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ABSTRACT:

Transfer learning methods reuse a deep learning model developed for a task on another task. Such methods have been remarkably
successful in a wide range of image processing applications. Following the trend, few transfer learning based methods have been
proposed for unsupervised multi-temporal image analysis and change detection (CD). Inspite of their success, the transfer learning
based CD methods suffer from limited explainability. In this paper, we propose an explainable convolutional autoencoder model for
CD. The model is trained in: 1) an unsupervised way using, as the bi-temporal images, patches extracted from the same geographic
location; 2) a greedy fashion, one encoder and decoder layer pair at a time. A number of features relevant for CD is chosen from
the encoder layer. To build an explainable model, only selected features from the encoder layer is retained and the rest is discarded.
Following this, another encoder and decoder layer pair is added to the model in similar fashion until convergence. We further
visualize the features to better interpret the learned features. We validated the proposed method on a Landsat-8 dataset obtained in
Spain. Using a set of experiments, we demonstrate the explainability and effectiveness of the proposed model.

1. INTRODUCTION

Multi-temporal image analysis is one of the most popular re-
search topics in remote sensing. It is important for monitoring
phenomena like natural disasters (Adams, 2004) and urbaniz-
ation (Del Frate et al., 2008). In the last 15 years, many new
satellite based sensors have been launched by space agencies,
thus increasing the number of available sensors periodically or-
biting the Earth. This has improved the availability of multi-
temporal data with higher revisit period. Currently, images are
available from different imaging modalities (passive/active) and
different spectral, spatial, and temporal resolutions (Bovolo,
Bruzzone, 2015). This has resulted in strong increase in de-
velopment of novel multi-temporal image analysis methods, es-
pecially aiming towards unsupervised Change Detection (CD)
(Celik, 2009) (Bovolo, Bruzzone, 2015). However, the unsu-
pervised CD methods in the literature often need to be largely
modified to account for differences in acquisition sensor and
resolution (Bovolo, Bruzzone, 2015).

A possible solution to design CD frameworks that would not
need large modification for different sensors/resolutions, comes
in the form of deep learning. Deep learning, a highly data-
driven paradigm, has obtained state-of-the-art performance in
almost all computer vision tasks (LeCun et al., 2015). Being
data-driven, often deep learning based frameworks can be suit-
ably used in new tasks by merely changing the training data.
Its superior performance can be attributed to its excellent cap-
ability to extract semantically rich visual features (Zhou et al.,
2014) and robust feature representation. Owing to its success,
they have been rapidly adopted by the remote sensing com-
munity too (Zhang et al., 2016) (Ball et al., 2017). Deep learn-
ing based methods have been proposed for many remote sensing
tasks, including semantic segmentation of aerial images (Mag-
giori et al., 2016) (Volpi, Tuia, 2017) and hyperspectral image
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analysis (Ma et al., 2015).

While data driven and supervised, deep learning based methods
have been adopted for unsupervised applications via transfer
learning (Ozbulak et al., 2016)(Penatti et al., 2015)(Huang et
al., 2017). Exploiting transfer learning, Saha et. al. (Saha et
al., 2019a) proposed Deep Change Vector Analysis (DCVA) for
change detection in Very High spatial Resolution (VHR) optical
images. DCVA uses a pre-trained network as bi-temporal deep
feature extractor. DCVA has been extended for other imaging
modalities with few modifications, e.g., High spatial Resolution
(HR) images (Saha et al., 2019c), multi-sensor images (Saha et
al., 2019b). Despite success of transfer learning based DCVA
framework in unsupervised CD, it suffers from two limitations:

1. The pre-trained model needs to be trained for a super-
vised classification, i.e., training of the pre-trained model
requires labeled single-time patches.

2. The pre-trained model needs to be trained on images col-
lected from a geographical location similar in behaviour to
the bi-temporal images for change detection.

3. How deep features trained for a classification task behave
in the context of CD on bi-temporal images, is not com-
pletely interpretable/explainable.

