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ABSTRACT:

Process-based models of complex environmental systems incorporate expert knowledge which is often incomplete and uncertain.
With the growing amount of Earth observation data and advances in machine learning, a new paradigm is promising to synergize the
advantages of deep learning in terms of data adaptiveness and performance for poorly understood processes with the advantages of
process-based modeling in terms of interpretability and theoretical foundations: hybrid modeling. Here, we present such an end-to-
end hybrid modeling approach that learns and predicts spatial-temporal variations of observed and unobserved (latent) hydrological
variables globally. The model combines a dynamic neural network and a conceptual water balance model, constrained by the water
cycle observational products of evapotranspiration, runoff, snow-water equivalent, and terrestrial water storage variations. We show
that the model reproduces observed water cycle variations very well and that the emergent relations of runoff-generating processes
are qualitatively consistent with our understanding. The presented model is—to our knowledge—the first of its kind and may
contribute new insights about the dynamics of the global hydrological system.

1. INTRODUCTION

Process-based models of the Earth and its subsystems have been
key to diagnose, predict, and understand environmental pro-
cesses and change for decades. Such models are based on con-
ceptualizations and abstractions of many individual processes
according to expert understanding. They are forced, evaluated,
and occasionally tuned using environmental observations. The
rapidly growing amount of Earth observation data, however,
does not necessarily translate into better process models, as
process representations are predefined rather than learned from
data. Due to advances in machine learning, complex patterns
and relationships in multivariate datasets can now be recognized
with high accuracy and further exploited. These models typi-
cally need large amounts of training data, while they are agnos-
tic to the physical meaning and consistency among variables.
It is, thus, promising to explore a synergistic combination of
machine learning and process-based approaches for modeling
in Earth system sciences (Reichstein et al., 2019). The hybrid
approach is still in its infancy and we are aware of one appli-
cation on Earth observation data only: de Bézenac et al. (2019)
predicted future sea-surface temperature fields by using a con-
volutional encoder-decoder network to learn a motion field that
was fed into a physical model of advection and diffusion.

We present an end-to-end global hybrid hydrological model
that couples long short-term memory (LSTM, Hochreiter and
Schmidhuber, 1997) networks with a traditional conceptual wa-
ter balance model that is trained jointly on a set of water cycle
observations: total water storage (TWS), runoff (Q), evapotran-
spiration (ET), and snow water equivalent (SWE). The model
is forced by the meteorological variables precipitation, air tem-
perature, and net radiation. From a deep learning perspective,
the hybrid approach can be seen as a regularization of the neural
∗ Corresponding author

network, constraining the solution space to physically plausible
results. Furthermore, the hydrological states (pools) and fluxes
(inflows and outflows) of the conceptual water balance model
remain interpretable and are still largely data-driven, as they
are informed by the neural network.

In this study, we provide a proof-of-concept and test the ap-
plicability of hybrid modeling to learn a representation of the
global water cycle from data. We explore the robustness of the
approach based on independent cross-validations which include
the full training set-up.

2. GLOBAL DATASETS

2.1 Total Water Storage Anomalies (TWS)

The Gravity Recovery & Climate Experiment (GRACE) Mas-
con Equivalent Water Height RL06 with Coastal Resolution Im-
provement (CRI) v1 (Watkins et al., 2015; Wiese et al., 2016;
Wiese et al., 2018) represents variations in global water stor-
ages, i.e., groundwater, soil moisture, surface water, snow, and
ice for land pixels. The product has a native spatial resolution of
3◦ but is delivered at 0.5◦. For this study, all time series datasets
were aggregated to 1◦ resolution, but still, the TWS data may
not represent local grid-scale variabilities properly. The TWS
data is available from April 2002 to June 2016 covering irregu-
lar, roughly monthly periods. As we observed some outliers in
the dataset, observations −500 > tws > 500 were removed.

2.2 Evapotranspiration (ET)

Monthly ET data was retrieved from the global FLUXCOM-RS
product (Jung et al., 2019; Tramontana et al., 2016), which is
based on upscaling of FLUXNET (Baldocchi et al., 2001) eddy
covariance data. The upscaling is achieved using an ensemble
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of machine learning models, each learning a mapping from re-
mote sensing (RS) observations to the site-level fluxes, which
can then be upscaled to global scale. The ET was derived from
the latent energy estimates, assuming a constant latent heat of
vaporization of 2.45 MJ mm−1.

