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ABSTRACT: 

 

As there usually exist widespread crack, decay, deformation and other damages in the wooden architectural heritage (WAH). It is of 

great significance to detect the damages automatically and rapidly in order to grasp the status for daily repairs. Traditional methods 

use artificial feature-driven point clouds and image processing technology for object detection. With the development of big data and 

GPU computing performance, data-driven deep learning technology has been widely used for monitoring WAH. Deep learning 

technology is more accurate, faster, and more robust than traditional methods.In this paper, we conducted a case study to detect 

timber-crack damages in WAH, and selected the YOLOv3 algorithm with DarkNet-53 as the backbone network in the deep learning 

technology according to the characteristics of the crack. A large timber-crack dataset was first constructed, based on which the 

timber-crack detection model was trained and tested. The results were analyzed both qualitatively and quantitatively, showing that 

our proposed method was able to reach an accuracy of more than 90% through processing each image for less than 0.1s. The 

promising results illustrate the validity of our self-constructed dataset as well as the reliability of YOLOv3 algorithm for the crack 

detection of wooden heritage.   
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1. INTRODUCTION 

Due to the unique natural and human factors, many wooden 

architectural heritages (WAH) were formed in the East 

(especially in East Asia). For instance, more than 70% of the 

frames of the ancient buildings in China are made of wood (Dai, 

Chang, Qian, Li, 2016), and more than 90% of the ancient 

buildings in Japan own wooden structure (Yang, 2016). WAH 

have extremely high historical, cultural and artistic value. Wood 

as a building material has many advantages, such as easy 

processing, but its usage is limited due to its own biological 

material characteristics. As time flies and environment changes, 

there appear many types of damage such as crack, decay, voids, 

and etc. Timber-cracks are the most typical damage type in 

WAH. Irreversible timber-cracks not only affect the appearance, 

but also reduce the load capacity of the components, reducing 

the overall safety performance of the building (Fu, 2016). Under 

the circumstances of widespread and large number of timber-

cracks in WAH, how to accurately and quickly detect timber-

cracks is regarded as the basis for the current status assessment 

and the important prerequisite of future repair plans.  

In the field of geomatics, according to different data sources, 

crack detection methods can be mainly divided into two 

categories: 3D point clouds-based method and 2D images-based 

mehod (Wen, 2019).  

(1) 3D point clouds-based method 

Point clouds data records the high-precision 3D information of 

the target surface. The crack detection usually relies on the 

features of manual selection and organization, such as the 

normal vector. The crack recognition is then realized based on 

the edge extraction algorithm and the point clouds segmentation 

algorithm. However, it cost a lot to purchase the standing or 

hand-held laser scanners to collect point clouds data. Due to the 

occlusion caused by the high internal height and the interspersed 

and stacked components inside the WAH, it is difficult to collect 

complete information about the target. In addition, scattered 

point clouds data lacking features such as texture brightness, 

make it more difficult to accurately detect small timber-cracks. 

(2) 2D images-based method 

Image data contains the features of the target surface texture and 

color and so on. The acquisition equipment is relatively cheap, 

and the use of digital cameras or mobile phones can meet the 

requirements. Crack detection methods based on image data can 

be divided into image processing technology and deep learning 

technology.  

Image processing technology 

It consists of two steps including target feature extraction and 

classification. Feature extraction uses feature-driven methods to 

segment or enhance target through artificially selecting intuitive 

features. Target classification needs classifiers, such as SVM 

classifier. Since the view of a single image is narrow and the 

background is relatively single, the accuracy of the result highly 

depends on the image quality. Due to the poor lighting 
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conditions inside WAH, the contrast of the images obtained in 

some locations is slightly lower, making it difficult to accurately 

detect all timber-cracks. 

    Deep learning technology 

It integrates feature learning with classification in one model 

(Luo, 2019). Through iteratively training the weights and biases 

of the neural network based on the training samples labelled 

with positions and classes, it can learn multi-level features 

autonomously. Then the testing samples are imported into the 

trained network to obtain the pictures that are marked with the 

location and the class of timber-cracks. The relevant indicators 

are finally selected to calculate the reliability of the model. Deep 

learning technology is driven by big data, and has higher 

requirements on computer hardware, especially GPU. It is a hot 

topic in the field of computer vision.  

