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ABSTRACT:

With the rapid development of remote sensing technology, it is possible to obtain continuous video data from outer space success-
fully. It is of great significance in military and civilian fields to detect moving objects from the remote sensing image sequence
and predict their movements. In recent years, this issue has attracted more and more attention. However, researches on moving
object detection and movement prediction in high-resolution remote sensing videos are still in its infancy, which is worthy of fur-
ther study. In this paper, we propose a ship detection and movement prediction method based on You-Only-Look-Once (YOLO)
v3 and Simple Online and Realtime Tracking (SORT). Original YOLO v3 is improved by multi-frame training to fully utilize the
information of continuous frames in a fusion way. The simple and practical multiple object tracking algorithm SORT is used to
recognize multiple targets detected by multi-frame YOLO v3 model and obtain their coordinates. These coordinates are fitted by
the least square method to get the trajectories of multiple targets. We take the derivative of each trajectory to obtain the real-time
movement direction and velocity of the detected ships. Experiments are performed on multi-spectral remote sensing images selected
on Google Earth, as well as real multi-spectral remote sensing videos captured by Jilin-1 satellite. Experimental results validate the
effectiveness of our method for moving ship detection and movement prediction. It shows a feasible way for efficient interpretation
and information extraction of new remote sensing video data.

1. INTRODUCTION

Object detection in remote sensing images plays an increasingly
important role in many application fields of remote sensing.
With the rapid development of remote sensing technology in
recent years, it is possible to obtain continuous video data from
outer space successfully. For example, the Jilin-1 series of com-
mercial satellites launched since October 7, 2015, are capable
of providing remote sensing videos with high spatial resolution.
Owing to the temporal characteristics of remote sensing videos,
we can not only detect the target as in remote sensing images
but also analyze the movement of the detected target. In recent
years, more and more attention has been paid to this issue. A
lot of studies have focused on object detection and movement
prediction in natural images and videos, and promising results
have been achieved.

The state-of-the-art object detection methods are deep-learning-
based detectors, e.g. Faster RCNN (Faster Regions with Convo-
lutional Neural Network) (Ren et al., 2015), YOLO (You Only
Look Once) (Redmon et al., 2016), SSD (Single Shot MultiBox
Detector) (Liu et al., 2016), etc. As an improvement of YOLO,
YOLO v3 (Redmon, Farhadi, 2018) has better robustness to
small targets due to the use of multi-scale prediction and the
developed network structure. Besides, the detection speed of
YOLO v3 is also fast, which fully meets the request for real-
time detection. Since YOLO v3 can achieve fast and accur-
ate object detection in one stage with end-to-end learning, it is
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very suitable for engineering applications. In terms of object
detection in remote sensing images, Li et al. (Li et al., 2018)
applied Ting-YOLO (Ma et al., 2017) to airport and aircraft re-
cognition, and proposed a simplified Ting-YOLO algorithm to
improve the detection speed. Kharchenko et al. (Kharchenko,
Chyrka, 2018) applied YOLOv3 to the detection of airplanes on
the ground. This method has high detection ability, positioning
accuracy, and real-time processing speed. Chang et al. (Chang
et al., 2019) used YOLO v2 (Redmon, Farhadi, 2017) for ship
detection in SAR images. For video detection, the motion-
guided propagation method mentioned in the T-CNN (Tubeless
with Convolutional Neural Network) (Kang et al., 2017) can use
the optical flow information to pass the detection result of the
current frame forward and backward, effectively reduce missed
detections, and sort the category scores successfully.

Multiple Object Tracking (MOT), which means to detect and
identify multiple objects in the videos, has been widely ap-
plied in pedestrian tracking and vehicle detection. In recent
studies, there are inter-frame difference method, optical flow
method, background subtraction method, and many other al-
gorithms. The GMM (Gaussian Mixture Model) proposed by
Stauffer et al. (Stauffer, Grimson, 1999) compares the pixels of
the input image with the background model and then uses the
morphological method to extract the moving target. Besides, a
new algorithm proposed in (Bewley et al., 2016) called SORT
(Simple Online and Realtime Tracking) correlates and matches
the objects of each frame to obtain the position coordinates in
image sequences, and then uses the least square method to per-
form trajectory fitting to gain the motion trajectories of multiple
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Figure 1. Overview of the proposed method based on YOLO v3 and SORT.

targets. This SORT method is simple and effective.

