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ABSTRACT:

In the present research, we aim at constructing a general segmentation process for different kinds of remote sensing images and 
various use cases. We focus on the differences in characteristics of the remote sensing and ordinary images, such as irregular shape, 
lack of labeled images, and normalization issues. The process includes labeling, preprocessing, augmentation, test data sampling, 
model building, as well as prediction and merging steps. Labeling serves to identify target objects represented in remote sensing 
images efficiently. The preprocessing step can be applied to reshape an image aiming to fit the requirements of the general artificial 
intelligence (AI) model and to accelerate steps. Augmentation mitigates the shortage of labeled images. Test data sampling is 
performed to evaluate the model performance. Finally, prediction and merging are applied to output a full-sized remote sensing 
image prediction result. In this research, the landslide segmentation, crop farmland segmentation, and cloud segmentation tasks 
are considered to evaluate the process. Intersection of union (IOU) is employed as evaluation metric. Eventually, we achieve the 
performance of 72% IOU in the landslide segmentation task, 83% IOU in the crop farmland recognition task, and the 86% IOU in 
cloud segmentation task by using the proposed process. This supports that the developed process can by further applied considering 
different remote sensing images and use cases.

INTRODUCTION

Deep learning techniques have been widely employed in the
field of remote sensing in recent years. They have been ap-
plied considering various practical use cases, such as agricul-
ture, smart cities, forest management, as well as surveying and
mapping. However, only a limited number of the related papers
focused on defining a general segmentation process for differ-
ent kinds of remote sensing images and various use cases. In the
present study, we aim to construct a generalized segmentation
process.

Remote sensing images have their own characteristics different
from ordinary images, which hinder the possibility of directly
applying deep learning algorithms in this field. First, remote
sensing images usually have specific shapes. Particularly, or-
dinary images have only RGB bands (also referred to as chan-
nels in the deep learning field), while remote sensing images
have multiple bands, and the numbers may be flexible. Ordin-
ary images may have the square of hundreds of pixels, while
remote sensing images may have the square of tens of thou-
sands of pixels. As a result, remote sensing images should be
first preprocessed to fit a particular shape, and the developed ar-
tificial intelligence (AI) models should be modified accordingly
to be applicable to the images with flexible bands.

Second, the number of labeled remote sensing images is gen-
erally rather small as a consequence of the considerable diffi-
culties and costs associated with the labeling task. Therefore,
identifying the way to generate a sufficient number of training
images is also an important issue. Third, remote sensing images
are not normalized to 0 to 255 in general. Therefore, a model
can be used only to predict the images already seen by a model
instead of being capable of predicting new unknown images,
unless the number of images for training is sufficient.

In the present study, we aim to design a general process to deal
with all these issue and to successfully apply a deep learning
segmentation algorithm to different remote sensing images and
various use cases.

1. RELATED WORKS

Zhu et al., (2017) and Ma et al., (2019) have summarized main
deep learning applications in the remote sensing field, such as
image preprocessing, image registration, object detection, and
segmentation. Fully connected network (FCN) model, as ex-
plained in Section 3.5.2, has been utilized in their reviewed
paper for the purpose of segmentation. Li et al., (2018) have
investigated three kinds of tasks in remote sensing image clas-
sification: spectral feature classification, spatial feature classi-
fication, and spectral-spatial one. These related papers have
suggested utilizing convolutional neural networks (CNN) and
autoencoder for spectral-spatial classification, which is the tar-
get of the segmentation process in the present research. The
aforementioned research works have analyzed a large number
of related papers and have provided a comprehensive summary
in this field.

Kemker et al., (1860) have proposed a new way to generate the
sufficient amount of training data. The have considered con-
structing a virtual scene using the digital image and remote
sensing image generation (DIRSIG) method so as to produce
a sufficient number of synthetic images as training data. Foivos
et al., (2019) have applied U-Net (explained in Section 3.5.1)
with a residual block to improve the model performance in the
case of land cover classification. Stoian et al., (2019) have ap-
plied U-Net combined with a recurrent neural network (RNN)
to perform multitemporal satellite images classification. These
papers have been presented to address different specific prob-
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lems arising while applying deep learning to remote sensing
images.

2. RESEARCH METHOD

In the present research, to evaluate the proposed general seg-
mentation process, we consider three cases with different kinds
of remote sensing images: landslide segmentation, crop farm-
land segmentation, and cloud segmentation.

