
TOWARDS DISTILLATION OF DEEP NEURAL NETWORKS FOR SATELLITE ON-

BOARD IMAGE SEGMENTATION

F. de Vieilleville 1, *, A. Lagrange 1, R. Ruiloba 1, S. May 2

1 AGENIUM Space, Toulouse, France – (francois.devieilleville, adrien.lagrange, rosa.ruiloba)@agenium.com

2 CNES, Centre National d’Etudes Spatiales, France – stephane.may@cnes.fr

KEY WORDS: Deep learning, parameters reduction, ablation study, low rank approximation, distillation

ABSTRACT:

Cubesats platforms expansion increases the need to simplify payloads and to optimize downlink data capabilities. A promising solution

is to enhance on-board software, in order to take early decisions, automatically. However, the most efficient methods for data analysis

are generally large deep neural networks (DNN) oversized to be loaded and processed on limited hardware capacities of cubesats. To

use them, we must reduce the size of DNN while accommodating efficiency in terms of both accuracy and inference cost. In this paper,

we propose a distillation method which reduces image segmentation deep neural network’s size to fit into on board processors. This

method is presented through a ship detection example comparing accuracy and inference costs for several networks.

1. INTRODUCTION

Nowadays, cubesats platforms appear to be an attractive and low-

cost tool to acquire image data from outer space. However,

downlink data capabilities are the bottleneck of the cubesats

platforms. It is thus necessary to reduce the volume of data to

downstream either by data compression or by data selection. The

compression ratio required for image payloads is too high to be

obtained by existing compression methods (Buciluǎ et al., 2006;

Frosst and Hinton, 2017; Hinton et al., 2015). On-board, feature

extraction based on deep learning (DL) (Greenland et al., 2018)

provides, by now, the most efficient solution for upstream data

reduction. Moreover, it can provide high-value information

directly exploitable. However, the most efficient DL models are

usually cumbersome due to ensembling methodologies, e.g.

hundreds of millions of parameters in the case of the winners of

Airbus Ship Detection challenge proposed on Kaggle1, and are

not compatible with the limited performances of the processors

available on board.

Some missions integrate specific intelligence which can decide

on storage or scenes acquisition regarding cloud detection, e.g.

Forward Looking Imager (Greenland et al., 2018). On-board

features extraction allows to decide on board if data should be

stored and downlinked or not. It can also directly supply the

information requested without downloading the full data image.

Data reduction by DL-based feature extraction on board will

improve the acquisitions capabilities for a defined bandwidth

budget and will optimize data downlink providing useful

information (Soukup et al., 2016).

Instead of relying on ground operator, decisions can be made on

board, with efficient algorithms. This aims to increase the

payload’s autonomy, to release burden on ground segments and

to reduce costs (since less operators are required) for creating

valuable products.

The point here is that all these specific, long, tedious and

complicated developments in terms of methodology, software,

integration and verification can be replaced by embedded

* Corresponding author
1 e.g. 6th place candidate : https://www.kaggle.com/c/airbus-ship-detection/discussion/71782

intelligence. For example, improving the reactivity may allow a

simple constellation to continuously monitor events and to

eventually downlink acquired/processed data when faced with

predefined observed activities. Such scenario could also be

compatible with satellites being interconnected and allowing

downlink for the best positioned satellite on available reception

stations. Moreover, the image processing chain on-board can be

reprogrammable. The goal of the system design should be to

make possible the replacement of the DL components by a new

DL network, devoted to other feature extraction required by the

mission. Thus, the same cubesat platform could be used for

different user-driven missions contributing to optimize mission

cost.