Comparing with the image processing technology, deep learning 

technology has higher-volume calculation and a heavier model, 

but it does not need feature organization and extraction. It can 

effectively overcome the inferior situation such as image weak 

light, which is more robust (Wen, 2019). The current deep 

learning-based crack detection method is mainly applied to 

detect concrete cracks in roads and bridges, having certain 

achievements, but it is rarely used in the architectural heritage, 

especially rarer used in the study of WAH. The accuracy of the 

detection results based on deep learning technology largely 

depends on the quality of the dataset (Ji, Shi, Meng, 2018). 

Currently open crack datasets are mainly concrete cracks, such 

as CFD dataset, but all countries have no open dataset of 

timber-cracks due to the special cultural status of WAH.   

Taking the fact that large numbers of cracks in WAH need to be 

automatically detected into account, we completed two tasks in 

this work. (1) In cooperation with related cultural protection 

units, we collected internal images of WAH and constructed a 

large and accurate dataset of timber-crack through image 

annotation and data augmentation. (2) A timber-crack detection 

model is proposed based on YOLOv3 algorithm, where the 

structural parameters of the DarkNet-53 network were modified 

to make it suitable for timber-crack detection. 

As the overall framework of this paper shown in Figure 1, the 

rest of the article is arranged as follows. Section 2 introduces the 

selected methods in detail, including YOLOv3 algorithm and 

DarkNet-53 network. Section 3 elaborates the process of 

constructing the timber-crack dataset and training the models. 

Section 4 tests the model, analyzes the results from both 

qualitative and quantitative perspectives. Section 5 summarizes 

the whole paper and draws conclusions.  

 

 
Figure 1 Main research content 

 

2. METHODOLOGY  

The deep learning technology-based target detection algorithms 

are divided into two-stage method and one-stage method. The 

two-stage method such as the RCNN algorithm, Fast RCNN 

algorithm, Faster RCNN algorithm, and etc., first uses the 

Region Proposal Network (RPN) to obtain the target candidate 

box for the image, which is automatically extracted and 

classified in the convolutional neural network. Then the 

candidate boxes containing the same target are merged to output 

the final detection result. This type of algorithm is highly 

accurate, but it is slow because of excessive computational cost. 

One-stage method such as YOLO algorithm, SSD algorithm, 

RetinaNet algorithm, and etc., does not use RPN to generate 

target candidate boxes. Instead, it directly returns the spatial 

position and class of the target in the final output layer. Thus, 

this kind of algorithm is faster, and it can also reach a higher 

level of accuracy through adopting deep convolutional neural 

network. 

YOLO algorithm is one of the most widely used one-step 

detectors, proposed by Redmon et al. (2016). It has outstanding 

advantages such as fast speed and high precision. The improved 

version of YOLOv3 algorithm in 2018 better considers large and 

small targets (Ju, Luo, Wang, He, Chang, Hui, 2019). Its 

characteristics meet the needs of cultural relic protection for the 

rapid and accurate grasp of damages and it can well respond to 

damage detection of different sizes in WAH as well. The 

YOLOv3 algorithm has been widely used in the industrial field, 

but there is no application in the field of heritage protection. 

Therefore, this study uses the YOLOv3 algorithm for timber-

crack detection. 

 

2.1 Brief Introduction to YOLOv3 

The idea of the YOLO algorithm is to split the original picture 

into small cells that do not coincide with each other, after which 

a feature map of this size is generated through a convolutional 

neural network, where each cell is used to predict the center 

point falling within the cell. The YOLO has undergone three 

versions. YOLOv1 changes the traditional sliding window 

operation to split the picture with a grid, separating detection 

target for each cell after segmentation. It uses LeakyRelu and 

GoogleNet as activation function and backbone network, 

respectively. Since it contains a full connection layer, that the 

input picture size needs to be fixed, resulting v1 pair of small 

target detection effect is poor (Redmon et al, 2016). YOLOv2 

draws on the anchorbox mechanism in FasterRcnn and uses the 

K-means algorithm to cluster the dimension of the anchorbox. It 

uses BatchNormalization after each convolution layer and 

applies DarkNet-19 as backbone network. V2 removes the full 

connection layer, but the pooling layer still loses some features 

(Redmon, Farhadi, 2017). YOLOv3 draws on the ResNet 

residual structure to form a deeper network, borrows feature 

pyramid networks (FPN) upsampling and fusion methods to 

generate multi-scale feature maps for detecting targets at 

multiple scales, and uses backbone network for the full 

convolution of DarkNet-53(Redmon, Farhadi , 2018).  