As mentioned above, there have been successful researches on
object detection in high-resolution remote sensing images, es-
pecially the methods based on deep learning. However, re-
searches on moving object detection and movement prediction
in high-resolution remote sensing videos are still in its infancy,
which is worthy of further study. In this paper, we improve the
state-of-the-art one-stage deep learning-based object detection
method YOLO v3, and use it to detect moving ships in remote
sensing videos of Jilin-1 satellite and predict their movement in-
formation (i.e. trajectory, velocity, and direction) using SORT
method. We have carried out experiments on multi-spectral re-
mote sensing images selected on Google Earth, as well as real
multi-spectral remote sensing videos captured by Jilin-1 satel-
lite. The experimental results show that our improved multi-
frame YOLO v3 model outperforms the singe-frame model by
nearly 8% in terms of the average precision of object detec-
tion. Quantitatively, the average position detection error of our
multi-frame YOLO v3 model is less than 3 pixels. In addition,
our movement prediction method can achieve average predic-
tion errors of trajectory, speed magnitude and speed direction
less than 2.5 pixels, 0.2 pixels per second and 2.5 degrees, re-
spectively.

The rest of this paper is organized as follows. Section 2 de-
scribes the details of our proposed moving ship detection and
movement prediction method. Section 3 introduces the data for
training and testing and reports the experimental results. Fi-
nally, Section 4 concludes the paper.

2. METHOD

2.1 Overview of the Proposed Method

Comprehensively considering detection accuracy and running
speed, we improve the state-of-the-art one-stage deep-learning-
based object detection method YOLO v3, and use it to detect
moving ships in remote sensing videos of Jilin-1 satellite and

predict their movement information, including trajectory, ve-
locity and direction. We first train an optimized YOLO v3
model which can realize ship detection in a single frame of a re-
mote sensing video to select better network structures and initial
parameters for our task. Such a single-frame YOLO v3 model
can also be regarded as the baseline for comparison. Then, we
change the network structure to achieve multi-frame informa-
tion fusion by expanding the number of the input channels from
the original three to nine, to import three consecutive frames of
the video together into the model for training. By such multi-
frame training, we can utilize the information of continuous
frames in a fusion way, and thus improve the detection perform-
ance. Moreover, to achieve movement prediction, we use the
simple and practical multiple object tracking algorithm SORT
to recognize multiple targets detected by multi-frame YOLO v3
model and obtain their coordinates. These coordinates are fit-
ted by the least square method to get the trajectories of multiple
targets. We take the derivative of each trajectory to obtain the
real-time movement direction and velocity. The structure of our
proposed method is shown in Figure 1.

2.2 Multi-Frame Fusion YOLO v3 for Ship Detection

In order to solve the problem of moving ship detection in multis-
pectral remote sensing videos, we use YOLO v3 (Redmon, Far-
hadi, 2018) model and improve it by making full use of the rich
contextual information of sequence images to achieve better de-
tection results. To train a better YOLO v3 model for ship de-
tection in remote sensing videos, we input 3 consecutive image
frames into the model, which means the input of YOLO v3 will
be changed to 416×416×9 rather than the original 416×416×3
for a single RGB input image. Such operation only changes the
parameters of the first layer of the YOLO v3 network, while the
number of convolution kernels and the size of the output fea-
ture map in the first convolutional layer will remain unchanged.
In addition, the subsequent structure of the convolutional layer
does not need to be changed as well. Therefore, it fully retains
the effective performance of YOLO v3. By improving YOLO
v3 to a multi-frame input model, the information of continuous
frames can be better extracted by the network in a fusion way.
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Figure 2. Sample images in the training set.

This method not only reduces much redundancy in the image
sequence from the slow movement of the objects, but also en-
ables the model to learn and link multiple frames of information
during training.

At the same time, according to the characteristics of ships, we
re-cluster the dataset by K-means and obtain 9 new clustering
centers for bounding box priors. Considering that the larger
size box will cause more errors for ship detection, we use the
following formula to define the distance from the ground truth
to the cluster center as

d(box, centriod) = 1− IOU(box, centroid) (1)

where centroid is the border selected as the center during clus-
tering, box is the border of a ground truth bounding box, and
IOU(·, ·) is the operation to calculate the intersection over union
(IOU) between box and centroid, which is a standard for meas-
uring the accuracy of detecting corresponding objects. It is ob-
vious that the distance decreases when the value of IOU in-
creases.