However, existing state-of-the-art deep neural networks (DNN)

which perform the best on earth observation (EO) tasks are huge

networks (several hundred million parameters). They are often

aggregates of several models and require a lot of computation

power to be run (Bianco et al., 2018). On the other hand,

hardware (HW) for computation, in satellites with an image

payload, is very limited (Lentaris et al., 2018) due to power

consumption restrictions (between 1 and 10 W against 250 W for

a NVIDIA Titan X) and dissipation problems. For on-board

processing, the reduction of the computational burden linked to

inference is the priority (Abdelouahab et al., 2018; Qi et al.,

2018).

Methods exist to reduce the number of operations of these huge

high-performance networks, but the achieved reduction factors

with most techniques, on fully convolutional networks, do not

exceed a x4, x9 factor (Han et al., 2015a). Consequently, the best

DNN cannot be used with a restricted computation power and

there is no other choice but to use less reliable, less efficient and

smaller networks. Although these smaller networks (<5 million

parameters) fit in existing computation payload, they do not bring

high accuracy making them potentially useless depending on the

mission requirements. For example, the works of the Aiko

society have focused on a library called Mirage AI aiming at

improving on-board autonomy and, more generally, mission

planning. Their work has focused on the reuse of simple or highly

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1553

efficient networks in terms of performance/number of operations,

e.g. ship detection with fast detectors (SSD (Liu et al., 2016),

YOLO (Redmon and Farhadi, 2018)) followed by a classification

network (MobileNet, Howard et al., 2017). In this work, authors

display a total size of 15MB for their networks with inference

times of less than 1 second per image, the full image size and the

final accuracy being not known.

One strategy to alleviate this issue is to try to extract the

meaningful parts of these large and complex high-performance

DNNs, possibly aggregates or ensemble models, using a

teacher/student training method called distillation approach. This

approach allows us to take into account what has been learned by

the huge teacher model as mapping to vectors of real values and

to approximate this mapping as best as we can. The interesting

part is that this approach allows small architectures to reach

rapidly much higher performances than conventional training

(Hinton et al., 2015), even though a state-of-the-art training

procedure is used such as augmentation, recent optimizer,

learning rate scheduling and policies, stratification on data, batch

accumulation, etc. Moreover, this approach being a first step, the

other classic simplification methods (pruning, low rank

approximation, quantization, weight sharing, …) can still be

used. Cumulating the reduction from this approach and classic

methods, it is possible to reach high enough reduction rates, e.g.

(Polino et al. 2018), to bring high performances networks on

board. This paper aims to demonstrate it in the specific context

of image segmentation of remote sensing images.

The objective of this study is to reduce the size, in terms of

number of parameters, of a given high performance network. In

order to fit on cubesats processing payloads, the aim is to produce

a new network with around 1 million free parameters. This size

should fit in mid capacities COTS (Commercial Off-The-Shelf)

and available radiation tolerant HW (Lentaris et al., 2018) used

on board the satellites. This objective should be reached with a

minimum accuracy loss, a maximum loss of 5% of the

performances is the target of the study.

The rest of the article is organized as follows. Section 2 presents

a synthetic literature review about the various approaches to

reduce a DNN. In Section 3, the target segmentation task and the

developed distillation method are presented. Then, experimental

results are provided in Section 4 showing that distilled models

are significantly smaller at the cost of very limited drop of

performances. Finally, Section 5 concludes the paper and opens

some perspectives to this work.

2. RELATED WORK

This section introduces the major approaches for DNN reduction

in order to outline the specificities and interest of the proposed

distillation method.

2.1 Pruning methods

Pruning methods have been initially developed to reduce

overfitting in fully connected networks. These approaches aim at

deleting connections between neurons in order to simplify the

network. It is equivalent to setting a subset of the network

weights to 0. There are several ways to select the weights to be

nullified. The process can be based on complex optimization

problem such as in (Hassibi et al., 1993), where authors use

Taylor series approximation of the cost function to identify the

optimal weights to delete. Other works have proposed to base the

selection on heuristic criteria involving thresholding of the

values. Using such methods, (Han et al., 2015b) have optimized

both convolutional and fully connected layers of networks based

on AlexNet (Krizhevsky et al., 2012) or VGG-16 (Simonyan and

Zisserman, 2014) and obtained a reduction of the number of

weights of a factor 10-12 and a reduction of processing time of a

factor 3-5. These methods are very efficient to compress fully

connected layers specifically, even though it means using sparse

DNN which generally require the use of specialized hardware to

handle sparse computation, according to the authors.