To alleviate the first and second limitations, Bergamasco et. al.
(Bergamasco et al., 2019) proposed a variant of DCVA in which
a deep convolutional autoencoder (CAE) (Guo et al., 2017) is
trained in unsupervised way on the unlabeled patches extracted
from the same geographic location as the bi-temporal changes.
It is noteworthy that unlabeled data are available in abundance
for all geographical location for the sensors like Landsat-8 and
Sentinel-2, that come with free data access policy. Subsequently,
the CAE model is used as a bi-temporal deep feature extractor
in a DCVA framework (Saha et al., 2019a). However, this
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model still suffers from the aforementioned third limitation of
a typical DCVA model. Though the CAE model is trained on
same geographic location as bi-temporal images, its transferab-
ility from an image reconstruction task to CD is not completely
interpretable/explainable. CAE is trained for reconstructing the
training patches, thus not for CD. It is important to understand
the relationship between the features learned by the CAE and
their role in CD.

In last couple of years, we have seen efforts in the deep learning
community to better explain/interpret the deep learning mod-
els, that were considered black-box algorithms few years back.
Some of the works towards investigating the explainability of
deep learning models is found in (Xue, Chuah, 2019)(Roscher
et al., 2019)(Angelov, Soares, 2019). Motivated by this, in this
paper we aim to design an explainable CAE model that better
explains its usefulness for CD. To make an explainable model,
we take inspiration from the greedy layerwise training proposed
in the seminal work of Bengio et. al. (Bengio et al., 2007).
We train a pair of encoder-decoder layers for image reconstruc-
tion. We evaluate the fitness of learned features for CD by rank-
ing them according to their variance on the bi-temporal scene
(Saha et al., 2019a). We retain only those features that are use-
ful for CD. We add more layers in iterative fashion and after
adding each layer, the fitness of the features for CD is evalu-
ated. Thus features retained in each layer of the CAE are only
those that explains their usefulness for the CD task. This sets it
apart from the paradigm of DCVA where features are learned
on a completely different task and reused in CD. While the
proposed model benefits from transfer learning by learning a
model for scene reconstruction, the features learned simultan-
eously accounts for their use in CD. We validated our method
on a Landsat-8 dataset that shows a burned area in Spain. The
model can be adapted for other imaging modalities/resolutions
by changing training dataset for CAE.

This paper is organized into following sections. The proposed
CAE based CD framework is presented in section 2. Experi-
mental results are presented in section 3. We conclude the paper
and discuss possible future works in section 4.

2. PROPOSED METHOD

Let X1, X2 be two images taken over the same region at time
t1, t2, respectively. Let the set of all pixels in the bi-temporal
scene be represented by the set of classes Ω = {Ωc, ωnc}.
The proposed explainable CAE method aims to distinguish the
changed pixels Ωc from the unchanged ones ωnc. Let us assume
that a dataset of unlabeled patches X = {xi, ∀i = 1, ..., I} is
also available from the same geographical region asX1 andX2.
This dataset is used to train a CAE architecture with 2L layers,
consisting ofL encoder layers and same number of decoder lay-
ers. The training process is achieved one encoder-decoder layer
pair at a time. After training each pair, features explainable
for CD are selected by extracting the features from the encoder
layer of the model representing the bi-temporal scene. Only
these features are retained and the training process is continued
by adding one encoder-decoder layer pair at a time in a greedy
manner (Bengio et al., 2007) until 2L layers are trained. After
training, X1 and X2 are compared in a DCVA fashion to distin-
guish Ωc from ωnc. The proposed CD framework is shown in
Figure 1.

In section 2.1, we briefly review basic CAE model. We detail
the training of a CAE in section 2.2. In section 2.3, we describe

X1 X2

CAE

DCVA

ωnc,Ωc

X,X1,X2
CAE

Training

Figure 1. Proposed CD framework

the process of using the trained CAE for CD on the bi-temporal
scene.

