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ABSTRACT: 
 
Binocular vision system is an essential way for target localization in many fields, which has been widely used as payload of 
unmanned surface vehicles (USV). High resolution cameras, which can provide richer information, are utilized more often on a USV. 
This brings challenges of computing tremendous data for target detection and localization in real-time. In this paper, we propose an 
framework to automatically detect and localize target using high resolution binocular cameras for environment perception of USV. 
Instead of processing the whole image, the feature extraction and matching are executed within the target region of interest 
determined by a deep convolution network. Then the target can be localized using triangulation principle with calibrated binocular 
camera parameters. Experiments show that our proposed strategy can achieve both precise detection and high accurate localization 
results in real-time applications. 
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1. INTRODUCTION 

Unmanned Surface Vehicles (USVs) are autonomous marine 
robots which have caused rising attention in recent years. As 
USVs can perform continuously without human interference to 
save labour and avoid casualty, they are and will be widely 
utilized in multiple marine tasks, such as environment 
monitoring, patrol, exploration, security, etc (Bertram, 2008; 
Breivik et al., 2008; Raboin et al., 2014). 
 
Generally, in order to assure the safety of the platform and 
perform autonomously in complex environment, different types 
of payloads are mounted on a USV, such as radar, lidar, sonar, 
camera, GNSS and IMU, etc. (Heidarsson and Sukhatme, 2011; 
Ji et al., 2014; Liu et al., 2016b; Schuster, 2014; Shi et al., 
2019). Correspondingly, target or obstacle detection methods by 
using data captured by at least one of these payloads have been 
studied in the past decade. Precise detection results can provide 
basic information for applications such as hazard avoidance and 
path planning of the USV (Chen et al., 2019; Liu et al., 2019).  
 
Optical camera, which can provide rich information of the scene, 
is an essential payload of the USV for target and obstacle 
detection. Target detection using images has been studied for 
decades. In the early times, target detection algorithms were 
mostly about extracting edges and segmentation using 
thresholding. Then some algorithms under specific theories 
were also proposed such as clustering, active contour 
segmentation, level set, graph theory-based segmentation, super 
pixel, saliency detection, template matching, etc. Most of these 
methods only result in feature or region expression and 
extraction with no process of recognition or identification. With 

the development of the computing capabilities, machine 
learning methods have been used for image target recognition. 
In the early stage, shallow networks such as decision tree, 
random forests, support vector machines (SVM), Boosting and 
neural network, were mainly used to identify targets. At the 
same time, a number of feature description operators had 
emerged such as Haar, histogram of oriented gradient, local 
binary pattern, etc. As a branch of machine learning, deep 
learning raised around 2006 (Ian et al., 2016). In 2012, 
convolutional neural networks (CNN) gained great attention 
due to the significant advantages in target recognition and 
classification accuracy. Then many deep CNN networks such as 
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and 
Zisserman, 2014), GoogleNet (Szegedy et al., 2015), etc., have 
been developed and applied in multiple fields. With these deep 
networks and subsequently proposed concepts such as 
regularized discarding, residual network, etc., numbers of target 
detection methods have been proposed such as Fast R-CNN 
(Girshick, 2015), Faster R-CNN (Ren et al., 2017), R-FCN (Dai 
et al., 2016), SSD (Liu et al., 2016a), Yolo v1~v3 (Redmon et 
al., 2016; Redmon and Farhadi, 2017, 2018), etc. The number 
of the network layers have been significantly increased, 
meanwhile the detection accuracy has been improved.  
 
Recently, target detection and obstacle avoidance using optical 
camera on USV have been reported (He et al., 2019; Ma et al., 
2019). However, a single image can not restore depth 
information. In other vision fields, binocular vision structure is 
widely used for depth recovery. Normally, the stereo images are 
firstly rectified according to epipolar geometry, so that the 
corresponding points can be searched in the same horizontal 
lines of the images (Zhou et al., 2013). Then the 3D information 
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can be calculated by the matched points using triangulation 
principle. Alternatively, corresponding points can be extracted 
and matched directly on the unrectified stereo images to reduce 
the amount of calculation in epipolar rectification , so that 3D 
information of  the sparse key points can be restored (Wan et al., 
2017a). However, using the later way to process two large 
images is still time-consuming. 
 