Regarding convolutional layers, pruning can take several forms

from deleting complete feature maps to deleting only one of the

filters producing a given feature map (Li et al., 2016; Molchanov

et al., 2016). The former is, for example, explored by (Li et al.,

2016) where authors delete feature maps produced by filters of

low L1-norm. Using a complex reduction scheme, Li et al.

succeed to reduce the computational burden by 30% with a VGG-

16 network (Simonyan and Zisserman, 2014) and a ResNet

network (He et al., 2016). In a more general case, the reduction

factor of the number of parameters in convolutional layers is

closer to 2-4.

Overall, this family of methods gives interesting results but does

not allow to modify/simplify the architecture of the considered

networks and is limited in terms of reduction capacity. In

operational context, pruning is generally complemented with

other compression methods such as code book, weight sharing or

Huffman coding (Han et al., 2015a). However, these additional

optimizations can produce a compressed version of the network

but does not reduce the number of necessary computational

operations. They can even create an additional cost during

inference since it is necessary to decompress the network to use

it. Finally, it is also generally necessary to re-train the network

after the pruning process.

Pruning methods have already been used to produce DNNs to be

used in processing on-board the satellites. In the Euclid mission

(Stivaktakis et al., 2019), the redshift estimation relies on a 1D

CNN (Convolutional Neural Network) based on a LeNet network

(LeCun et al., 1998). To reduce the memory footprint, the authors

have used several methods: use single precision, prune the

weights values (below a given threshold) to keep 30% of the

coefficients, group weights in centroids, store them into a code

book and use a smart clustering weight method. In the end, the

memory footprint was reduced by a factor x54, with an increase

in error rate of 0.8%. Most of the compression was done on the

fully connected layers and especially the final layers. These final

layers were modified in order to transform the regression

problem into a classification problem with 1,000 classes. Let us

note that pruning methods generally behave better in conjunction

with retraining.

2.2 Low rank approximation

Pruning methods work extremely well for fully connected layers

but often do not exceed 50% weight reduction for convolutional

layers. Here, to reduce both computation and weights, some

authors use low rank approximation on the convolutional layers.

These approaches see the convolution blocks as 4D tensors and

try to find low-rank approximations (for given specific norms)

for them. The approximations can be found using SVD (Single

Value Decomposition) like-decompositions, and some of their

generalisations, or using more explicit representations. Several

papers (Denton et al., 2014; Jaderberg et al., 2014; Tai et al.,

2016) showed that it is possible to speedup forward computation

by a factor of 2 without having to re-train the model and to reduce

the number of operations by a factor of 2 in convolutional layers.

Overall, the low rank constraint is an efficient regularization

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1554

technique, providing state-of-the-art accuracies (classification on

Imagenet cases) but reduces weight sizes only for convolutional

layers with a modest reduction factor compared to other

reduction methods.

2.3 Other optimization methods

Many other methods were proposed to reduce DNN. Most of

them focus mainly on the code optimization aspect. For example,

quantification of weights can be performed to go from variables

coded in single-precision floating-point format (float32) to

variables coded in signed integer format (int8) reducing by a

factor of 4 the memory footprint and opening the possibility to

implement code optimization procedure such as SIMD

instructions (Single Instruction Multiple Data, see (Vanhoucke et

al., 2011)). Moreover, further benefits can be expected in terms

of execution simplification and computing time in FPGAs (Field

Programmable Gate Arrays) since int8 instructions are much

simpler to implement in terms of logic gate numbers.