YOLOv3 algorithm mainly consists of three parts: pre-

processing, convolutional operation, and logistic regression (see 

Figure 2). 

 

 Method introduction

YOLOv3 algorithm

DarkNet-53 structure

 Experimental details

Dataset construction

Model training process

 Test result analysis

Qualitative results

Quantitative results

Conclusion
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Figure 2. YOLOv3 algorithm flowchart 

 

(A) Pre-processing：In order to accelerate network training and 

adapt computer hardware environment, the pictures need to be 

scaled. In addition, for many ground truths in the dataset, K-

means clustering is used to obtain anchors of nine different 

scales, which are subsequently evenly distributed to feature 

maps of different sizes. 

(B) Convolutional operation ：Through using convolutional 

neural network based on the dataset to learning target features, 

the shallow network records the target fine-grained features well, 

while the deep network mainly learns the target semantic 

information. YOLOv3 algorithm makes two upsampling results 

of the last three subsamplings of the network. The same size 

feature map is stitched, which realizes the expansion of the 

tensor dimension. The network achieves the ability to learn the 

deep and shallow features of the target, finally producing three 

scale feature maps. As a result, the nine types of anchors 

generated in the previous step are evenly distributed. Among 

them, the feature map of the bigger receptive fields is allocated 

with a large ratio of anchors, while the feature map of the 

smaller receptive fields is allocated with a small ratio of anchors. 

The use of multi-scale feature map is conducive for detecting 

different size targets. 

(C) Logistic regression: The YOLOv3 directly returns the spatial 

position and class probability of the target. 

Location prediction refer to predicting the boundingbox on each 

cell of the generated S*S size feature map. Each cell is assigned 

to three anchors, with the largest IOU to the ground truth 

responsible for predicting the target, gradually approaching 

ground truth by fine-tuning this anchor (panning, scale zooming, 

etc). As shown in Figure 2(C), the regression position is to 

predict the (bx, by) and bw, bh. Directly output the offsets tx ty 

tw ty, and convert them by equation (1):  

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥  

(1) 
𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 

𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤 

𝑏ℎ = 𝑝ℎ𝑒
𝑡ℎ 

 

 

 

where  Cx ,Cy are coordinates of the grid cell 

       tx , ty are offset values of the target center point from 

the upper left corner of the grid cell 

       σ refers to sigmoid function used to compress tx, ty to 

[0,1] 

       Pw, Ph refere to width and height of the anchor 

mapped to the feature map 

       bx, by are center point coordinates of object 

   bw, bh represents width and height of the boundingbox 

 

Class prediction means using the softmax logic regression 

function to predict the probability of the classes to which the 

target belongs. It is an array of probabilities, the length of which 

is the total number of classes detected by the model. The 

function is: 

 

Pr(𝐶𝑙𝑎𝑠𝑠𝑖|Object) （2） 

 

where  𝐶𝑙𝑎𝑠𝑠𝑖 refers the probability of each class to which the 

target belongs 

     Object refers the whether there is a target in 

boundingbox 

 

Confidence prediction indicates the the confidence of the 

predicted boundingbox and groundtruth, where the 

mathematical representation of confidence is:   

 

 

C=Pr(Object)*        𝑡
  （3） 

 

where IOU represents the ratio of the intersection of 

boundingbox and groundtruth 

b is the area of overlap, and object is the area of union 

 

YOLOv3's loss function is also composed of the above three 

parts (i.e., localization, class, confidence), as shown in equation 

(4). Localization error refers to the error of the center 

coordinates and width and height of the boundingbox, 

represented by the mean squared loss function. Class error 

calculation uses binary cross entropy. Confidence error refers to 

the error rate between the presence and absence of targets in the 

boundingbox, which is calculated by binary cross entropy. The 

YOLOv3 target detection process is done in a neural network. 