Nowadays, high resolution cameras are utilized for better 
visualization and detailed texture. Meanwhile, the data amount 
and computing cost of these large images may increase tens of 
times. This brings challenges of target detection and localization 
in real-time. In this paper, we propose a framework to 
automatically detect and localize target using binocular vision 
for USV in real-time applications. 
 
The rest of this paper is structured as follows: Section 2 
presents and specifies the proposed framework. Experimental 
results are presented in Section 3. Discussion and brief 
conclusions are given in Sections 4 and 5, respectively. 
 

2. METHODS 

The flowchart of the proposed approach is shown in Fig.1. 
Under the guidance of precision analysis results according to 

the stereo structure factors (Di and Li, 2007; Peng et al., 2014), 
binocular system with large baseline is established to capture 
stereo images. First, the captured stereo images are input into 
the deep network to extract features in order to obtain the 
targets types and their areas as regions of interest (ROIs). Then 
the ROIs are matched as candidate corresponding pairs on the 
left and the right images so that each pair contains the same 
target. For each ROI pair, multiple feature extraction algorithms 
are applied within the ROIs on both left and right image to gain 
feature points which are then matched as corresponding points. 
After exclusion of outliers, the rest corresponding points are 
utilized to compute three dimensional coordinates to localize 
the targets. The final outputs of the workflow are the targets 
types and positions.  
 
Before the binocular system executing environmental 
perception, two tasks should be done. Firstly, the binocular 
system should be accurately calibrated to obtain the intrinsic 
parameters of the two cameras and structure parameters that 
reflect the transformation relations between them. Meanwhile, 
the deep convolution neural network should be trained using 
labelled samples. 
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Figure 1. Flowchart of the proposed framework. 
 

 
2.1 Real-time Target Recognition 

By comparing multiple convolution neural network methods, 
such as Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 
2017), R-FCN (Dai et al., 2016), SSD (Liu et al., 2016a), Yolo 
v1~v3 (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018), 
etc., under consideration of recognition precision, computation 

speed and algorithm efficiency, we use Yolo v3 to detect and 
recognize targets in the images.  
 
Yolo v3 adopts numerous residual layers instead of pooling 
layers to deal with negative effect brought by gradient, which 
can achieve better feature extraction performance with relatively 
less layers (He et al., 2016). In addition, this version of Yolo 
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predicts targets at three different scales with more accurate 
bounding boxes so that small objects are easier to be identified.  
 
As the image size of both cameras is larger than the input layer, 
the images are resampled before input into the deep network. 
However, after resampling, some small or distant targets may 
not be recognizable. Therefore, a whole-to-part strategy is 
carried out during real-time recognition. First, the whole image 
adjusts the input layer of the deep network. If no targets are 
recognized, the whole image is cropped into four sub-images. 
The four sub-images are then input into the deep network in 
order to get recognition results. Each recognized target is 
described by type and location information of the rectangle area 
(image coordinates of the left corner and the width and height 
of the rectangle area).  
 
The left and right images are first input into the deep network to 
extract features and detect targets. Information of the detected 
targets on both left and right images consists of the target types 
as well as their rectangle areas. On both images, there may be 
one or more identified targets with their rectangle areas. Before 
the target can be localized in 3D, the multiple rectangles should 
be matched so that they corresponding to the same target. The 
matching method concerns parameters of the stereo cameras, 
therefore will be detailed in the next subsection.  
 
2.2 Three Dimensional Localization 

In order to localize the detected target, triangulation principle is 
realized by parameters of the stereo cameras, including the 
intrinsic parameters of both cameras, the structure parameters 
which describe the rigid transformation relationship from the 
right camera to the left camera. Denote the coordinates system 
centered at optical center of the left camera as work coordinate 
system, control points with known three dimensional world 
coordinates are captured simultaneously by the stereo cameras 
for calibration purpose. The intrinsic and structure parameters 
of the stereo cameras are solved based on the image geometric 
model, the 3D world coordinates of control points and their 2D 
image coordinates on both left and right image.  
 