To go further, it was also proposed to recourse to weight sharing

as performed after pruning step in previous section 2.1. This

approach, proposed by (Han et al., 2015a), introduces the idea of

using tabulated values that allow us to encode the high-precision

values using table indices with less memory weight.

As explained before, these methods focusing on

code/computation optimization can generally be used in addition

to other methods focusing more on the optimization of the

network architecture, with the limitations already presented (see

section 2.1). It is possible to use most of them with the distillation

method proposed in this paper. Studying their impact/efficiency

is out of the scope of this article which is why they are not

discussed in the remaining of this paper.

2.4 Teacher models

The idea of teacher models was introduced by (Buciluǎ et al.,

2006). It aims at transferring the knowledge of a big teacher

network in a smaller DNN by training the small DNN to predict

the output of the teacher model.

This technique, denoted usually by distillation, allows to change

network topology (remove layers, bridges, pooling layers) or

modify elementary blocks (from convolution to depthwise

convolution). It is performed in a teacher/student fashion, where

each network has its own topology. Consequently, this method is

compatible with both large, possibly aggregate, teacher models

and small, compact student models. The aim is to find a small

network mimicking the results of a large network. Distillation

have already been used in various application frameworks such

as acoustic models (Hinton et al., 2015) or tabular data (Tan et

al., 2018). In this paper, a distillation process is developed in the

specific context of image segmentation as described in the next

section.

3. DISTILLATION METHOD

The proposed workflow aims at reducing the number of free

parameters drastically. The aim of this paper is to simplify

networks reaching very high accuracy, obtained using all the

state-of-the-art training strategies without restriction. However,

classic methods to reduce neural networks are not sufficient for

such huge models. In fact, pruning studies show that a reduction

of a factor 2-3 in the number of free parameters in convolutional

layers can be achieved without significant accuracy drop

(Molchanov et al., 2016) even so, these results are dependent of

the involved application and architecture. A similar work can be

done on linear subspace approximations (e.g. SVD on matrix)

when trying to reduce the number of free parameters in linear

operators, like convolution or fully connected blocks. Here, the

literature reports reduction factors around 2 or 3 (Lee et al.,

2019).

Then, quantization is often reduced to computations in int8

instead of float32. Despite a reduction of the memory footprint

by a factor 4, this does not reduce the number of free parameters

of the network. However, it does improve the global speed since

less elementary operations are required when computing int8

arithmetic (Wei et al., 2019).

The objective is thus to obtain a better reduction using a

distillation method, the other simplification techniques being

considered complementary.

3.1 Considered workflow

The first step is to train a complex state-of-the-art DNN using the

complete available data. This process should use all the

conventional methods improving the results such as

augmentation, recent optimization strategy, complex learning

rate scheduling, etc.

The idea is to benefit from all the complex learning methods

available regardless of the cost to obtain the best teacher network.

As an example, it is common to find huge models with more than

200 million free parameters to obtain the best performances such

as the one developed in Kaggle-like competitions.

In order to fit on cubesats processing payloads, the next step is to

produce a new network with around 1 million free parameters as

stated in the objective of this paper. The method adopted in this

study is to use a distillation process in order to reach this

objective. The distillation strategy is very straightforward as

illustrated in Figure 1. The smaller student network is trained to

predict the output of the teacher network using a weighted MSE

loss function defined as follows:

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑤𝑛‖𝒚𝑛 − �̂�𝑛‖2

2𝑁
𝑛=1 (1)

where �̂�𝑛 stands for the predicted probability vector gathering the

probabilities to belong to each of the 𝐶 classes, 𝒚𝑛 for the

reference probability vector produced by the teacher, 𝑤𝑛 is the

weight associated to sample n which depends of the class of the

sample (in experiments, 0.9 for ‘ship’ and 0.1 for ‘non-ship’). We

do not present the formula with associated weight for each class,

but it is straightforward.