2.1 Basic Convolutional-Autoencoder model

Autoencoders learn useful features from data in unsupervised
way by learning to encode the data and further decode them
back to the original input. However, autoencoder cannot cap-
ture the spatial context that is essential for the image analysis.
On the contrary, standard deep architectures exploiting convo-
lutional layers, such as Convolutional Neural Networks (CNNs),
are capable of capturing the spatial context. However, CNNs
cannot be trained in unsupervised manner. Convolutional Au-
toencoders (CAEs) (Guo et al., 2017) merge the capability of
autoencoders to automatically learn features by input data, with
the capability of convolutional layers to study the context of
images and extract spatial context features from input images.

The CAE encoder down-samples the spatial resolution of input
images and increases the number of features extracted by each
layer. On the contrary, the CAE decoder up-samples the spatial
resolution and reduces the number of features. The decoder
block is usually composed of deconvolutional layers, which up-
sample the spatial resolution by convolving the data with their
kernels. The output of both encoder and decoder layers l ∈ 2L
of an input sample xi ∈ X is given by hi,l = σ(Wlhi,l−1+bl),
where Wl and bl are the weights and the biases of layer l, and
σ represents the ReLU activation function. The input to the first
layer is defined by hi,0 = xi.

2.2 Training CAE

The CAE model is initiated with 2 layers (1 encoder and 1
decoder). The training is performed in two steps: 1) training
of single encoder-decoder layer pair (section 2.2.1) ; 2) select-
ing explainable features from the trained encoder layer (section
2.2.2). After initialization of the first encoder-decoder pair, new
encoder-decoder layer pairs are added as described in section
2.2.3 until the number of layers reaches 2L. Finally, the trained
model is fine-tuned as described in section 2.2.4. The CAE
training process is shown in Figure 2.

2.2.1 Training single layer A single encoder-decoder layer
pair of CAE essentially consists of a convolutional layer and
a deconvolutional layer. The CAE is trained for image recon-
struction on the dataset X. For patches xi ∈ X, the CAE re-
constructs x′i ∈ X′. They are compared using a sum squared
error (SSE).

SSE =

I∑
i=1

(x′i − xi)
2 (1)
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Figure 2. Explainable training of the CAE - training of 1st
encoder and decoder layers involves only X and bi-temporal

images X1,X2. Training of subsequent layers also involves the
already trained network. A 2l layer CAE consists of l encoder

layers and l decoder layers

Figure 3. The dynamic Greedy layer-wise training process.
Training of single encoder-decoder layer pair, feature selection

and augmenting new encoder-decoder layer pair.

The CAE is trained for E epochs and the training process is
performed by the back-propagation process.

2.2.2 Choosing explainable features Once an encoder, de-
coder layer pair of the CAE is trained for patch reconstruction
on X, the trained CAE is applied on the bi-temporal images X1

and X2 and feature-wise differences are taken. This feature-
wise differences are computed by retrieving the featuresH1 and
H2 from the first hidden layer of the CAE. H1 and H2 can be
defined as

Hi = σ(W 1 ∗Xi + b1) (2)

where i = 1, 2, W 1 and b1 are the weights and the biases of
the first hidden layer of the CAE, respectively, and σ is the
activation function. The bi-temporal features H1 and H2 are
compared by using a squared error D = (H2 − H1)2 to high-
light the difference between the bi-temporal imagesX1 andX2,
coded in the first hidden layer. Inspired by (Saha et al., 2019a),
we assume that features capturing relevant change information
tend to result in a D with higher standard deviation than those
less responsive to change. In a bi-temporal scene, change has a
small probability to occur. Thus, even in the case that a change
occurs, it only partially affects the considered scene. In this
context, and after computingD, features not affected by change
show values that all tend to zero. These features have very low
standard deviation values, and thus they are considered as non
informative. Features affected by change shows both values that
tend to zero for the portion being not affected by the change,
and values far from zero for the portion being affected. Ac-
cordingly, the standard deviation of the features in the latter
case tends to be greater than the one of the former ones, and
therefore we consider them as informative. To optimally detect
the changes in a scene, we have to select only the most inform-
ative features. Thus in a greedy fashion, for an encoder layer
composed of nl features, we select n′l = p · nl features, where
p is the fraction of features to keep, with the highest standard
deviation of D. These n′l features are considered the most in-
formative features of the layer l. Only the informative features
are retained in the CAE and the training process is continued
for successive layers.

