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ABSTRACT:

Building category refereed to categorizing structures based on their usage is useful for urban design and management and can
provide indexes of population, resource and environment related problems. Currently, the statistics are mainly collected by manual
from street data or roughly extracted from remote sensing data which are either laborious or too coarse. With remote sensing
data (e.g. satellite and aerial images), buildings can be automatically identified from the top-view, but the detailed categories of
single buildings are not recognized. Facade from oblique-view image can greatly help us to identify the categories of buildings, for
example, balcony usually exist in resident buildings. Hence, in this paper, we propose an efficient way to classify building categories
with the facade information. Firstly, following the texture mapping procedure, each building’s facade textures are cropped from
oblique images via a perspective transformation. Then, the average colour, the stander deviation in R, G, B channel, and the
rectangle Haar-like features are extracted and feed to a further random forest classifier for their category identifications. In the
experiment, we manually selected 262 building facades that can be classified into four functional types as: 1) regular residence ;
2) educational building; 3) office ; 4) condominium. The results shows that, with 30% data as training samples, the classification
accuracy can reach 0.6 which is promising in real applications and we believe with more sophisticated feature descriptors and

classifiers, e.g., neuronal networks, the accuracy can be much higher.

1. INTRODUCTION

The building category refereed to categorizing structures based
on their usage is useful for urban design and management. This
kind of information can provide indexes of population, resource
and environment-related problems, such as population distri-
bution, power supply, and traffic system design. They are the
basis of urban planning, policy-making and disaster manage-
ment (Kolbe et al., 2005, Tutzauer et al., 2016). Currently,
the statistics are mainly collected by manual from street data or
roughly extracted from remote sensing data which are either la-
borious or too coarse. With remote sensing data, some land use
classification methods (Rawat, Kumar, 2015, Liu et al., 2016,
Zhang et al., 2015a) can automatically identify the airport from
residential area or the industrial zone from public facilities, but
the detailed categories of individual buildings are not recog-
nized. On the other hand, single buildings can be classified and
detected from overview data, such as satellite and aerial images.
However, most of these building detection methods use the top-
view information such as the appearance of the roof and the
high from DSM (digital surface model) which are not enough
for individual building category identification. Hence, how to
efficiently acquire such information at a large scale (e.g. city)
is still a problem.

With the development of multi-camera/head imaging systems,
many remote sensing platforms can simultaneously capture the
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top-view and oblique-views images in different directions. This
oblique imagery is widely used for photogrammetric 3D re-
construction, its cartographic mapping products (orthophoto
and DSM) are becoming popular for land-cover classifica-
tion (Zhang et al., 2015b), building detection and modelling
(Gruen et al., 2019). Besides building geometric information,
the oblique images also contain fagade textures that are helpful
for building category identification, such as balcony indicating
residence while a large part of glass showing an office. A build-
ing’s 3D geometric representation usually contains semantic
information such as building category, architectural style, and
historical relevance. The analyses of the study (Tutzauer et
al., 2016) reveal clear coherence and dependencies between
the correctness of classifications and the model representation

types.

Hence, in this study, with the oblique images, we propose a
framework to efficiently identify building categories at a large
scale based on their fagade textures. Firstly, from existing
building footprints or LoD2 (level-of-detail 2) building models,
the corresponding building boundaries can be registered and
matched in orthophoto and DSM derived from the oblique im-
ages. Then, based on the geo-referenced coordinates of build-
ings, the facade textures can be cropped and selected from ob-
lique images, as same as the texture mapping procedures in
(Xiao et al., 2020). Finally, from these facade textures, color
and texture features are extracted and further fed to a random
forest classifier for the building category classification.
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Figure 1. The facade texture extraction from multi-view oblique images. Image (a) shows a buildings’ 3D vertical face and the
possible projections at multi-view oblique images are showing in image (b). Finally, image (c) and (d) show the original and rectified
facade textures while the yellow rectangle in image (d) marks the best texture.

2. RELATED WORK

Usually it is difficult to determine the category of the build-
ings in complicated urban areas just from the top-view. Hence,
many researches are using ground-level images as supplement-
ary data for the land (mainly the man-made facilities) use cat-
egory classification (Newsam, 2010, Zhu, Newsam, 2015). In
(Zhu et al., 2018), building photos, including intern scenes,
are collected and labelled to train a deep convolutional neural
network (CNN) for building category classification. Then the
image with geolocation information can be classified and fur-
ther to help identify the location’s land use type. However, due
the geolocation error, this method also only offer patch or area
based land use classification. And this method is heavily de-
pended on the availability of photos that has geo-information.
Besides ground-level images, some researches are using point
of interest information from social network which contains the
functional and locational properties (Ty et al., 2016, Deng,
Newsam, 2017). Even these methods work well in cities, it
is still an approximate estimate.