Figure 1. Distillation process

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1555

3.2 Architecture modification

As stated earlier, distillation is the only method allowing a

change of network architecture at the cost of a special training. It

is actually possible to consider any architecture as student

network. In this paper, we propose to start from standard

architecture such as U-Net network and to implement some

architecture modifications aiming at simplifying specific layers

of the networks. The substitution of conventional convolutions

by depthwise separable convolutions (Chollet, 2017; Howard et

al., 2017) is in particular implemented. Such approach reduces

the number of free parameters of these layers by a constant factor

of 9. This proposition was implemented in the experiments

described in Section 4.

After this architecture simplification, the second modification

proposed in this paper to reach the desired number of free

parameters is the reduction of the number of features used in the

output of the intermediate layers. It is a simple way to go from a

specific architecture to an architecture with the desired number

of parameters.

These modifications are performed on a well-established network

architecture, such as U-Net for segmentation task (Ronneberger

et al., 2015). Applying these simplifications allows one to reach

a desired number of parameters that can be fitted into a given HW

platform.

4. EXPERIMENTS

4.1 Task and dataset

The task that was used to test this reduction framework is the

Airbus Ship Detection Challenge proposed on Kaggle2. The

objective is to perform the best ships detection by segmenting

remote sensing satellite images. The dataset is composed of more

than 200k 3-channels RGB images of 768-by-768 pixels.

Unfortunately, no information on the origin and resolution of the

images is provided by Airbus. The dataset has very unbalanced

classes since ships are small objects and, moreover, only around

one quarter of the images contain ships for a total of around

200,000 labelled ships. Figure 2 shows a few examples of images

with their associated ground truth segmentation.

A split of the dataset into train and test sets is provided by the

authors of the dataset where the ground truth is only available for

2 https://kaggle.com/c/airbus-ship-detection

the training set and the results on the test can be evaluated using

Kaggle website. In addition, for the presented experiments the

training set was split in a train and validation set with a ratio of

80%/20%.

Figure 2. Dataset Kaggle “Airbus Ship Detection”

4.2 Compared methods

Since the goal of the experiment is to make the most performant

ship detection networks suitable for execution on-board the

satellites, obtaining these high-performance networks is the first

step. In our experiments we started with a 37 million free

parameters model based on a Ternaus16 architecture with a

VGG16 encoder (Iglovikov et al., 2018). This network achieves

high performances in the ADS ship detection competition, i.e.,

3% below the top-1 Kaggle score. Thus, it is used as teacher

networks in the distillation framework. The distillation aims at

reducing the number of parameters of this model.

For the network reduction part, 4 student models have been

trained using the proposed distillation framework. All these

networks are based on a standard architecture, specifically a U-

Net architecture (Ronneberger et al., 2015). The number of

parameters of this baseline architecture is gradually reduced from

4 million of free parameters to 0.5 million. Table 1 shows how

the number of features, before each reduction of the spatial

resolution (maxpooling layer), is gradually reduced to obtain a

specific number of parameters. In the end, the network selection

Model
Number of free

parameters

Number of feature maps

by layers
Training time

(1x Nvidia 1080Ti)
F2 score

U-Net vanilla 31 M 64/128/256/512/1024 Long > 1 week 0.733

Ternaus16 37 M 64/128/256/512/512 Long > 1 week 0.827

Ensemble-DNN (1st place

Kaggle competitor)
30 M (x10) NA NA 0.855

Distilled U-Net 1 4 M 64/128/256/512/1024 32 hours 0.781

Distilled U-Net 2 2 M 64/128/256/512/512 32 hours 0.780

Distilled U-Net 3 1 M 64/128/256/256/256 32 hours 0.774

Distilled U-Net 4 0.5 M 64/128/192/192/192 32 hours 0.757

Table 1. Comparison of architecture and performances of all considered models.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1556

depends both on the hardware capacities and the performance

requirements. In terms of memory occupancy, these networks

with roughly 0.5 million parameters can fit on most standard

FPGA, with approximately a few megabytes of BRAM (Block

Random Access Memory (RAM), dual-port RAM module

present into the FPGAs). Thus, if we can maintain high

performances for such networks, they will be suitable for

execution in FPGA on board the satellites and achieve the use

case demonstration success. It has been demonstrated by the

execution of the inference of the network “Distilled U-Net 4” (0,5

million parameters) with performance 0.757 in F2 -score, in a

mid-range FPGA (the one included in the Xilinx ZCU102 test

board) very similar of those used on-board the satellites.