The feature selection process is not solely based on image re-
construction task, which is completely different from CD task.
Rather, the proposed method includes the bi-temporal images
in the training of the model. In addition to training for image
reconstruction, features from each layer are selected based on
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how well they describe the difference in bi-temporal imagesX1

and X2. The features chosen in this fashion are explainable for
their application in change detection. This is in stark contrast
to DCVA (Saha et al., 2019a)(Saha et al., 2019c). Even though,
they used a feature selection during the CD process, their model
itself was not trained for CD. Hence the use of those models for
CD is not completely explainable. On the other hand, only those
features are retained in the proposed explainable CAE model
that can be interpreted to be useful for CD.

2.2.3 Augmenting new layers To add new encoder-decoder
layer pair to the CAE, the weights of the already trained layers
are frozen. After adding the new layer pair, the CAE is trained
for image reconstruction on the dataset X, in similar fashion as
described in section 2.2.1. The augmented layers aim to obtain
an output as similar as possible to the input. After training the
CAE for E epochs, a feature selection process is applied again
on this newly added layer, as outlined in section 2.2.2. This
process is iterated until all 2L layers of the stacked CAE model
are trained. The value of L is a trade-off between the size of
the receptive field of the features (LeCun et al., 2015) and the
computation cost. As L is increased, the CAE learns features
that look at larger spatial region. However, computational cost
increases with L as well. The maximum possible value of L
is also restricted by the size of the patches in X. The greedy
layerwise training process is demonstrated in Figure 3.

2.2.4 Fine-tuning CAE After training all 2L layers, The
pre-trained model is fine-tuned for Eft epochs. Unlike the pre-
vious steps, the fine-tuning step is performed on all the layers
simultaneously. This step helps to further train the whole model
and improve its overall performance.

2.3 Using CAE for CD

Once the training process is over, we exploit the features learned
by the CAE as a bi-temporal deep feature extractor in a DCVA
framework (Saha et al., 2019a) for CD on the bi-temporal im-
ages X1 and X2. X1 and X2 are separately processed through
the trained CAE which is used as a deep feature extractor. Deep
features are extracted from a set of layers of the trained CAE
network to form a deep feature hypervector. The set of lay-
ers are chosen from the encoder as decoder mainly learns to
reconstruct the input scene. We obtain layerwise difference of
the deep feature vectors and they are upsampled to the same
spatial size of the input images. Following this, a DCVA ana-
lysis exploting Otsu’s thresholding (Otsu, 1979) is performed
to retrieve change maps for each layer. The multi-resolution
change maps are then processed by the detail-preserving multi-
scale approach proposed by Bovolo (Bovolo, Bruzzone, 2005)
to distinguish Ωc from ωnc.

3. EXPERIMENTAL RESULTS

3.1 Dataset

The test dataset is acquired over an area near Granada, Spain
from the Landsat-8 sensor on June 30th, 2015 (Figure 4(a)) and
July 16th, 2015 (Figure 4(b)). They show an area of pixels 720
× 810 pixels. The area is impacted by fire between the two
acquisitions. Reference CD map is shown in Figure 4(c).

3.2 Results

For training the CAE, we used patches of size 64 × 64 pixels
and six of the eight spectral bands of Landsat-8 images. Based

Method OA FA rate MA rate
CVA 94.01% 4.45% 21.61%
Autoencoder (Xu et al.,
2013)

76.45% 21.61% 42.06%

SCCN (Liu et al., 2016) 88.72% 10.97% 14.28%
Proposed (p = 1.0) no FS 95.16% 2.47% 27.45%
Proposed (p = 0.2) 95.16% 2.76% 24.74%
Proposed (p = 0.25) 95.36% 3.30% 17.45%
Proposed (p = 0.30) 96.64% 1.83% 17.96%

Table 1. The Overall Accuracy (OA), the Missed Alarm (MA)
rate, and the False Alarm (FA) rate of the state-of-the-art

methods and the proposed method.