2.3 Total Runoff (Q)

GRUN v1 is a global gridded dataset providing estimates
of monthly total runoff with a native spatial resolution of
0.5◦ (Ghiggi et al., 2019). The authors used random forests
to model local discharge observations from small catchments
as a function of climate data and generalized the learned rela-
tionships to retrieve global estimates.

2.4 Snow Water Equivalent (SWE)

Daily SWE was retrieved from GlobSnow v2 (Luojus et al.,
2014; Takala et al., 2011) and aggregated from 0.25◦ to 1◦ spa-
tial resolution. The product only covers the Northern Hemi-
sphere and pixel time-steps with no snow are encoded as miss-
ing values. As the absence snow is important information that
we do not want to discard, the SWE product was enriched using
8 d MODIS snow cover fractions (SCF) disaggregated to daily
using nearest neighbor (Hall and Riggs, 2016). SWE with miss-
ing data were set to 0 if: a) more than 24 consecutive days were
missing for SWE and b) the mean SCF over ±12 days was be-
low 10 %. This gap-filling mainly assigned zero SWE to previ-
ously missing values in the Southern Hemisphere and Northern
Summer. Note that some mountainous regions were masked out
in the GlobSnow product. The SWE signal is known to saturate
at 100–150mm (Larue et al., 2017).

2.5 Meteorological Forcing

As time-varying model inputs, we used three meteorological
forcing datasets, each on daily resolution: Net radiation is ob-
tained from the SYN1deg Ed3A product (Doelling, 2017) of
the Clouds and the Earth’s Radiant Energy Systems (CERES)
program (Wielicki et al., 1996). The precipitation data was re-
trieved from the Global Precipitation Climatology Project daily
1◦ dataset (GPCP-1DD) v1.2 (Huffman et al., 2012). Air tem-
perature was obtained from the CRUNCEP v8 dataset, a com-
bined product of the observation-based Climate Research Unit
(CRU) and the National Center for Environmental Prediction
(NCEP) reanalysis data (Harris et al., 2014; Viovy, 2018).

2.6 Static Datasets

A number of static datasets were used to represent the spatial
variability of surface and subsurface environmental conditions.
To represent topography, we used the digital elevation model
from GTOPO30 (DOI/USGS/EROS, 1997). Furthermore, we
used variables from the soilgrids dataset (Hengl et al., 2017):
absolute depth to bedrock and the average across all soil lay-
ers of bulk density, coarse fragments, clay, silt, and sand con-
tent. Land cover fractions were derived from the Globland30
dataset (Chen et al., 2015) for the classes water bodies, wet-
lands, artificial surfaces, tundra, permanent snow and ice, grass-
lands, barren, cultivated land, shrublands, and forests. In ad-
dition, a wetland dataset was used that contains fractions of
groundwater-driven wetlands, regularly flooded wetlands, and
the intersection of the them (Tootchi et al., 2019).

These 22 variables were aggregated from their mostly finer na-
tive spatial resolution to 1

30
◦ to keep information on the spatial

variability inside a 1◦ model pixel. To reduce the size of the
stacks (30 (lat. pixels) × 30 (lon. pixels) × 22 (variables) =
19 800 values per model cell) and ultimately the number of pa-
rameters in the model, we reduced the dimensionality of the
static variables in a pre-processing step. A simple convolu-
tional autoencoder was used for this, consisting of an encoder
network, a bottleneck layer, and a decoder network. The en-
coder layers extract features from the input stack with consec-
utively smaller capacity. The final representation is the bottle-
neck layer, with a vector of size 30. The decoder, which has the
reverse structure of the encoder network, maps the bottleneck
layer back to the input stack. By minimizing the reconstruction
loss, the model is forced to find a low-dimensional representa-
tion of the stack.

2.7 Masking & Bioclimatic Regions

Figure 1. The masked out cells (‘excluded’) and the bioclimatic
regions used for model evaluation: Cold Northern Hemisphere

(‘ColdNH’), Temperate Northern Hemisphere (‘TemperateNH’),
‘Tropic’, ‘Subtropic’ and remaining Southern Hemisphere

regions (‘SH’).