Landslide segmentation task is aimed to detect landslide areas
after disasters, such as earthquakes, torrential rains, and typhoons.
In this task, 28 UAV images and 348 landslide polygons have
been provided by Chinese society of photogrammetry and re-
mote sensing (CSPRS). The data are registered in a region loc-
ated in Liugui Kaohsiung in the south of Taiwan. There are
12,261 columns, 11,461 rows, and 4 bands corresponding to
each image with the cell size of 0.25 meters. The dates when
the photos were taken are listed in Table 1. The total area cor-
responding to all considered polygons covers 6,224,063.52 m2.
The labeled polygons have been generated by CSPRS, and all
of them have been labeled by human experts.

Date Count
03 Apr 2017 10
04 Apr 2017 6
13 Dec 2015 8
19 Dec 2015 3
26 Jun 2016 1

Table 1. Images used in the landslide segmentation task.

The crop farmland segmentation task helps Taiwan Agriculture
and Food Agency council (AFA) to estimate the total area of
all crop farmlands in Yilan. They seek to employ the informa-
tion about the labeled farmlands in the sampled area combined
with satellite images to recognize the crop farmlands not in the
sampled area. Using this technique, they can do the local in-
vestigation only on the sample area and identify crop farmlands
in the whole Yilan Taiwan. In this task, four Sentinel-2 satellite
images and 87,900 labeled farmlands polygons are considered.
There are 12,261 columns, 11,461 rows, and 4 bands associated
with each image with the cell size of 10 meters. The photo-
graphs are taken on 27 Mar 2019, 6 Apr 2019, 26 Apr 2019, and
5 Jun 2019. The high quality labeled data have been provided
by CSPRS, including all farmlands in the Yilan Taiwan. CSPRS
uses the high-resolution UAV images, and human experts are
involved to label the data.

The cloud segmentation task is an essential preprocessing step
before applying any kinds of analysis to different remote sens-
ing images, unless a project implies excluding the images with
clouds from the training data. In this task, one SPOT5 and one
SPOT6 images with the resolution of 10 meters are used, and
the target data have been labeled by Thinktron Ltd. The detailed
information is provided in Table 2.

ID Columns Rows Bands Resolution
P0015913 SP5 10,400 45,766 4 10
P0016267 SP6 13,400 39,200 4 10

Table 2. Image information used in the cloud segmentation task.

The evaluation function utilized in this research is intersection
of union (IOU) that is one of the most popular evaluation func-
tions used in segmentation tasks. IOU means the intersection of
union, implying that the intersection part is used to calculate the

intersection of a predicted positive area and a labeled positive
area, while the union part is considered to calculate the union of
a predicted positive area and a labeled positive area. Therefore,
the intersection of union represents the overlapping rate of the
labeled positive and predicted positive areas, as illustrated in
Figure 1.

Finally, to evaluate the performance of the proposed method,
we apply the evaluation function to the testing data sampled in
the whole dataset, considering each of three tasks.

Figure 1. Intersection of union (IOU).

3. MAIN PROCESS

Figure 2 represents the main segmentation process including la-
beling, preprocessing, augmentation, test data sampling, model
building, as well as prediction and merging steps. All these
steps are described in detail in the following paragraph.

3.1 Labeling

The accurately labeled data is the most valuable asset to achieve
better performance in the AI field, as a model can only learn
from these data. Therefore, the sufficient number of labeled
images is an essential prerequisite to achieve success in any AI
project. Nevertheless, labeling irregular polygons on remote
sensing images is rather a difficult task. The following clus-
tering and unsupervised segmentation algorithms can be used
to accelerate the process of image labeling. The comparison
between them is illustrated in Figure 3. It should be noted that
to obtain the ground truth data, it is better not to use the out-
puts of aforementioned algorithms directly as the labeled data,
but apply them as a tool to accelerate the selection process by
human experts.

3.1.1 Clustering Clustering algorithms, such as k-means and
density-based scan (DBSCAN), can be used to classify each
pixel in an image into independent clusters depending on its
color digital value. However, such algorithms do not consider
the spatial relationship between pixels. Therefore, the pixels far
from each other may be classified into the same cluster. Image
(b) in Figure 3 represents the output of the k-means algorithm.
The areas with the same color are classified as belonging to the
same cluster. As a result, if the target has a special color that is
different from other pixels, such as a cloud or a landslide, the
algorithm may work accurately and usually allows efficiently
labeling the target data.