These 4 student networks have been trained using a stochastic

gradient descent with a momentum of 0.9 and Nesterov

acceleration. The learning rate was initialized at 0.01 and

gradually reduced using a plateau patience of 80 epochs, i.e., after

80 consecutive epochs without reaching a better minimum of the

loss function, the learning rate is reduced by half. Finally, an

augmentation procedure has been used during training

performing standard transformations randomly on the input

images (rotation, zoom, flip, illumination change).

It should be also noted that the results produced by the networks

have followed a final postprocessing step. The networks produce

probabilities to belong to each class but the evaluation procedure,

described in the next section, requires having binary masks as

outputs. The first step of the postprocessing is thus a binarization

of the output using a threshold value. The thresholding operation

corresponds to choosing a specific operating point on ROC

(Receiver Operating Characteristic) curve of the model. In the

following experiments, several thresholds have been tested and

the one corresponding to the best result on the validation set have

been kept.

The second and last step of the postprocessing involves

performing a morphological opening on the mask (disk of radius

2 as structural element).

The simplified networks performances are evaluated on unseen

data and compared to the more accurate but bigger networks:

Ensemble-DNN and Ternaus16, and to a U-Net vanilla, the same

architecture than student networks but learned by classical

training from input images. Ternaus16 is the high-performance

teacher network considered for the distillation. Ensemble-DNN

is the segmentation model built by aggregating the results of

several networks that get the 1st place in Kaggle challenge

associated to the dataset. This latter network is not used as teacher

since the way the set of results are combined in an ensembling

method could alter the distillation process and this matter is out

of the scope of this paper.

4.3 Results and discussion

The results obtained with the different models are show in Table

1. It is possible to compare the performances in terms of F2-score

for the segmentation task. The F2-score is computed on the class

of interest in this application, i.e., the class ship. The F2-score is

the metric used in the original ADS challenge and, since ground

truth of the test set is not available, evaluation on the test set is

done through Kaggle website which provides the F2-score as

results. It is computed based on the number of true positives (TP),

false negatives (FN), and false positives (FP) resulting from

comparing the predicted object to all ground truth objects. In

particular, a predicted object is considered a "hit" if its

intersection over union with a ground truth object is greater than

a given threshold. Then, the final score is generated by averaging

the F2-score obtained with different thresholds (0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95) where the F2-score is

computed with the following formula, with 𝛽 = 2,

𝐹𝛽 − 𝑠𝑐𝑜𝑟𝑒 =
(1+𝛽2).𝑇𝑃

(1+𝛽2).𝑇𝑃 +𝛽2.𝐹𝑁 + 𝐹𝑃
 (2)

From the results shown in Table 1, it is possible to draw several

conclusions. First of all, we can see that there is indeed a drop of

performances between the teacher network Ternaus16 and the

student networks. The drop of performance appears to be around

5% for the biggest distilled model (Distilled U-Net 1) and

remains stable until reduces for the model of 1 million parameters

(Distilled U-Net 3). It seems that below 1 million parameters

performances start to decrease more constantly. However, when

comparing with U-Net vanilla (version learned from scratch,

without distillation) which is the original architecture of the

distilled model, it is worth noting that even the performances of

the distilled model with 0.5 million parameters (Distilled U-Net

4) gives better results. It proves that the distilled models can

benefit from the high-performances teacher model even though

if the architecture is entirely different (Ternaus 16 to U-Net).

