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ABSTRACT:

The recent development of Earth observation systems - like the Copernicus Sentinels - has provided access to satellite data with
high spatial and temporal resolution. This is a key component for the accurate monitoring of state and changes in land use and land
cover. In this research, the crops classification was performed by implementing two deep neural networks based on structured data.
Despite the wide availability of optical satellite imagery, such as Landsat and Sentinel-2, the limitations of high quality tagged data
make the training of machine learning methods very difficult. For this purpose, we have created and labeled a dataset of the crops
in Slovenia for the year 2017. With the selected methods we are able to correctly classify 87% of all cultures. Similar studies have
already been carried out in the past, but are limited to smaller regions or a smaller number of crop types.

1. INTRODUCTION

In the presented work we focus on the classification of crops,
a task that is common with satellite data. This has been previ-
ously done with methods of varying complexity, such as tradi-
tional supervised classification methods, random forest (Breiman,
2001), support vector machines (Raj, SivaSathya, 2014) and re-
current neural networks (Rußwurm, Körner, 2018). But when
dealing with temporal data, traditional approaches cannot take
full advantage of such structured data because the order of the
data has no effect on the model and thus time is not considered
as a separate feature.

Deep learning offers a variety of approaches to resolve such
tasks. In our work we investigate two architectures of deep
neural networks for the classification of crops. Progress has
already been made by several authors in the past, that have
used the segmentation of satellite images using recurrent neural
networks (Rußwurm, Körner, 2018) which are capable of pro-
cessing temporal data. With such an approach it is not neces-
sary to pre-process the data; the model e.g. learns to mask the
clouds by training and optimizing the weights. However, such
approaches are not without shortcomings. They have many
parameters and each state depends on the previous one, which
increases the learning time, and requires very large amounts of
training data.

There have been also advances in architectures (Bai et al., 2018)
that are able to deal with temporal information more efficiently.
In this case, one of the main problems with deep learning re-
mains - the need for very large amounts of well annotated data.
Given the scale of these problems, we have limited ourselves to
preparing the data, analysing and implementing selected archi-
tectures and comparing the results. The reference data used in
this study was for Slovenian crops in the year 2017, shown in
Figure 1. The dominant class in the area are meadows followed
by maize. Region marked in red is dominated by vineyards and
only further away we have meadows. Differently the region in
∗ Corresponding author

black has small fields with various crop types clustered very
close together.

Figure 1. Crop coverage map in Slovenia for the year 2017.
Enlarged areas show the diversification of crops in the country.

2. SATELLITE DATA

This research is focused on the use of Sentinel-2 data, which
is openly accessible within the Copernicus program. Sentinel-
2A and B together cover every area on Earth in at least 5 days
in 13 bands. This high temporal resolution makes it possible to
track seasonal trends, such as crop development, well. The most
commonly used bands for vegetation mapping are the visual
bands (2, 3, 4) and the near infrared band (8). These bands are
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also the only ones available at 10 m, as others are acquired in
20 and 60 m and were re-sampled to 10 m resolution. With all
the raw bands at the same resolution we reduce the complex-
ity of further processing steps. We divided the area of Slovenia
into squares of 1000 x 1000 pixels (i.e. 10 x 10 km), so it can
also be processed by PC or laptop for simple analysis. In total
approximately 300 patches were generated. Patches are visual-
ised in Figure 2, yellow patches are used in training, the data
colored in green was used for testing. The remaining patches
were discarded as they had little to no crops. We separated the
data spatially to ensure that the results were spatially general-
ised.

Figure 2. Data separation.

Data was downloaded from Sentinel HUb using the sentinelhub-
py (Sinergise EO Research team et al., 2017) Python library
and the study period was limited to the months from January
to September of 2017, as this are the months when the changes
in agricultural land are most visible. In subsequent months, in
some areas winter crops for the next year are already being pre-
pared.