With the stereo camera parameters, fundamental matrix F is 
calculated based on the epipolar geometry principle. Here the 
fundamental matrix can be utilized to match the rectangles 
detected from the previous sub-section.  With the following 
constraint, the center point of each rectangle on the left image is 
calculated with center point of every rectangle with the same 
class on the right image.  
 

T 0R Lx Fx   (1) 

 
where Lx  and Rx  represents the homogeneous image 
coordinates of the rectangle centers on left and right images, 
respectively. The pair that gives the least value and less than a 
setting threshold is considered a corresponding pair of ROIs.  
 
After matching the rectangles, for each pair, the following 
feature extraction and matching processes focus only on the 
ROIs to reduce time consumption. Multiple feature point 
extraction algorithms, such as AKAZE, AKAZE_KAZA, ORB 
Brisk, and SIFT are applied in both ROIs to gain feature points. 
Then the points are matched using fundamental matrix 
constraint equation as well as the Euclidean distance of the 
feature descriptions. Then the matched results are refined using 
least square algorithm to obtain sub-pixel accuracy (Wan et al., 

2017b). By the calibrated parameters of the stereo cameras, 3D 
coordinates in work coordinate system can be reconstructed 
using triangulation principle (Liu et al., 2015). Under security 
consideration, the point with the nearest distance with in the 
matched ROIs is chosen as the final localization result.  
 
Note that the localization result is in work coordinate system 
whose origin is at the optical center of the left camera, which 
can provide the target position information with respect to the 
stereo system. By calibrating the transformation from the stereo 
system to other sensors, the localization result can be integrated 
into other coordinate system of the USV. 
 

3. EXPERIMENT 

To verify our proposed approach, a stereo system was built as a 
payload of USV. Two cameras, with resolution of 4096 pixel×
3072 pixel, are rigidly mounted on a horizontal carbon fiber 
mast with a baseline of 2m. To reduce water reflection effect, 
polarized lenses are attached in front of the camera lenses.  
 
3.1 Target Recognition Result 

We select 3666 images from the images we captured at a 
reservoir and wharfs as training data. At the primary stage of 
our study, the main targets are boats. The samples contain boats 
in front, side and back views at different distances. To reduce 
the background interference, only the main body of the boat 
without the shelves and frames above the main body are 
labelled.  
 
The samples integrate with the corresponding labels are utilized 
to train the deep network. The loss of the network declines 
rapidly in 20 thousand epochs, and becomes stable afterwards. 
According to the trend of the IoU values, the network doesn’t 
change much after 200 million batches (64 samples a batch). 
Therefore, combine the above factors, the weights trained larger 
than 30 thousand epochs is used as the final weights for the 
network.  
 
We have tested the trained weights using a 1000 images dataset; 
the test results are listed in Table 1. True positive means the 
targets on these images are correctly detected and identified, 
which reaches 98.5%. Only one false alarm is detected in this 
dataset, which is 0.1%. False detection occurs in several 
situations: wrong rectangle positions and ranges, repetitive 
detection of the same target, etc., which accounts for 0.5%. 
Targets in nine images (0.9% of the dataset) were not identified. 
The target detection speed is 5 FPS. Figure 2 shows the 
detection results (detection target areas are marked as red 
rectangles) of several images with target at different distances 
captured at the reservoir.  
 

Numbers 
of images 

True 
positive 

False 
alarm 

False 
detection 

Dismissal 

1000 985 1 5 9 
Occupation 
(%) 

98.5 0.1 0.5 0.9 

Table 1. Test results of our trained deep network using a dataset 
of 1000 images.  
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(a) 

 

 
(b)  

 

 
(c) 

Figure 2. Detection results of several images with target in 
different directions and distances captured at the reservoir. The 

detection results are marked as red rectangles. 