Figure 3. Performances of U-Net 2 (2 million parameters) when

learning is done from scratch.

To further assess the interest of distillation, a second experiment

was carried. In this experiment only one network architecture was

considered, the architecture used for the Distilled U-Net 2 with 2

million parameters. The aim was to verify the performance

reachable with this architecture when directly training it from

scratch. As shown in Figure 3, the results showed that it is indeed

possible to reach the same accuracy but at the cost of a very time-

consuming training process. The distilled version was trained 32

hours when it was necessary to train the “from-scratch” version

for 20 days on the same HW (1x NVIDIA 1080 Ti).

Similarly, as a third experimental setup, the lighter models

Distilled U-Net 3 and 4, with respectively 1 million and 0.5

million parameters, have been trained from scratch for 32 hours.

The results obtained with these two models, referred to as “From

scratch” U-Net 3 and 4, are presented in Figure 4. These results

have been obtained using the same training procedure described

in Section 4.2. They show that, with the same amount of training

time and the same architecture, the distilled networks managed

to learn faster thanks to the teacher network. More precisely,

Figure 4 shows that the results of the “from scratch” models are

very dependent of the postprocessing step and especially the

operating point chosen on the ROC curve.

0,5

0,6

0,7

0,8

0,9

1

0 500 1000
Epoch

Performances of "from-scratch" U-Net 2

precision recall

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1557

Figure 4. Comparison of performances between networks

learned from scratch and distilled networks in function of the

binarization threshold.

5. CONCLUSION

Distillation is a generic and re-usable workflow for simplifying

DL networks for defining new Earth Observation (EO) products

generated on-board the satellites. It can reduce the uptaking cost

of innovative deep learning technologies for on-board use.

This paper presented a distillation strategy that allows the user to

reduce the size of a network to desired number of parameters in

order to fit in a specific hardware.

A use case performing segmentation of EO images was

implemented and showed, in particular, that is possible to reduce

drastically the number of parameters with a minimal drop of

performances. Moreover, the proposed reduction framework has

the advantage to be compatible with additional reduction

methods (pruning, quantization, etc).

Future works include the study of the influence of additional

reduction methods on the performances of the model.

Additionally, the presented method is to be tested on other

datasets, more specifically additional use cases featuring planes

or building detection are being considered.

ACKNOWLEDGEMENTS

The authors acknowledge the support from the CNES, French

government Space Agency, and specially the DSO/SI/2A

department, under the contract N° 190392/00 “Smart payloads”

which allowed to perform a significant part of the work presented

in this paper.

REFERENCES

Abdelouahab, K., Pelcat, M., Serot, J., Berry, F., 2018.

Accelerating cnn inference on fpgas: A survey. ArXiv Prepr.

ArXiv180601683.

Bianco, S., Cadene, R., Celona, L., Napoletano, P., 2018.

Benchmark Analysis of Representative Deep Neural Network

Architectures. IEEE Access 6, 64270–64277.

https://doi.org/10.1109/ACCESS.2018.2877890

Buciluǎ, C., Caruana, R., Niculescu-Mizil, A., 2006. Model

compression, in: Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining. ACM, pp. 535–541.

Chollet, F., 2017. Xception: Deep learning with depthwise

separable convolutions, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. pp. 1251–1258.

Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.,

2014. Exploiting linear structure within convolutional networks

for efficient evaluation, in: Advances in Neural Information

Processing Systems. pp. 1269–1277.

Frosst, N., Hinton, G., 2017. Distilling a Neural Network Into a

Soft Decision Tree. ArXiv171109784 Cs Stat.

Greenland, S., Ireland, M., Kobayashi, C., Mendham, P., Post,

M., White, D., 2018. Development of a minaturised forwards

looking imager using deep learning for responsive operations.

ESA.

Han, S., Mao, H., Dally, W.J., 2015a. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding. ArXiv Prepr.