It should be noticed that we adopt the Keras1 framework for the
implement of YOLOv3 model, since Keras makes it easy to ad-
just the network structure and achieve engineering applications.

2.3 SORT-Based Movement Prediction

To achieve the goal of matching objects between frames and
getting their motion information, we choose a very simple and
practical algorithm called SORT (Simple Online And Realtime
Tracking) (Bewley et al., 2016) to correlate and match the track-
ing of objects of each frame. We connect SORT directly to the
end of multi-frame YOLO v3 detection network mentioned in
Section 2.2. If the bounding box matches the objects success-
fully in a frame, it will update the state of the objects. Then the
velocity component will be optimally calculated by the Kalman
filtering framework. If not, a linear velocity prediction model
will be used to predict the objects. When allocating the bound-
ing box to an existing target, the Kalman filter is used to predict
the position of the potential bounding box that the object should
appear in this frame. Then, the IOU of the predicted bounding

1 https://keras.io/

box is calculated. If IOU is less than a threshold, the alloca-
tion will be rejected. We use the Pearson correlation coefficient
as a standard to measure the tracks, then merge the related tra-
jectories after judgment. The Pearson correlation coefficient is
computed as

ρXY =
N
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where N is the number of the collected frames, X is the ab-
scissa of the object in the image, and Y is the ordinate of the
object in the image.

After obtaining the coordinates of the objects in a frame, we
use the least square method to fit the motion trajectories. The
instantaneous motion direction and speed are computed by de-
rivation to achieve movement prediction.

3. EXPERIMENTS

3.1 Dataset

3.1.1 Training Set Our remote sensing ship detection re-
quires a dataset that only contains ship objects. However, the
number of ship images in publicly available remote sensing im-
age dataset is not enough. Therefore, we select multi-spectral
remote sensing images on Google Earth. There are 8022 images
of 1m spatial resolution at the size of 1024×1024 from Google
Earth. 2250 frames in 9 video clips at the size of 416 × 416
from a Jilin-1 satellite video (Video 1 in Table 2) are also in-
cluded in our training set. Table 1 summarizes the information
of the training set. Figure 2 shows samples in the training set.
It can be seen that the training set contains ship targets under
various scenarios including cloud interference, complex seas,
moving and stationary ships, island or no island interference,
etc.

Spatial Resolution 1m 2m
Size 1024× 1024 416× 416

Number 8022 2250
Source Google Earth Jilin-1

Table 1. The information of the training set.
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3.1.2 Testing Set To verify the robustness and performance
of our method in different and complex practical environments,
we use two real remote sensing videos to construct testing data,
as shown in Table 2. These two videos are cropped from two
real video data captured by Jilin-1 satellite in the sea area near
Hong Kong, whose screen-shot is shown in Figure 3. The dur-
ation is about 30 seconds and the spatial resolution is 2 meters.
The ships in the video are general civilian ships with a limited
number of pixels, which makes the testing more difficult.

Source Jilin-1 Satellite
Name Video 1 Video 2

Spatial resolution 2m 2m
Duration 30s 22s

Number of frames 750 550
Size 1200× 1200 416× 416

Number of ships 20 ∼ 60 2 ∼ 5
Movement Unobvious Obvious

Table 2. The information of Jilin-1 satellite videos.

Figure 3. Sample frame in Jilin-1 satellite videos.

In Video 1, each frame contains about 40 ships, and the ships
are density with no obvious movement. However, in Video 2,
the ships are scattered and less than Video 1, and some ships
have obvious moving trajectories. Due to the limitation of memory,
we divide Video 1 at the size of 1200 × 1200 to 9 video clips
at the size of 416 × 416, and select 4,500 frames to test ship
detection model while the rest 2250 frames are in the training
set. We use Video 2 to test the motion prediction algorithm.

It is worth mentioning that 4500 frames and the single video
clip (Video 2) in the testing set are all captured by Jilin-1 satel-
lite, containing about 40 ship targets in various scenarios, such
as clouds, complex or calm sea surface, island interference, etc.
Therefore, the testing set is suitable to be used for better per-
formance evaluation.