3.1.2 Unsupervised Segmentation Unsupervised segment-
ation algorithms, such as watershed segmentation and super-
pixel segmentation, can be used to classify each pixel in an im-
age into independent clusters. The algorithms considers both a
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Figure 2. Main Process.

color digital value and a spatial index of a pixel. In other words,
only neighbor pixels are classified into the same cluster. Image
(c) in Figure 3 represents the output of the superpixel segmenta-
tion algorithm. One polygon denotes an independent cluster so
that a researcher can label the data by selecting the target poly-
gon rather than drawing a polygon by themselves from scratch.

3.2 Preprocessing

In the preprocessing step, the main purpose is to transform an
image to fit the requirements of an AI model and to acceler-
ate the execution of the subsequent steps. The following four
steps: band composition, clipping, normalization, and splitting,
are explained in this section.

3.2.1 Band Composition Combining all bands of a satel-
lite image can be used to transform shapes of training images to
those acceptable to be inputted into a model. In general, source
satellite images are split into independent images according to
their bands (red, green, and near infrared ones). However, it is
required to consider them as a single image to train a deep learn-
ing model. Therefore, CNN (the most important computer vis-
ion algorithm in the deep learning field that is explained in Sec-
tion 3.5) can be used to capture the spatial relationship between

(a) raw image.

(b) k-means clustering.

(c) superpixel segmentation.

Figure 3. Labeling techniques.

neighbor pixels across multiple bands in parallel.

3.2.2 Clipping Clipping an image according to an area in
the labeled data and a source image can be used to enable a
model to learn from the accurate information and to reduce the
computational resources. In particular cases, the images used
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for labeling are different from those used to train the model, and
they may not be fully overlapping. Once non-overlapping areas
are included into the training set, the model will learn based on
the incorrect information. In other words, if the target exists in
the area that is not covered by the labeled data, the model will
learn this pattern as a non-target one. As a result, the image
outside of the overlapping area should be clipped. This step
should be done earlier considering the computing efficiency and
the time cost of the following steps. For example, the plain area
is deemed as the only valuable area in the farmland recognition
task, and therefore, the mountain areas should be clipped, as
illustrated in Figure 4.

Figure 4. Clipping.

3.2.3 Normalization An appropriate normalization method
can facilitate improving the model generalization ability, and
therefore, the model will achieve better performance on un-
known images. It is recommend to use the true color images
(TCI) that have pixel value range from 0 to 255 for RGB bands
as the training data. The difference in the color digital values
between different TCIs are more comparable. Figure 5 repres-
ents TCI provided by European Space Agency (ESA) that have
been registered by the Sentinel-2 2A product. It is evident that
TCIs on the right side are clearer and can be compared with
each other, while raw images on the left side may cause diffi-
culties to perform this task.

However, TCIs only work in RGB bands rather than all bands.
Other bands can only be calibrated to ground reflectance. How-
ever, the comparability is still questionable. It should be noted
that this process cannot ensure the perfect generalization ability
even if TCIs are used. Using a large number of labeled images
with the great extent of variety is always recommend.

3.2.4 Splitting Splitting is used to generate a large amount
of training data. In general, remote sensing images are difficult
to obtain, and therefore, the number of such images is limited.
Moreover, the difficulties associated with the labeling task also
decrease the number of training images. However, even if the
number of such images is limited, they are usually high-quality
ones. Remote sensing images have generally rather high resol-
ution. Unlike ordinary photographic images with a small num-
ber of pixels, remote sensing images have the square of tens of
thousands of pixels. As a result, splitting an image into pixels
and generating the larger amount of the training data is the best
strategy to fit the requirements of AI models.

The way to split an image can be considered as capturing a
moving window. A window is put in the left-top of an image,
and then, is gradually shifted right and down to capture every
area in the image. The window size defines the size of split
images, while the step size sets the overlapping rate between
them. The size of split images depends on the size of a target.

(a) raw image1. (b) TCI image1.

(c) raw image2. (d) TCI image2.

Figure 5. TCI image comparison.