on some preliminary experiments, we set L = 3. We trained the
model from scratch by using, for the encoder, a starting num-
ber of filters equal to nl = 32, 64, 128. The filters of decoder
mirror the encoder ones. By following the greedy layer-wise
method, we trained each layer l for E = 10 epochs and fine-
tune the model by using Eft = 100. E and Eft were set on
the basis of some preliminary experiments. Figure 4(d) shows
the CD map obtained by the proposed method for p = 0.3,
i.e., when 30% features are retained in each layer. Table 1
shows the performance of the proposed method for different
values of the parameter p. To test the effectiveness of the fea-
ture selection (FS), experiments were conducted by reducing p
from 1.0 to 0.3,0.25,0.2, where the case of p = 1.0 considers
both semantic features related to the changes and non inform-
ative ones. As one can see, considering non informative fea-
tures decreases the probability to detect the changes. In the
case of p = 1.0, the Missed Alarm (MA) rate is higher than in
the cases where p = 0.3, 0.25, 0.2. The MA rate sharply de-
creases when p goes from 1.0 to 0.3. However, the MA rate
slightly decreases when p is decreased to 0.25 from 0.3. MA
rate increases sharply as p is decreased to 0.2 from 0.25. This
proves that we need to do a trade-off during the FS. If p is
too low, some informative features risk to be not considered
leading a decrease of the capability of the model to detect the
changes. False alarm (FA) rate produced by the method is neg-
ligible, as shown in Table 1. We compare our method with the
Symmetric Convolutional Coupling Network (SCCN) (Liu et
al., 2016), the Change Vector Analysis (CVA)(Bruzzone, Pri-
eto, 2000) and the Stacked-Autoencoder (SAE)(Xu et al., 2013)
based method. We provided the quantitative results in Table 1.
Most deep-learning-based CD methods in the literature are su-
pervised. Hence, a comparison of the proposed method with
them is unfair. DCVA (Saha et al., 2019a) is unsupervised,
however, designed for VHR images, and therefore a direct com-
parison with DCVA is not possible. Moreover, DCVA requires
a pre-trained network, and, to the best of our knowledge, there
is no such pre-trained network publicly available for the low-
resolution multi-spectral images. Our method outperforms SCCN,
CVA and SAE based method as shown in Table 1.

3.3 Feature visualization

To further demonstrate the explainability of the proposed method,
we visualize the difference image generated by three features
that are retained by the proposed method in Figure 5 (a)-(c).
It is clear that those features have learned useful semantic fea-
tures related to the changes occurred in the considered scene.
Whereas, the feature shown in Figure 5 (d) did not and is among
the ones discarded by the method. A feature-by-feature analysis
pointed out that the model correctly excludes the features sim-
ilar to the one in Figure5(d) while training the CAE and keeps
the ones that are useful for CD.
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(a) (b)

(c) (d)

Figure 4. Spain Landsat-8 dataset: (a) pre-change image (RGB); (b) post-change image (RGB); (c) reference map; (d) CD map
obtained by the proposed method. Unchanged pixels appear in white, changed pixels in grey. No reference data could be retrieved for

pixels in black.

4. CONCLUSION

In this paper, we proposed an explainable CAE model for un-
supervised change detection. While the proposed method takes
advantage of transfer learning by learning to reconstruct a data-
set of patches, the learned features are further selected based on
a standard-deviation criterion after each layer is trained. Thus,
the features retained in the CAE are explainable in terms of
usefulness in CD. This is further confirmed by the visualiz-
ation of the features. We tested the method on a Landsat-8
burned area dataset that confirms the effectiveness of the pro-
posed method. The method can be extended for other imaging
modalities/resolutions with simple modifications. This work
is a step towards designing a more explainable deep learning
model for CD. In future, we will perform extensive perform-
ance analysis by varying value of L. Additionally, we would
like to extend CAE to distinguish between different kinds of
change and understand how the explanation of different kinds
of change can be incorporated CAE training process.
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