All data was pre-processed using the eo-learn (Sinergise EO
Research team et al., 2018) Python library to remove cloudy
observations and construct indices which have been used also
to classify crops also in related work (Pelletier et al., 2019). All
values are normalised using min-max normalisation as sugges-
ted in (Pelletier et al., 2019). This normalisation subtracts the
minimum value from each band and then divides it by its max-
imum. As this normalisation is highly sensitive to extreme val-
ues they further propose to use 2% and 98% percentile rather
than the minimum and maximum value. This retain the tem-
poral profile of the observed classes, as shown in Figure 3, and
it retains all values within [-1,1]. After removing the clouds
we are left with missing values in the time series. Which are
most frequently weeks but can in some cases extend to a few
months. Using linear interpolation we fill the gaps and provide
a common time interval of the satellite data. This interpola-
tion is very fast in comparison to alternatives, it is not computa-
tionally expensive and still retains enough information (Valero
et al., 2016). But in case of larger gaps caused by clouds we
now only have an average value between the measurements.
This posses an issue when analysing seasonal trends of crops
in cloudier regions. Which could be avoided by smoothing, but
it comes with other challenges.

The entire processing pipeline consists of four steps. First we
erode the polygons, to remove the effect of the edge values.
We used a buffer of size 7 m, with this we excluded pixels that

Figure 3. Normalisation taken from (Pelletier et al., 2019).

could potentially include other bordering classes or neighbour-
ing fields. Then we transform the polygons into a matrix which
corresponds to the size of the observed area. Lastly we ran-
domly sample the pixels of each patch. Alternatively, weighted
sampling could be used to attain equal distribution of all classes.
We choose to better capture the data distribution and tackle the
class imbalance at the training phase. The selected pixels were
then interpolated to the 5 day interval, matching the Sentinel-2
revisit interval. Higher frequency of interpolation could provide
more detailed trend without loosing some information. The
downside of higher frequency would be the increased complex-
ity both for data storage and computational power. With more
time between each observation we are risking of missing sud-
den changes, such as sowing, that would be a indicate ripeness
of crops and their collection.

3. REFERENCE DATA

The reference data was extracted from the database used for
agricultural subsides, collected and managed by the Slovenian
Agency for Agricultural Markets and Rural Development. Ac-
cess to the data was granted within the project Perceptive Sen-
tinel1 funded by the EU.

Provided data consisted of 200 crops, the classification is very
detailed, for most classes, several sub spices of crops are lis-
ted. Separating into such detailed groups is not always pos-
sible based on satellite imagery alone. Most groups are also
were very few in number so joining them provided some larger
classes that are better represented. For the purpose of this study
crops were aggregated to 25 taxonomically similar groups. In
Figure 1, we can see coverage of final crop classes in Slove-
nia. Some classes, such as hop and vineyards, are present only
in certain regions, which effects the both training and results.
When a class is not present in the training the model will pre-
dict that class at random and with low probability. In case of
a class missing in the testing set we have to handle that separ-
ately. Whenever the class would be predicted, but not present,
the prediction would be wrong. This can negatively effect the
performance of the model.

1 European Union’s Horizon 2020 Research and Innovation Programme
under the Grant Agreement 776115
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Figure 4. Crop distribution in Slovenia, the scale is logarithmic.

Figure 4 shows the distribution of crop classes in the data, in-
cluding corresponding colors and names. Some classes were
discarded as they presented less then 0.4% of crops in Slovenia.
The remaining groups were:

• meadows,
• grassland,
• winter rape,
• maize,
• winter cereals,
• leafy legumes and/or grass mixture,
• pumpkins,
• summer cereals,
• vegetables,
• potatoes,
• vineyards,
• soybeans, and
• orchards.

Study area in km2 number of polygons
this work 20,273 803,201
Pelletier et at. 576 1,419
Rußwurm, Körner 4,284 137,000

Table 1. Overview of amount of data in (Pelletier et al., 2019)
and (Rußwurm, Körner, 2018) approaches.

Related studies have been limited to smaller regions and/or poly-
gon count as is presented in Table 1, where we compare area
and number of polygons of each study. Further comparison to
related work was not possible as in both studies RNN (Rußwurm,
Körner, 2018) and TempCNN (Pelletier et al., 2019) reference
data was provided by local agencies, which have made the data
available only for the specific studies and not for sharing. Some
differences are expected as Slovenia has smaller fields and con-
sequently most pixels are on the edge, so we expect the data to
contain more noise.

4. METHODS

In the first step, we used an algorithm similar to a random
forest (Breiman, 2001), Since it has achieved good results in
various classification tasks. The input of the training algorithm

is a vector that includes spectral bands and indices for each ob-
served point. In case of temporal information the vector size
increases to indices ∗ temporalSteps and the temporal struc-
ture of the point is lost. We used a gradient boosting framework,
that uses tree based learning algorithms. It differs from random
forest algorithms in construction of trees. In every iteration we
construct a new tree which minimises the error of the previous
ones. Specifically, we choose LightGBM (Ke et al., 2017). It
is faster, more efficient and simple to use than most similar im-
plementations. The major advantages are in needing less RAM,
can be speed up by using a GPU and offers many parameters
that can be fine tuned to achieve desired performance.