For example, if the target is a house footprint, it is better not to
limit the number of houses appearing in an image to five or ten
houses. However, it is recommended to set the size as power of
2, for example, 128 or 256, to conform the limitation of particu-
lar AI models on the input size. Figure 6 represents the example
image with the resolution of 10 meters and 10, 9802 pixels split
into pieces with the window size and the step size equal to 256
pixels so that windows do not overlap with each other.

The step size depends on the total number of training images.
Considering that only the limited number of training images can
be accessed, it is necessary to allow split images to overlap with
each other aiming to ensure obtaining the sufficient number of
training images. However, the overlapping rate may affect the
performance and the efficiency of the training process. It should
be noted that the optimal window size and step size may be
different depending on a particular project, and therefore, they
should be set indivdually.

3.3 Augmentation

Augmentation is also used to generate more training data. In
theory, the target object in a remote sensing image should not
change when the image is rotated or flipped, and therefore, it
is possible to simultaneously rotate the image and to label it
as a new one to generate the larger number of training images.
Figure 7 represents an example corresponding to the way of
generating a dataset six times larger than the training one (by
rotating 90 degrees, 180 degrees, 270 degrees, flipping up and
down, and flipping left and right).

3.4 Test Data Sampling

Test data sampling, also referred to as train test splitting, can
be used to evaluate the final model performance accurately. It
is rather difficult for humans to understand and inference the
trained weights for input variables in an AI model. Therefore,
the only way to evaluate the applicability of an AI model is to
evaluate the performance of its final prediction result. Gener-
ally, it is a common approach to split the whole dataset into the
training and testing dataset randomly. However, once split im-
ages are randomly selected as the training and testing data so
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Figure 6. Splitting.

Figure 7. Augmentation.

that they overlap with each other, testing images may also be
seen by the model, and accordingly, the evaluation result may
be the overfitting result.

The appropriate way to perform test data sampling is to sample
particular areas in a remote sensing image as the test data and
ensure that these data will not be seen by the model. Moreover,
the sampled test areas should include all kinds of characteristics
in the image that may influence the final recognition output. For
example, Figure 8 illustrates the sampled area in an image used
for crop farmland recognition. Considering that the character-
istics of spring onion farmlands are rather similar to crop farm-
lands on satellite images, the west part of the image is sampled
as the test area, thereby assisting the model to learn that the split
images in the area may not correspond to crop farmlands even
if they have similar characteristics.

3.5 Model Building

In the AI field, a convolutional neural network (CNN) is one of
the most popular and basic algorithms that has been proposed
by Lecun et al., (1998) to deal with the image data. Compared
with conventional pixel-based prediction approaches, CNN can

Figure 8. Sampling.

be used to incorporate neighbor pixels while performing the fi-
nal prediction. Figure 9 provided in Lecun et al., (1998) repres-
ents the structure of a CNN model. The left side of the figure
illustrates the input of the model, which is used to extract the
detail textures of the original image. When later convolution
layers are applied, the wider characteristics can be calculated.
Then, the final prediction will consider all neighbor pixels and
obtain a considerably better performance. There are two ma-
jor CNN-based segmentation models defined in the AI field:
U-Net and mask R-CNN that are introduced in the following
para-graph.

Figure 9. Convolutional neural network (CNN).

3.5.1 U-Net The architecture of the U-Net model, as illus-
trated in Figure 10, is proposed by Ronneberger et al., (2015). It
is based on the fully convolutional network (FCN), which is one
of the most basic segmentation algorithms in the AI field. The
network includes the extracting and expanding paths, thereby
forming the U-shaped architecture. The extracting path is used
to derive and concentrate the important features of an image
into representative image vectors with smaller dimensions. In
its turn, the expanding path is utilized to perform predictions
on each pixel based on the representative image vectors. Prac-
tically, U-Net is usually employed for irregular and continuous
shapes, such as clouds and landslide.

Figure 10. U-Net structure.
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3.5.2 Mask R-CNN The architecture of the mask R-CNN
model is proposed by He et al., (2008). Unlike U-Net, mask
R-CNN first executes faster R-CNN object detection and ob-
tains a bounding box for each object. Then, FCN segmentation
is performed within each bounding box. Faster R-CNN object
detection outputs a bounding-box proposal, and for each box,
it decides on the possibility whether the box contains the ob-
ject. This step is followed by FCN segmentation applied to a
bounding box. Practically, mask R-CNN is deemed suitable for
regular and artificial shapes, such as house footprint.