To retrieve valid land pixels with a clear signal of TWS, ET,
and Q, cells with more than 50 % water bodies, 10 % permanent
snow or ice, 10 % artificial surfaces, and 10 % bare land were
removed. Further, regions with strong anthropogenic ground-
water withdrawal were discarded, as the model does not account
for these effects. After applying these criteria, the dataset con-
sisted of 11 026 spatial samples. Note that some grid-cells were
masked out further due to missing values in the SWE dataset,
e.g., some mountainous areas. The excluded cells are shown in
Figure 1 along with five bioclimatic regions used in the model
evaluation.

3. GLOBAL HYBRID HYDROLOGICAL MODELING

3.1 The Hybrid Hydrological Model

The hybrid model represents the major states and fluxes of the
hydrological cycle (see Box 1). The model learns a mapping
from the meteorological features (X) to the target variables (y).
To predict yt at time t, it has access to the present and past
observations X≤t and a set of static variables.

3.2 Self-Paced Multi-Task Learing

To combine the four loss terms corresponding to the target vari-
ables, we used self-paced task uncertainty weighing (Kendall
et al., 2018), as done in state-of-the-art multi-task learning
(e.g. Liebel and Körner, 2018). By optimizing an uncertainty
term σ for each task (Equation 1), the different uncertainties
inherent to the target variables are compensated dynamically.
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Box 1: The end-to-end hybrid hydrological model
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A Input data
The meteorological time series (Section 2.5), encoded
static variables (Section 2.6) and physically interpretable
states groundwater (GW, g)a and cumulative water deficit
(CWD, c) are fed into the LSTM.

B The LSTM layer
The LSTM updates the hidden states h〈t〉LSTM and c〈t〉LSTM at
each time-step.
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C Multi-task layer
The multi-task layer, comprising of independent feed-
forward layers (NN), yields interpretable variables: evapo-
transpiration (ET, e), snow water equivalent (SWE, s), and
fractions (α) defining how the liquid water input (winp) is
partitioned into the fluxes of fast runoff (winp · αqf

→ qf),
soil recharge (winp · αc → rc), and groundwater
recharge (winp · αg→ rg). The current winp is the precipita-
tion (p) minus snow accumulation or plus snow melt (∆s).
I addition, a fraction αe determines the source pool from
which e is taken from. If αe=1, e is taken from the soil, if
αe=0, e is taken from the groundwater.
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D Water balance model
The hydrological block implements water balance equa-
tions. The physical state variables g and c are updated at
each time-step using a combination of the above latent vari-
ables and variables derived here. When c = 0, the soil
is fully water-saturated, negative values indicate a water
deficit. If c > 0, the soil capacity is exceeded and over-
flow occurs (coverflow). Note that for the model evaluation, c
is transformed such that a deficit is denoted by positive val-
ues. The base runoff (Qb, qb) is defined as g times a learned
global fraction αqb

. The total runoff (Q, q) is the sum of
qb and qf. The total water storage (TWS, w) anomalies are
calculated as the sum of s, g, and c, minus the mean of w
to get the variation around 0. The units are mm for state
variables and mm d−1 for fluxes.
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L =

n∑
i

1

2 · σ2
i

Li + log(σi) =

n∑
i

wi Li + ri (1)

where wi is a weight for the task i of n total tasks, recipro-
cal to the task uncertainty σi and ri is a regularization term to
prevent the uncertainty from converging to infinity. In prac-
tice, the uncertainty is encoded as s := log(σ2) to assert nu-
merical stability and to have an unbound parameter s. Hence,
w = 0.5 · exp(−s) and r = 0.5 · s.

We added a further constraints (Cg) to penalize negative val-
ues for groundwater (GW). In preliminary experiments, we ob-
served that the model can easily reach a loss Cg = 0, and, thus,
s converged to minus infinity. To prevent this, a constant of
0.1 was added: Cg = mean(−min(g, 0)) + 0.1, where g is a
simulated groundwater time series.

3.3 Model Selection & Training

The model was trained end-to-end and simultaneously on
global observation-based products of TWS, SWE, ET, and Q
using the backpropagation algorithm (Goodfellow et al., 2016).
We used the root mean square error (RMSE) as the objective
function. The model was implemented in PyTorch v1.4 (Paszke
et al., 2017).