We have compared it with two convolutional neural networks
that are capable of processing temporal data. TempCNN was
recently proposed and tested for classification of crops in South
West France (Pelletier et al., 2019). As it had outperformed ran-
dom forests, we expected it to outperform even gradient boost-
ing methods as they to do not retain the temporal structure. The
TempCNN architecture show in Figure 5 consist of three convo-
lutional layers which are used to join the temporal information.
Which is a fully connected layer that based on the condensed
information provided by the previous layer predicts probability
of the input belonging to the specified classes.

Compared to TCN (Bai et al., 2018), that was proposed as an al-
ternative to RNN when working with temporal. This approach
has not yet been tested on satellite imagery. Main advantage
over the RNN is computational power and memory needed.
States are not depended of the previous ones as is the case
with RNN, which makes backpropagation faster and learning
more memory efficient. The method in some cases outperforms
RNN, especially when longer history is needed. The architec-
ture is entirely made of convolutional layers, which are well
optimised to be run on GPUs. An example of such architecture
is shown in Figure 6 with the blue lines showing the captured
information of each filter and layer. Architecture used in this
task has two more convolution layers, that can be interpret sim-
ilarly. Additional layers are required so the entire input vector
is covered. One of key differences from the previous approach
is the dilatation on each layer. In each layer the filter uses big-
ger dilatation, that grows exponentially with the depth of the
network and effectively expands the receptive field of the net-
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Figure 5. TempCNN architecture according to (Pelletier et al., 2019).

Figure 6. Example of TCN architecture with dilatation
d = 1, 2, 4 and filter size 3 taken from (Bai et al., 2018).

work. In Figure 6 we can also see that by using dilatation we
only overlap on neighbouring values. With this changes net-
works are more efficient and we can have large effective history,
without requiring a lot of memory or computational power dur-
ing training. As the same filters are applied thought the entire
layer and can be run in parallel.

5. EVALUATION

To evaluate performance of each approach we first divide the
data into smaller parts which represent the dataset. In case of
multi-class classification we have to make sure all classes are
present in both training and testing dataset. With this we have
a supervised learning problem, as we have classes correspond-
ing to all input sequences. Throughout the training process the
method adapts the network weights to map the input values to
the desired classes on the output. Many different metrics are
available to asses the performance of methods.

Results can be displayed in a confusion matrix. In case of
binary classification the table has two rows and two columns.
Which can be expanded to include more classes with additional
columns and rows, one for each class. In all cases columns con-
tain classes predicted by the models and rows present the ref-
erence class which each example belongs to. Most commonly
accuracy is used which represents the percentage of correctly
classified samples (True Positive) against all samples. Recall
measures how many samples (TP) of the class were correctly
classified as belonging to the class divided by all samples of
the class in the data (TP+False Negative). Metric that combines
both is F1 which offers a single value to present the two. As we
have multiple classes we measure all the metrics per each class.
Usually during training we monitor overall accuracy. Which
is accuracy weighted by the number of samples. It is most

informative when all classes are equally represented. This is
not always true in real life examples. In our case, the models
quickly learned to classify meadows and achieved over 70% ac-
curacy but performed poorly on other classes. We weighted all
classes equally during the training of the model and monitored
the macro accuracy.

6. RESULTS

The class distribution in Slovenia is shown in Figure 4. The
landscape is dominated by meadows, which account for 60%
of the data. In some regions there are very specific groups of
crops such as hop and vineyards. Based on the class distri-
bution, we could achieve an overall accuracy of 60% with the
prediction of the class meadows for all pixels. So in Table 2,
we focus on per class accuracy. In general, the results are
comparable for most classes. The average F1 score is between
51%-53%. All methods have high success in classifying mead-
ows, maize and winter cereals. Difficulties occur in classifying
grassland, vegetables, summer cereals, potatoes and orchards.
This is probably due to the overlapping of the temporal pat-
tern for the classes. Meadows are similar to grassland and leafy
legumes and/or grass mixture. Vegetables contains a lot of dif-
ferent vegetables types, which seems to results in lower per-
formance. Even with some classes having low F1 score we still
achieve high weighted average of 87% as the data distribution
is in favor of meadows. With the difficulty mainly in classes
with fewer samples the overall performance is promising.