 
3.2 Measurement Result 

3.2.1 Calibration: The stereo cameras were calibrated by 
capturing images of the control points shown in Fig. 3 (black 
dots on the facade of the building). After extracting the control 
points on the image and establishing the map relationship 
between the 3D control points and their corresponding image 
points, the cameras intrinsic parameters and the structure 
parameters were solved. The calibration results are shown in 
Table 2.  
 

  
Figure 3. Stereo images that capture the control points. 

 

Paras. 0x  
（pixel） 

0y
 

（pixel） 

f  
（pixel） 

1k  

Left 2130.824 1481.890 7978.162 1.331e-9 
Right 2248.419 1447.627 7986.934 1.220e-9 

 2k  
1p  

2p    

Left -2.7e-17 -6.787e-8 3.74e-8 -3.021e-4 
Right -9.0e-18 -5.597e-8 -4.052e-8 -2.277e-4 

   x (m) y (m) z (m) 

Left 4.741e-6 -999.608 -1002.580 101.261 
Right 7.043e-5 -997.604 -1002.791 101.279 

        
Left -4.609 -1.165 -0.337  

Right -5.480 -1.498 0.285  

 
RMS: x
（pixel） 

RMS: y
（pixel） 

  

Left 0.284 0.273   
Right 0.247 0.275   

Table 2. Calibration results of the stereo cameras.  

 
In order to test the accuracy of localization, we applied laser 
ranging results as reference values, and tested five localization 
results at different distances. The comparisons are listed in 
Table 3.  As shown in Table 3, the measurement errors become 
larger as the distances from the cameras increase, which 
coincides with the theoretical error analysis of the stereo system.  
 

No. Laser result Stereo result Error 
1 39.7 39.671 0.036 
2 114.8 112.143 2.657 

3 210.3 214.865 -4.565 

4 311.6 304.026 7.574 

Table 3. Measurement results of the stereo cameras comparing 
with laser ranging. 

 
3.2.2 Target Detection and Localization Result: As 
described in the previous sections, the detected targets areas are 
marked as ROIs, and feature point extraction and matching 
processes are carried out inside the ROIs. The feature point 
extraction results are shown in Fig. 4(a), and matched feature 
points in the ROIs are shown in Fig. 4(b). According to the 
calibration parameters and the localization method, three 
dimensional coordinates are calculated, and distance of the 
target from the USV calculated from the localization results is 
shown in Fig. 4(c). As feature extraction and matching process 
are time consuming, after adding this part, the speed of the 
whole process is 1.5 FPS. 
 

 
(a) 

 

 
(b) 
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(c) 

Figure 4. Results of feature extraction, matching and target 
localization. 

 
4. DISCUSSION 

According to the structure of Yolo v3 and the size of the stereo 
images, the minimum target that can be detected should be 
larger than approximately 100 pixel × 130 pixel. By the 
assistance of sub-image processing strategy, this range can be 
reduced to approximately 50 pixel×65 pixel. However, this is 
under ideal imaging conditions. Normally, the detection 
capability would decrease slightly in case of bad illumination, 
USV vibrations, and surface reflections from both water and the 
targets. 
 
From the experiments, we found that especially when the target 
boat is not far, many extracted and matched points are on the 
water surface at the top half of the ROI, which would lead to 
wrong localization result. To avoid this situation, only the 
bottom half of the ROI is utilized to extract feature points. 
Besides, according to the most boat designs, the bottom part of 
the target boat is closer to the USV. In addition, with the 
distance of the target increases, the localization accuracy 
decreases fast because of the smaller ROI area, imaging quality 
reduction, vibration of the USV and reflection influence.  
 

5. CONCLUSIONS 

This paper proposed a framework of detecting and localizing 
target using stereo vision cameras mounted on USV. First, the 
targets are automatically recognized using deep neural network. 
Then the detected targets and their corresponding area are 
marked as ROIs and matched, where feature point extraction 
and matching are carried out. The localization results are 
obtained by triangulation principle using matched points and 
calibrated camera parameters. Experiments of both target 
detection and localization show that our developed system using 
stereo camera images achieved a high detection rate and 
accurate localization results. Future work may include detection 
and localization of more target types, further speed up the 
feature extraction and matching algorithms, etc. 
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