The time series were split into two periods, 2002-01 to 2008-12
for training and 2009-01 to 2014-12 for validation and testing.
The feature time series were extended by selecting ten random
years from the features of the respective periods for model spin-
up to obtain steady physical model states (GW and soil cumula-
tive water deficit (CWD)), before the actual evaluation period.
Furthermore, a warmup period of one year was added to both
time-ranges to have some temporal context even for the start of
the periods. In addition, the samples were split into mutually
exclusive regular grids for the hyperparameter (HP) optimiza-
tion and the cross-validation (Fig. 2). These measures were
taken to reduce overfitting due to spatial and temporal autocor-
relation (Roberts et al., 2017).

For the model selection, we used the Bayesian optimization
hyper-band (BOHB) algorithm (Falkner et al., 2018) from the
Ray.tune framework (Liaw et al., 2018). BOHB is a state-of-
the-art method for HP optimization that combines an early stop-
ping mechanism (dropping non-promising runs) and a Bayesian
surrogate model that suggests new HPs. Here, we used samples
from one of the four spatial grids. To match the cross-validation
scheme, the samples were split into five folds, of which three
were used for training and one for validation. The final HPs
are reported in Table 1. The remaining three grids were used to
perform three independent cross-validations: in each, one fold
was withheld for testing (5 % of the grid-cells) and the remain-
ing four folds (20 % of the grid-cells) were iterated such that
each fold was used for validation once. The test set predictions
used for the model evaluation are referred to as cvi,f , where
i ∈ {1, 2, 3} is the cross-validation and f ∈ {1, 2, 3, 4} is the
fold index.

3.4 Model Evaluation

First, the model fit was quantified regarding the temporal pat-
terns aggregated by the bioclimatic regions (Figure 1) using the
Pearson correlation coefficient (r) and the Nash–Sutcliffe model
efficiency coefficient (NSE). The NSE ranges from −∞ to 1, a

Model architecture
layer num. layers hidden size dropout
static encoding 2 (1, 2) 100 (50, 100) 0.2 (0.0, 0.5)
LSTM 1 (−) 100 (50, 200) −
task branches 1 (1, 3) 100 (50, 200) 0.2 (0.0, 0.5)

Optimizer parameters
learning rate 10−2 (10−2, 10−4)
task weight learning rate 10−2 (10−2, 10−4)
weight decay 10−5 (10−2, 10−5)
grad. clipping 0.6 (0.1, 1)

Table 1. Model architecture and optimizer hyperparameters with
range limits searched in brackets (lower, upper). The static

encoding layer extracts features of the static input which are fed
into the LSTM together with the meteorological forcing time
series. The single-layer LSTM is followed by multiple task

branches. The learning rate defines the step size of the optimizer
(with an independent learning rate for the task weights), weight

decay adds L2 regularization (preventing large parameter values)
and gradient clipping counteracts exploding gradients.

Figure 2. Regional example of the data splitting for the
hyperparameter tuning and cross-validation. The grid-cells are
split into four mutually exclusive, regular grids (colored). The

grid-cells of each set are separated by a buffer to reduce the
spatial autocorrelation between the samples. The samples of

each grid were then split randomly into 5 sets of which one was
used for testing and the remaining four were iterated such that
each set was used as validation set once. One of the four grids

was used for hyperparameter optimization. Following this
scheme, three separate cross-validations (cvi∈{1,2,3}) are

performed, each yielding four predictions on the test set. Note
that some grid-cells are masked out (grey), see Section 2.7 for

more details.

negative NSE indicates that the model fit is worse than just tak-
ing the observed mean as prediction, 1 is a perfect fit (Nash
and Sutcliffe, 1970). The evaluation was performed based on
the test sets which have not been used for HP optimization or
model training. From the three cross-validations, only one of
the four runs was used and combined into one unified dataset,
i.e., cvi∈{1,2,3},f=1. Then, we aggregated the time series per
bioclimatic regions using the mean of all respective grid-cells.
We then calculated r and NSE for each bioclimatic region.