The reverse propagation of the loss function can be carried 

throughout the network, optimizing the target detection 

performance by end to end. 

 

 =           𝑖  𝑡𝑖  +           +                 (4) 

 

where   L represents YOLOv3's loss function 

          𝑖  𝑡𝑖    represents localization error 

            represents class error 

𝑎                   represents confidence error 

 image scaling : X → x

 K-means predict anchorboxs

feature pyramid
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+
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=
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(b) convolutional  operation
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2.2 Backbone network structure  

In the process (B) of YOLOv3 algorithm, the backbone network 

DarkNet-53 can maintain a balance between accuracy and speed. 

As shown in Figure 3, the basic unit of DarkNet-53 network 

structure is a convolution layer and residual block ， 

performing residual between different layers of output. The 

corresponding location of the network is designed with five 

residual blocks. The residual block structure is shown in Figure 4, 

showing 1 × 1 and 3 × 3 convolutions are used alternately. 

When the YOLOv3 algorithm runs the DarkNet-53 network, it 

stops at the last residual block and discards the rest. The 

DarkNet-53 network has a total of 53 convolutional layers. Due 

to the removal of the pooling layer, the size conversion of the 

tensor is downsampling achieved by changing the convolution 

kernel strides five times. 

 

 
Figure 3. DarkNet-53 Structure 

 

 
Figure 4. Residual block structure 

 

3. EXPERIMENTS  

In this section, the timber-crack dataset construction process is 

first introduced, including data acquisition, data annotation, and 

data augmentation; and then the implementation details of 

timber-crack model training based on the methodology 

described in Section 2. 

 

3.1 Timber-crack dataset  

Due to the special status of architectural heritage, no country has 

a publicly dataset suitable for timber-crack detection. To 

overcome this limitation, we have created a real timber-crack 

dataset. 

In terms of data acquisition, an ancient wooden tower in China 

was selected, which has a history of nearly a thousand years. 

During the collection process, digital cameras and mobile 

phones with shooting range of 0.5m-3m were used to obtain a 

large number of images distributing in two seasons (i.e., summer 

and winter) with different light intensity. As the cracking forms 

of many components are also different, the proportion of 

various timber-cracks in the dataset needs to be balanced (see 

Figure 5). According to the above principles, more than 1500 

original images were finally collected. The diversity of sample 

data lays the foundation for the robustness of the model.  

 

   
a) cracking of 

beam 

b) fiber tearing at the end of  dougong 

   
c)compression 

splitting of 

column cap 

d) through crack 

along the column 

body 

e) column foot 

splitting 

Figure 5.Cracking forms of diffrent components 

 

In terms of data annotation, due to limited GPU memory, high-

resolution images need to be first cropped. This experiment was 

cropped to a size of 800 × 800. The cropped images did not 

overlap and were numbered in order to facilitate subsequent 

tasks. The labelImg software was then used to annotate the 

location and class of the timber-cracks (see Figure 6).  

 

 
Figure 6. Data annotation 

 

The annotated image sample data reached 7020, and the data 

was augmented to 14,040 using mirrored flip method, of which 

10960 were set as training set for training models, calculating 

model gradients and updating weights, 2740 were used as 

validation set to avoid overfitting and adjust model 

hyperparameters, 340 were set as test set for reporting the 

accuracy of the model (Zhang et al, 2019), with a distribution 

displayed in Figure 7. It shows a balanced distribution of the 

number of timber-cracks of various types.  

 

 
Figure 7. Dataset usage distribution 
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3.2 Deep learning model learned by YOLOv3 

Deep learning technology requires a lot of calculations and 

requires high computer hardware. This experiment was operated 

with a configuration of 68G memory and a GPU of 2080TI. The 

network training and testing work was implemented with Keras 

2.1.5 deep learning framework and Python 3.6 language under 

the Ubuntu 16.04 LTS system. The results were visualized using 

OpenCV. 

