at training a
deep learning network on our ground truth dataset. As a net-
work, we choose the MC-CNN-fast, because an implementa-
tion is already available in Pandora. This network computes
a local cost volume, that is then optimized in a close variant
of the SGM optimization. As a dataset, we choose the 122
stereo-rectified images pairs and disparity maps, introduced and
evaluated in section 4. We remind that this ground truth data-
set is made of multi-date WorldView-3 images and lidar, over
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Figure 7. Top: rectified images pair extracted from a WV03
single pass acquisition over Buenos Aires. Bottom: disparity
maps computed by the Pandora pipeline, using MC-CNN-fst

trained either on Middlebury (left), or on our preliminary ground
truth dataset (right).

the USA, without any kind of inputs selection strategy. It im-
plies that this ground truth dataset should be considered as a
preliminary one. We train our MC-CNN-fast network imple-
mentation on two independent datasets: the Middlebury dataset
and our preliminary ground truth dataset. Note that, except the
occluded patches (occluded according to the left-right dipar-
ity maps cross-checking), we keep all patches extracted from
our ground truth dataset. That means that we also keep image
patches showing important time differences (cf cars on ground
Fig. 3).

Then, we perform a qualitative comparison of the disparity maps
produced by the Pandora pipeline, in the MC-CNN configura-
tion, with MC-CNN-fast trained either on Middlebury, or on
our preliminary ground truth dataset.

This comparison is done on two urban areas, acquired by two
different sensors, both in single pass acquisition. Both inputs
pairs are rectified by CARS. The first case input is a WorldView-
03 images pair over Buenos Aires, with a stereoscopic angle of
0.12 (cf Fig. 7). It comes from the hexuplet of the IARPA
Multi-view Stereo 3D Mapping Challenge (Bosch et al., 2017).
The second case input comes from a PleiadesHR-1A images
pair over London, with a stereoscopic angle of 0.38 (cf Fig.
8). Note that the Buenos Aires case uses the same sensor as
the one used to generate our preliminary ground truth dataset,
unlike the second one, that is PleiadesHR based. Both cover
a different geographic area than the one used to generate our
dataset.

On these two mono-date use cases, both trainings give relatively
close qualitative results on the final disparity maps (cf Fig. 7
and Fig. 8). Note that ours succeeds in adapting to new geo-
graphical areas and sensor. The training on ours generates a

Figure 8. Top: rectified images pair extracted from a PHR-1A
single pass acquisition over London. Bottom: disparity maps

computed by the Pandora pipeline, using MC-CNN-fst trained
either on Middlebury (left), or on our preliminary ground truth

dataset (right).

little smoother disparity maps, compared to the Middlebury trai-
ning. It is visible on buildings edges, on trees, but also on
flat areas, such as buildings roofs. This smoothing could be
linked to the multi-date images and lidar that we use as in-
puts of our ground truth pipeline (the Middlebury dataset being
without date related changes), and to the lack of patches selec-
tion. However, we think that these preliminary results are quite
good.

Though easy for us to try on (since Pandora can emulate it),
the MC-CNN-fast might not be the best candidate to highlight
what a satellite imagery based dataset can offer to neural net-
work approaches. Indeed, Middlebury trained MC-CNN-fast
already behaves good on satellite imagery (cf Fig. 8 and 7).
MC-CNN uses images patches as inputs, whereas end-to-end
networks use the whole left and right stereo-rectified images as
inputs. Thanks to this work, we will now be able to train end-
to-end networks on satellite imagery based dataset.

Future works will improve our preliminary dataset (working on
the pairs selection and on the methodology). We will also train
end-to-end stereo-matching networks on this improved dataset.

6. CONCLUSION

Though still in an early stage at CNES, our ground truth pi-
peline already achieves competitive rectification and disparity
accuracies. This preliminary assessment gave a systematic sub-
pixel median absolute disparity error, on the buildings class,
using SIFT matches. As a use case, we introduced qualitative
results obtained by a deep learning network, trained on a pre-
liminary ground truth dataset. Future works will improve this
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preliminary dataset and train end-to-end stereo-matching net-
works on this improved dataset. Because it also relies on the
possibility to directly stereo-rectify wide areas without the need
for tiles stitching, we believe this work should be promising.
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