Then, the robustness of the simulated latent variables was as-
sessed. As the proposed hybrid model has a high degree of
freedom compared to conceptual models, it is crucial to check
if repeated runs lead to similar results. Robust model predic-
tions increase the trust in the latent variable estimates. The ro-
bustness of the model was assessed using the simulations from
the cross-validation. In addition, we assess the plausibility of
the non-observed (latent) estimates based on our process under-
standing. For the evaluation of the latent variables, we cannot
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Figure 3. The model performance based on the test set by bioclimatic regions. The four target variables evapotranspiration (ET), snow
water equivalent (SWE), runoff (Q), total water storage (TWS), as well as the TWS interannual variability (IAV) are shown. The TWS
IAV is calculated as the deviation from the mean seasonal cycle, for observations and the predictions independently. The shaded areas
indicate the 0.2− 0.8 quantiles of the spatial variablity. For each region and variable, the Pearson correlation coefficient (r) and the

Nash–Sutcliffe model efficiency coefficient (NSE) are shown.

rely on a ground-truth. Rather, the patterns are confronted with
domain knowledge. Exemplarily, we take a closer look at the
liquid water input (winp) partitioning through fast runoff frac-
tion (αqf

), soil recharge fraction (αc), and groundwater recharge
fraction (αg). These fractions are known to depend strongly on
the water status of the soil (CWD) with, e.g., more fractional
runoff under wet conditions. As the fractions are learned from
data and no constraints were imposed, we evaluated their re-
lationship with CWD qualitatively and quantitatively using the
Spearman’s rank correlation coefficient (rs).

4. RESULTS & DISCUSSION

4.1 Model Performance by Bioclimatic Regions

The observed and simulated time series and the model perfor-
mance per bioclimatic region are shown in Figure 3. The hybrid
model has learned the temporal patterns of the target variables.
The seasonality was represented well with varying performance
among bioclimatic regions and variables. Remember that ET
and Q are upscaled from point measurements and products of
machine learning algorithms themselves. The ET product, for
example, is known to be affected by systematic biases due to
biases in the underlying site measurements and an incomplete
spatial sampling (Jung et al., 2020). For that reason, the trust
in these variables, especially the interannual variability (IAV),
is limited. Similarly, the SWE product is affected by biases due

to a signal saturation above 100–150mm (Larue et al., 2017).
Therefore, and also because TWS explicitly depends on all the
other target variables, we use the observation-based TWS as the
main reference for assessing the model performance.

The response of TWS to precipitation can be strongly delayed
due to buffering effects of snow mass, soil moisture, or ground-
water. This expresses in a lag between the seasonality of pre-
cipitation and TWS, but also single precipitation events cause
a delayed response in the TWS (Humphrey et al., 2016). The
model fit the seasonal patterns of TWS well, especially in the
Tropics, Subtropics, and the Northern Hemisphere (NSE>0.8).
In the temperate and more clearly in the cold Northern Hemi-
sphere, the predictions exhibited a phase-shift compared to the
observations. This means that the model struggled to discharge
the input of water at an adequate pace. Similar phase-shifts can
be observed in conceptual models (e.g. Schellekens et al. (2017)
and Trautmann et al. (2018)) and the phenomenon is still under
investigation. A reason for this mismatch could be a missing
implementation of lateral fluxes between grid-cells or buffering
effects of surface water storages like wetlands. In Figure 3, we
also show the interannual variability (IAV) of TWS, calculated
as the deviation from the mean seasonality. The IAV signal re-
flects how the model can deal with anomalous conditions, like
strong precipitation events or droughts. The model was able to
predict the timing and strength of the major TWS anomalies.
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Figure 4. Regional mean time series of repeated model simulations of total water storage (TWS) and the latent variables groundwater
(GW), soil cumulative water deficit (CWD), fast runoff (Qf), and ET partitioning fraction (αe), defining to what share

evapotranspiration is extract form the soil versus groundwater. The lines represent the mean value of a single cross-validation test set.
The lines are colored by cross-validation run index, i.e., lines with the same color come from one cross-validation run and represent

the same grid-cells. The repeated runs give an impression of the model robustness.