Single image of the top-view is limited to offer the use informa-
tion of the buildings, but the temporal sequences of images and
other metadata can provide clues for the land/building use clas-
sification. Recently, the functional map of the world (fMoW)
challenge was launched to ask resolutions to classify facility,
building, and land use from satellite imagery. Their baseline
method is using Long Short-Term Memory (LSTM) neural net-
work and metadata to identify different type of buildings includ-
ing hospital, office building, police station, and etc (Christie et
al., 2017). Also, some other deep learning neural networks are
adopted to deal this kind of problem which including using en-
semble convolutional neural networks (Minetto et al., 2019).
However, for the building category classification, the accuracy
is relatively low, such as the office building only have 0.225 ac-
curacy in the baseline method. Also, most of the classifications
are at patch or area scale, not the individual building.

A building’s 3D geometric representation usually contains se-

mantic information such as building category, architectural
style and historical relevance. To explore the connections
between the 3D geometric and building category, (Tutzauer et
al., 2016) developed a tool to ask user to classify buildings into
six characteristic building categories. And the analyses of the
study reveal clear coherences and dependencies between the
correctness of classifications and the model representation type.

Unlike all above method, we explore the facade information
from oblique images which capture some kind of semantic in-
formation of buildings to help us identify the category of build-
ings at the individual level. The facade can be exacted from ob-
lique images which are cheap and conveniently to be acquired.

3. FACADE FEATURE EXTRACTION AND
CLASSIFICATION

From existing building footprints or LoD2 (level-of-detail 2)
building models, the corresponding building boundaries can be
registered and matched in orthophoto and DSM derived from
the oblique image. Similar to 3D building fagade texture map-
ping (Frueh et al., 2004), the vertical faces of above-ground
objects can be mapped and cropped from oblique images. Our
previous work about urban land-cover classification with fagade
information (Xiao et al., 2020) has provided a pipeline for the
texture mapping and cropping from multi-view oblique images.
Hence, we directly adopt its procedure as the following pro-
cesses.

3.1 Facade Texture Mapping

One building usually has more than one fagade, in this study,
we selected the longest facade as its representation. As illus-
trated in Figure 1, image (a), the vertical face is defined as a
rectangle with four space points (P1, P2, P3, P4). The upper
points (P1, P2) are the two ending points of a polygon line
with the object height, while the lower points (P3, P4) are at
the same positions but with ground height. The georeferenced
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Figure 2. An illustration of the occlusion detection through Z-buffer with the DSM. A texture point (e.g. p1), must be close to the
facade plane (yellow rectangle) in the object space, otherwise (e.g. p2 which is pointing at a tree) it should be an occlusion point.

3D coordinates (X, Y, Z) of the four points in the object space
can be acquired from the orthophoto and DSM, thus their cor-
responding oblique image coordinates can be calculated via a
perspective transformation:

i
s| v = P3x4
1

where (u, v, 1) is the 2D homogeneous coordinates in the ob-
lique image with s as a scale factor, and Psx4, 1S a perspect-
ive transform matrix which contains the intrinsic and extrinsic
camera parameters that are calibrated in the photogrammetric
3D processing. The reader can find more details about the pho-
togrammetry in (Hartley, Zisserman, 2003). As illustrated in
Figure 1, image (b) and (c), after this perspective transform,
the four points can define a region of the facade in each multi-
view oblique image. To get better facades for the later feature
extractions, we rectify the textures to the front view through
a homography transform that maps the points in one image to
the corresponding points in the other image (e.g. mapping P2,
P1, P3, P4 to the top-left, top-right, bottom-left, bottom right
corner of a rectangle image, separately), as shown in Figure 1
(d). The readers can find more details about homography in
(Hartley, Zisserman, 2003).
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There are in general more than one oblique images can capture
a facade of an object. To select the best one, we consider three
factors: 1) V(f), the quality of the angle between the normal of
the face plane and the camera imaging plane, 2) N(f), the qual-
ity of the angle between the face normal and the line through
camera and face centers, 3) O(f), the proportion of the observ-
able part. Based on these factors, the best fagade is selected by
a texture quality measurement:

QUf) =mi*xV(f) +max N(f) +ms*O(f), (2

where the Q(f) measures the quality of fagade f, while the m,
ma, ma are the weights of different quality factors. In the ex-
periment, m1, me, ms are set as 0.25, 0.25, 0.5, respectively,
as we found the visibility is more important. While the first two
factors can be easily calculated, the visibility is complicated to
measure due to that the occlusion often exists in urban areas.
Inspired by a Z-buffer based occlusion detection (Rau et al.,

2014), we examine the visibility with a distance measurement
as illustrated in Figure 2.