The sample size of dataset was 800 × 800, and the data was first 

scaled to 640 × 640. In order to facilitate model optimization, 

training was divided into two stages: pre-training and full-

network training. Pre-training refers to training only the last 

three layers of the network. Full-network training is based on 

pre-training results to train all layers of the network to obtain the 

final model. In order to avoid overfitting, the early stopping 

strategy was adopted to reduce the effective scale of the 

parameter dimension. In other words, when the performance of 

the validation set drops, the training is stopped, indicating the 

preset epoch value is not trained. Table 1 shows the essential 

initial hyperparameter values while training the model. The 

optimizer used Adam, which is an effective gradient-based 

stochastic optimization method, proving to be better than other 

optimization algorithms in practical applications (Kingma, Ba, 

2015).  

 

Training stage Hyperparameters Values 

Pre-Training 

Optimizer Adam 

Epoch 30 

Batch Size 64 

Initial Learning Rate 0.001 

Momentum 0.9 

Full-Network Training 

Optimizer Adam 

Epoch 70 

Batch size 16 

Initial Learning Rate 0.0001 

Momentum 0.9 

Table 1. Initial values of hyperparameters for model training 

 

After the training stage, the model generates three scale feature 

maps. Since the size of the image entering the network training 

was set to be 640 × 640, the three feature map sizes generated by 

the convolution operation were: (8 × 8), (16 × 16), and (32 × 32). 

The small-scale feature map represents a more comprehensive 

for detecting larger timber-cracks and assigns larger anchorboxs, 

while the large-scale feature map represents a more detailed 

image for detecting smaller timber-cracks and assigns smaller 

anchorboxs (see Table 2). In this study, the anchors used the 

original size of the YOLOv3 algorithm, which was based on the 

COCO dataset cluster size. 

 

Category 8×8 16×16 32×32 

Feature 

Maps 

   

Anchors 

Size 

(116,90) 

(156,198) 

(373,326) 

(30,61) 

(62,45) 

(59,119) 

(10,13) 

(16,30) 

(33,23) 

Table 2. Multi-scale feature maps generated by the model 

 

4.  RESULTS ANALYSIS 

The network parameters of the training set are used in the test 

set, and the qualitative detection results of the test set are shown 

in Figure 8. It can be seen that the YOLOv3 algorithm can 

accurately detect timber-cracks of different sizes, and can 

effectively resist inferior conditions such as different lighting 

backgrounds in the image. It has good adaptability in the timber-

crack detection task. 

 

   
Small Medium Large 

a)Timber-crack s of different sizes 

  
Dark Blurry 

b) Inferior situation 

Figure 8. Qualitative results of model testing 

 

In order to quantitatively evaluate the results, the commonly 

used evaluation indicators were used to report the performance 

of the model to detect timber-cracks, including speed (S), 

average precision (AP), precision (P), recall (R), and F1-measure 

(see Table 3). S refers to the time it takes the model to process 

each image, AP represents the average precision of the model to 

detect timber-cracks, P and R represent the precision and recall 

of the timber-crack detection results, and F1-measure is the 

result of comprehensively weighing P and R. 

 

Indicators Value 

S(sec/img) 0.059272 

AP 0.85317 

P 0.932 

R 0.8784 

F1-measure 0.9044 

Table 3. Quantitative results of model testing 

 

In addition, the P-R curve was used to indicate the correlation 

between precision and recall (see Figure 9). 

 

 
Figure 9. P-R curve 
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Figure 9 shows the precision of the model trained by the timber-

crack dataset and the YOLOv3 algorithm can reach an accuracy 

of more than 90% with a quick processing speed of less than 

0.1s for each image. This promising result assists in fulfilling the 

tasks of rapidly and accurately detecting the cracks in actual 

ancient wooden buildings.  

 

5. CONCLUSIONS 

This article is aimed at detecting the large number of cracks in 

wooden architectural heritage in an automatic way. Based on the 

deep learning technology, two main tasks have been completed. 

firstly，we collecting crack images in wooden architectural 

heritage on site, manually labelling them, and constructing a real 

large-scale timber-crack dataset using data augmentation. 

Secondly，we training and testing the timber-crack detection 

model using the YOLOv3 algorithm.  

The experimental results show that the timber-crack detection 

model based on YOLOv3 algorithm has high precision and fast 

speed, which can be well adapted to the crack detection of 

wooden architectural heritages. This research illustrates the great 

potential of applying deep learning technology in the field of 

heritage protection, providing a new reference scheme for the 

crack detection of ancient wooden buildings. 
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