Figure 5. Density plot of the soil cumulative water deficit (CWD) versus the liquid water input (winp) partitioning fast runoff fraction
(αqf ), soil recharge fraction (αc), and groundwater recharge fraction (αg). The fractions define how much of winp goes into the
respective fluxes. The relationships is quantified using the mean Spearman’s rank correlation coefficient (rs) over all folds, the

standard deviation is shown in brackets. For the density plot, on single fold (cvi=1,f=1) was used. The lines represent the binned
median, i.e., the median of the fractions over a range of CWD values, of the individual cross-validation test sets. The lines are colored

by cross-validation run index, i.e., lines with the same color come from one cross-validation run and represent the same grid-cells.
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4.2 Model Robustness & Latent Variables

A challenge in hybrid modeling is to find the right balance be-
tween constraining the model sufficiently to avoid equifinalities
and to allow it enough flexibility to adapt to the data. This act
of balance requires domain knowledge and a careful evaluation
of the results. Based on a set of repeated model runs from the
cross-validations, we assess the robustness of the simulations.
While the RMSE varied only marginally (1.42± 0.03) and the
target variables predictions were robust, the stability of the
latent variable simulations was lower among cross-validation
folds (Figure 4).

The robustness of the latent variable simulations varied among
the bioclimatic regions. This indicates that the optimization
problem was underconstrained under certain conditions and
different pathways lead to a similar solution in terms of tar-
get variables. We take a closer look at the SH regions and
note that the mean CWD varied substantially among the model
runs. Note that, here, the snow mass is neglectable and thus,
TWS is partitioned between GW and CWD. TWS, however,
reflects the anomalies of the total water column and thus, the
absolute values of GW and CWD are not constrained through
this relationship. Thus, further constraints were added to the
model: through the base runoff (Qb) being a constant fraction
of GW and the ET partitioning, the solution space is reduced.
Similarly, the absolute values of CWD are constrained by the
CWDoverflow and the ET partitioning. Under certain conditions,
however, these constraints are not sufficient: in a hydrological
regime where soil moisture and groundwater are not limited,
for example, the model fails to learn from which pool the ET
is extracted. Likewise, if the soil is never or only rarely water-
saturated and CWD overflow (CWDoverflow) does not occur, the
mean CWD is not constrained.

In other regions, the simulations were more stable. In the Trop-
ics and Subtropics, GW, CWD, and the ET partitioning fraction
(αe) were estimated more robustly, even if we see some outliers.
In the TemperateNH and ColdNH regions, the GW simulations
were rather stable, but we see a varying offset of CWD. Here,
the model struggled again to yield robust estimates of αe with
even opposite seasonal patterns. This suggests overall that po-
tential groundwater access by plants via ET is not well con-
strained in the current set-up.

The relationship between winp partitioning fractions and CWD
and its robustness is shown in Figure 5. These patterns follow,
to a certain degree, simple hydrological laws: if the soil is wet,
for example, we expect to see a decrease in soil recharge frac-
tion (αc), an increase in groundwater recharge fraction (αg),
and a larger fast runoff fraction (αqf

). Insofar, the patterns align
with our prior knowledge. However, the fractions were not es-
timated robustly, which also reflects in rather large variations
in rs, especially in the cold Northern Hemisphere. There, the
relationship was less pronounced, which could be caused by
snowmelt dynamics adding complexity.

4.3 Limitations

The cross-validation scheme was designed to have global cov-
erage and reduce spatial and temporal autocorrelation between
samples of the training, validation and test set. Due to a lim-
ited amount of samples, we made a compromise between data
limitations and autocorrelation requirements (Roberts et al.,
2017). Similarly, aggregating the daily predictions to match the
monthly target variables may introduce leakage, as the target

variables can influence the feature time series (e.g. ET→ pre-
cipitation). Further, we noted that some cross-validation runs
did not converge ideally. Thus, the assessment of the robust-
ness does not only reflect the model robustness, but also the
robustness of the training process.

5. CONCLUSION

We presented a global end-to-end hybrid hydrological model
that combines artificial neural networks and a conceptual
model. To our knowledge, the presented approach is the first ap-
plication of the hybrid approach to model global environmental
systems. The approach opens doors to novel data-driven sim-
ulations, attribution, and diagnostic assessments of water cycle
variations globally and is applicable to other fields. Our ex-
periments have shown that a major challenge remains to suffi-
ciently constrain the model to retrieve interpretable simulations
of non-observed (latent) variables. Under certain conditions,
the simulations are unstable but we can infer general patterns
of the water cycle using this data-driven approach. Thus, fur-
ther refinement of the model is required. This iterative process
of model improvement, evaluation, and discussion is part of the
scientific process that leads ultimately to a better understanding
of the subject of investigation.
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