As can be seen in Table 2, Neural networks outperform Light-
GBM, but only by one to two percent in the F1 score. Light-
GBM surpasses both other methods in the classification of sum-
mer cereals. The two neural networks achieve similar results,
differences are visible in hops classification, while TempCNN
achieves a lower accuracy but higher recall, which is more im-
portant because we want our predictions to be correct more of-
ten. The reason for the lower F1 result could be that the TCN
has four times fewer parameters.

Weighted average at the bottom of the Table 2 represents the
accuracy for all crops based on the number of samples. Both
neural networks correctly classify 87% of all pixels. Since the
test and training data were spatially separated, we assume that
the score represents the model’s ability to generalise. The mod-
els could be fine-tuned with appropriate data for each region or
year. We expect that the model could achieve similar scores in
countries with similar geography and for the same crop types.
With high quality reference data, networks can achieve good
performance on well represented crops. Problems occur when
we have similar classes or mixture reference is provided as was
the case in vegetables.
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LightGBM TempCNN TCN
Accuracy Recall F1 Accuracy Recall F1 Accuracy Recall F1

Meadows 95 71 81 98 87 93 97 89 93
Hop 30 87 44 82 92 87 87 58 70

Grassland 5 28 8 2 54 5 0 0 0
Winter rape 82 87 84 75 98 85 84 93 88

Maize 95 87 91 95 90 92 93 90 92
Winter cereals 92 85 89 93 91 92 93 88 90

Leafy legumes and/or
grass mixture 23 41 30 27 63 38 22 57 32

Pumpkins 64 73 68 54 89 68 73 65 69
Summer cereals 18 54 27 15 52 23 7 56 12

Vegetables 3 54 27 5 7 6 8 6 7
Potatoes 8 55 14 39 40 39 37 17 24

Vineyards 47 67 55 21 94 34 51 70 59
Soybeans 86 81 83 55 98 70 68 97 80
Orchards 5 47 9 7 34 12 9 24 13

Average 46 66 51 48 71 53 52 57 52
Weighted average 72 87 87

Table 2. Classification score per crop type.

Figure 7. Reference on the left and result of TempCNN on the
right.

In Figure 7 a visualisation of a reference area and the corres-
ponding prediction of TempCNN is shown. TempCNN achieves
higher recall which means it is more frequently correct. The
method correctly predicts the majority of the classes. Issues are
most common on the edges of the fields, but not exclusively.
Meadows are in some cases predicted as pumpkins or orchards.
This could be a problem from the definition of the class as orch-
ards commonly have some space in between filled by meadows.
Pumpkins grow more in width and can be overshadowed by
tall grass which in turn causes confusion between the classes.
As we know where the polygons are, we could achieve better
classification visualisation by taking the most frequently pre-
dicted class. More intriguing would be to expand the method
to include additional spatial information which is available in
satellite imagery. It would most certainly remove the confusion
within the fields, as it is uncommon for a single observation to
belong to a different class then its neighbours. Which is often
the case in the observed area.

7. CONCLUSIONS

Machine learning and remote sensing data are becoming more
and more widely accessible and are thus gaining importance in
many applications. Several machine learning algorithms have
been used in the remote sensing community since decades, but
only recently the availability of dense high resolution satellite
image time series enabled the application of more advanced
methods. In this paper we used Sentinel-2 data for classifica-
tion of crops in Slovenia for the growth year 2017. We have
compared three approaches, the baseline LightGBM and two
deep learning approaches to handling temporal data.

Both TempCNN and TCN achieved comparable results for clas-
sification. TempCNN has been proven to work well by us and (Pel-
letier et al., 2019), while the evaluated TCN architecture offers
an alternative when we have less data, computing power or time
available. Both methods achieve 52%-53% F1 score for selec-
ted crop types and would perform equally good when presented
with well annotated data.

For future work both methods could be extended to the use of
spatial information (context). These models would potentially
be more robust and would remove noise in individual polygons,
i.e fields. As both models achieve similar performance, TCN
would be more suited due to its lower computational speed. It
has fever parameters which increase drastically with inclusion
of another dimension to the data. Clouds still pose a major chal-
lenge in classification of land use and land cover, and radar im-
ages could provide additional information for periods and areas
with high cloud cover. Deep learning offers various ways for
multi-sensor merging, each having their advantages and draw-
backs.
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