3.1.3 Data Augmentation The 1m resolution training im-
ages from Google Earth are resized to 416 × 416, in order to
get similar spatial resolution as Jilin-1 data. In addition, Gaus-
sian filtering has been applied to Google Earth images for data
augmentation. Images after Gaussian filtering will be blur and
more similar as the video frames of Jilin-1 data. Since perform-
ing Gaussian filtering does not change the position and size of
the objects, the ground truth labels of ships will not change as
well.

3.2 Evaluation Index

We use popular indexes of the Precision-Recall curve and aver-
age precision (AP) to evaluate ship detection performance. In

terms of movement prediction, we define four indexes for per-
formance evaluation. The first one is Detection Error (DE), i.e.
the center coordinate error between the bounding boxes and the
ground truth. The second one is Prediction Error (PE) defined
as the average error between the predicted center coordinates
after trajectory fitting and the ground truth. The third index
called Velocity Magnitude Error (VME) is the error between
the predicted velocity magnitude and the ground truth. The last
index is Velocity Direction Error (VDE), calculated by the dif-
ference of predicted velocity direction angles and the ground
truth. It should be noticed that all these four indexes are re-
ported as the average values of the frames in the testing video
clip.

3.3 Moving Ship Detection

3.3.1 Results of Single Frame YOLO v3 The single frame
YOLO v3 model was pre-trained on the MS COCO dataset2.
Then we fine-tuned it using our remote sensing image training
set. We froze the first 249 layers of the network and activated
the last 3 layers. The epoch of training at this stage was set to
25. Then the model entered the second stage where we activated
all 252 layers, and the epoch at this stage was set to 35. The
Precision-Recall curve of the single frame YOLO v3 is shown
in Figure 4. The AP of single frame YOLO v3 on the testing set
is 78.23%.

Figure 4. The Precision-Recall curve of the single frame
YOLOv3 model.

3.3.2 Results of Multi-Frame YOLO v3 To train a multi-
frame YOLO v3, we loaded the single frame YOLO v3 model
and initialized the parameters of the first layer, while the para-
meters of other layers remained unchanged. Then we only ac-
tivated the first and last three layers for training and froze the
rest 248 layers of the network, with the epoch set to 25. After
that, we activated all 252 layers and set the epoch to be 35.
The Precision-Recall curve of multi-frame YOLO v3 is shown
in Figure 6. The multi-frame YOLO v3 can achieve AP of
84.48%, nearly 8% higher than the single frame model. Such
experimental results show that our improved multi-frame YOLO
v3 model outperforms the original single frame one. The visual
comparison between ship detection results of single and multi-
frame YOLO v3 is shown in Figure 5.

2 https://cocodataset.org/
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Figure 5. Visualization of ship detection results. The left image is obtained by the single frame YOLO v3 model, while the right one is
from the multi-frame YOLO v3 model.

Figure 6. The Precision-Recall curve of the multi-frame
YOLOv3 model.

3.4 Movement Prediction

Based on the detection results obtained from the multi-frame
YOLOv3 model, we input the information of detection bound-
ing boxes in each frame into the SORT algorithm. The mul-
tiple targets were correlated and matched firstly, and then the
trajectory was fitted by least square method. We used a tra-
jectory fitted by 400 continuous frames to predict the following
100 frames in the movement prediction process. The results are
shown in Table 3 and Figure 7. The experiments show that our
movement prediction method can achieve an average traject-
ory prediction error of less than 2.5 pixels, a speed magnitude
prediction error of less than 0.2 pixels per second, and a speed
direction prediction error of less than 2.5 degrees.

Object Ship 1 Ship 2
DE (pixels) 2.5108 2.8539
PE (pixels) 0.8935 2.3113

VME (pixels/second) 0.124 0.068
VDE (degrees) 1.4 2.2

Table 3. the evaluation of the movement prediction

Figure 7. Visualization result of movement prediction. The blue
and orange curves represent the real motion trajectories of the
two targets. The green and red curves represent the prediction
trajectories of the respective targets. The marked center points

on the curves are the detection centers.

4. CONCLUSION

In summary, inspired by the methods of moving object detec-
tion and movement prediction in natural images, we have pro-
posed a practical solution to achieve moving object detection
and movement prediction in multiple spectral remote sensing
videos. We performed experiments on multi-spectral remote
sensing images and videos from Google Earth and Jilin-1 satel-
lite, respectively. The experimental results validate the effect-
iveness of our method, which could contribute to providing a
feasible way for efficient interpretation and information extrac-
tion of new remote sensing video data.
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