3.6 Prediction and Merging

Once the AI model is trained, it can be used to inference on the
unseen data. The problem associated with the inference step in
the field of remote sensing is that the results of predicting on
split images cannot be combined directly into an original-sized
image. Otherwise, the edge of a split image may have defects as
it would lack neighbor pixels for the model to inference. Figure
11 represents the cloud detection result (right) and the raw im-
age (left). The thin black line denotes the defect appears a result
of an attempt to directly combine the outcomes of predicting on
the split images.

As a result, the appropriate way to merge the prediction results
is to first split them according to the original window size and
with a smaller step size. This allows ensuring that every pixel
is overlapped. Then, the edge of the prediction result should
be cut by 2 to 3 pixels. Finally, we calculate the mean value
of the prediction result for each pixel in an image as its final
prediction result.

4. RESULTS

In this research, three cases are considered to evaluate the pro-
posed general segmentation process: landslide segmentation
task, crop farmland segmentation task, and cloud segmentation
task. In this section, the ways employed to perform test data
sampling and to build models in these three tasks are explained.
Moreover, the evaluation results are provided.

4.1 Landslide Segmentation Task

In the landslide segmentation task, 28 UAV images are split into
20 training images and 8 testing ones, as demonstrated in Figure
12. The blue bounding boxes represent the training images,
while the red boxes correspond to the testing images.

The U-net model with 5 × 2 layers is constructed in this task.
The model architecture consists of five down-sampling layers
and five up-sampling ones. The input and output image shapes
corresponding to each layer are 512, 128, 32, 16, 8, 16, 32, 128,
and 512.

In this task, IOU of 72% is reached on the testing images. Fig-
ure 13 shows the segmentation results for the two out of eight
testing images. The black areas are labeled as the landslide
ones, while the red polygons denote the model predicted land-
slide areas. The main error in this case is that the model mis-
recognizes the river as the landslide, as they have rather similar
color.

(a) Raw image.

(b) Prediction.

Figure 11. Merged prediction error.

Figure 12. Landslide test data sampling.

4.2 Crop Farmland Segmentation Task

In the crop farmland segmentation task, four satellite images are
registered during different vegetation periods but in the same
cultivation period. The, they are combined into a single image
with 16 bands. The six areas in the red bounding boxes, as
represented in Figure 14, are sampled as the training data, and
the remaining area of an image is considered as the testing data.

The U-net model with 5× 2 layers is implemented in this task.
The model architecture comprises five down-sampling layers
and five up-sampling ones. The input and output image shapes
of each layer are 64, 48, 36, 24, 12, 24, 36, 48, and 64.
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(a) Raw image. (b) Prediction.

(c) Raw image. (d) Prediction.

Figure 13. Landslide segmentation prediction results.

Figure 14. Crop farmland test data sampling.

In this task, IOU of 83% is achieved in the testing area. Figure
15 outlines the crop farmland segmentation result in the testing

area. The green areas are labeled as crop farmlands, while the
red polygons correspond to the model predicted crop farmlands.

Figure 15. Crop farmland segmentation prediction result.

4.3 Cloud Segmentation Task

In the cloud segmentation task, two satellite images are used.
Both of them are split in half so that one of the halves is used
as a training area, and the other as a testing one.

The U-net model with 5 × 2 layers is built in this task. The
model architecture includes five down-sampling layers and five
up-sampling layers. The input and output image shapes of each
layer are 101, 50, 25, 12, 6, 12, 25, 50, and 101.

In this task, IOU of 86% is achieved in the testing area. Figure
16 represents the obtained result. The white part corresponds
to the areas that are fully covered by clouds, while the gray part
denotes the areas that are covered by cloud halfway.

(a) Raw image. (b) Prediction.

Figure 16. Cloud segmentation prediction result.

5. CONCLUSION

In the present research, we aimed to develop a general seg-
mentation process of applying AI segmentation techniques to
remote sensing images. The proposed process was intentioned
to address several difficult issues, such as the irregular shape of
remote sensing images, lack of images for training, and normal-
ization issues. By applying this generalized process, we could
achieve an acceptable performance even when it was applied
to different kinds of images and to various tasks. This con-
firmed that the segmentation process could be generalized with
respect to different kinds of images and various tasks in the re-
mote sensing field.
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