For each facade region in the multi-view oblique images, we
can simulate emitting rays from its camera center through the
facade texture and reach the DSM in the object space. If a pixel
is not part of the plane (e.g. due to occlusion), like P2 in Fig-
ure 2, we will determine that as an invalid pixel for feature ex-
traction. The resulting masked image is shown in image (d) of
Figure 1.

3.2 Facade Feature Description and Classification

To capture the facade features, we take segmented images and
compute the average color and the standard deviation in R, G,
B channels. Considering that the elements (e.g., windows) in
the building facades usually have a regular and repetitive lay-
out, we adopt the rectangle Haar-like features (Crow, 1984, Vi-
ola et al., 2001) to the facade images, as has been shown to be
highly descriptive. The rectangle Haar-like feature is defined as
the difference of the sums of the pixel intensities inside differ-
ent rectangles. For the facade textures, a triple-rectangle pat-
tern Haar-like structure(e.g. black-white-black) is designed and
used at the vertical and horizontal direction, separately, at 3 dif-
ferent sizes (total 6 feature vectors). Finally, from pixels to
blocks, the color and Haar-like features are combined to de-
scribe the facade for each building. The random forest(RF)
classifier is widely used for hierarchical feature classifications
(Sun et al., 2017). The voting strategy of multiple decision trees
and the hierarchical examination of the feature elements make
this method have high accuracy. Hence, in this study, the RF is
used as the classifier for the building category classification.

4. EXPERIMENT AND DISCUSSION

To validate the proposed framework, we used 306 aerial im-
ages as the study data which includes 73 top-view, 64 forward-
view, 47 backward-view, 62 left-view, and 60 right-view images
taken by a 5-head Leica RCD30 airborne camera in the exper-
iment. The size of all images is 10336 x 7788 pixels while
the four oblique cameras are mounted with a tilt angle of 35
degrees. These images are calibrated by a professional photo-
grammetric software called Pix4Dmapper which is also used to
produce the orthophoto and DSM. The georeferencing accur-
acy, computed from 9 ground control points, is 2.9 cm and the
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Figure 3. Examples of facade images from oblique aerial images. From left to right are example facade images of residence(regular),
education, office, and condominium.

Table 1. The statistics of facade images in different types of

buildings.
Type Num
Residence(regular) | 110
education 78
office 31
condominium 43
total 226

ground sampling distance (GSD) of the orthophoto and DSM is
around 7.8 cm. The study area is around the campus of the Na-
tional University of Singapore (NUS), where contains a variety
of buildings. In the experiments, we manually select and draw
the boundary of 106 buildings including 1) regular residence;
2) educational building; 3) office; 4) condominium. From these
building’s boundaries, 262 fagade images are cropped, selec-
ted, and rectified to front-view to generate the experiment data-
set, and the detailed statistics and image examples can be found
in Table 1 and Fig. 3, separately. The reader can find more
details about the dataset, texture mapping, selection, and recti-
fication for each building in (Xiao et al., 2020). To capture the
facade features, average color and the standard deviation in R,
G, B channels are calculated, while the Haar-like features are
adopted for the texture description. In this experiment, a three-
rectangle Haar-like structure is designed and used at the vertical
and horizontal direction, separately, at 3 different sizes (total 6
features). Finally, these features are combined to describe the
facade textures for their identification. For the random forest
classifier, 500 decision trees are used for training, while the
number of variables for classification is set as the square root
of the feature dimension which is 12 in the experiment. With
the different number of training samples, the overall classific-
ation accuracy and Kappa value of all facade images (training
data is included) are shown in Fig. 4.

From Fig. 4, we can observe both the overall accuracy and
Kappa values are increasing with the increased training num-
bers. Even only use 30% data as training samples, the clas-
sification accuracy can still reach 0.6, which is promising in
real applications. Since the experiment data is limited ( 31
office, 43 condominium), the intra-class variability and inter-
class similarity can be major challenges for the training on even
smaller sub-dataset. However, this result still demonstrated
that the facade texture can offer a useful clue for building cat-
egory classification. With more samples, sophisticated feature
extractor, and classifier, e.g., neural networks, we believe the
facade image-based building category classification can have
much higher accuracy and more practical.
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Figure 4. The building category classification results with
different numbers of training samples.
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