ArXiv151000149.

Han, S., Pool, J., Tran, J., Dally, W., 2015b. Learning both

weights and connections for efficient neural network, in:

Advances in Neural Information Processing Systems. pp. 1135–

1143.

Hassibi, B., Stork, D.G., Wolff, G.J., 1993. Optimal brain

surgeon and general network pruning, in IEEE International

Conference on Neural Networks. IEEE, pp. 293–299.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning

for image recognition, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. pp. 770–778.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge

in a Neural Network. ArXiv150302531 Cs Stat.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,

Weyand, T., Andreetto, M., Adam, H., 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. ArXiv Prepr. ArXiv170404861.

Iglovikov, V., Seferbekov, S.S., Buslaev, A., Shvets, A., 2018.

TernausNetV2: Fully Convolutional Network for Instance

Segmentation., in: CVPR Workshops. pp. 233–237.

Jaderberg, M., Vedaldi, A., Zisserman, A., 2014. Speeding up

convolutional neural networks with low rank expansions. ArXiv

Prepr. ArXiv14053866.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet

classification with deep convolutional neural networks, in:

Advances in Neural Information Processing Systems. pp. 1097–

1105.

0,7

0,71

0,72

0,73

0,74

0,75

0,76

0,77

0,78

0,9 0,92 0,94 0,96 0,98 1

F2 scores

"From scratch" U-Net 4

"From scratch" U-Net 3

Distilled U-Net 4

Distilled U-Net 3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1558

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86,

2278–2324.

Lee, D., Kwon, S.J., Kim, B., Wei, G.-Y., 2019. Learning Low-

Rank Approximation for CNNs. ArXiv190510145 Cs Stat.

Lentaris, G., Maragos, K., Stratakos, I., Papadopoulos, L.,

Papanikolaou, O., Soudris, D., Lourakis, M., Zabulis, X.,

Gonzalez-Arjona, D., Furano, G., 2018. High-performance

embedded computing in space: Evaluation of platforms for

vision-based navigation. J. Aerosp. Inf. Syst. 15, 178–192.

Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P., 2016.

Pruning filters for efficient convnets. ArXiv Prepr.

ArXiv160808710.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-

Y., Berg, A.C., 2016. Ssd: Single shot multibox detector, in

European Conference on Computer Vision. Springer, pp. 21–37.

Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J., 2016.

Pruning convolutional neural networks for resource efficient

inference. ArXiv Prepr. ArXiv161106440.

Polino, Antonio, Razvan Pascanu, et Dan Alistarh 2018. Model

compression via distillation and quantization. ArXiv preprint

arXiv:1802.05668, 2018.

Qi, B., Shi, H., Zhuang, Y., Chen, H., Chen, L., 2018. On-board,

real-time preprocessing system for optical remote-sensing

imagery. Sensors 18, 1328.

Redmon, J., Farhadi, A., 2018. Yolov3: An incremental

improvement. ArXiv Prepr. ArXiv180402767.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net:

Convolutional Networks for Biomedical Image Segmentation.

ArXiv150504597 Cs.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional

networks for large-scale image recognition. ArXiv Prepr.

ArXiv14091556.

Soukup, M., Gailis, J., Fantin, D., Jochemsen, A., Aas, C., Baeck,

P., Benhadj, I., Livens, S., Delauré, B., Menenti, M., 2016.

HyperScout: Onboard Processing of Hyperspectral Imaging Data

on a Nanosatellite, in: Proceedings of the Small Satellites,

System & Services Symposium (4S) Conference, Valletta, Malta.

Stivaktakis, R., Tsagkatakis, G., Moraes, B., Abdalla, F., Starck,

J.-L., Tsakalides, P., 2019. Convolutional neural networks for

spectroscopic redshift estimation on euclid data. IEEE Trans. Big

Data.

Tai, C., Xiao, T., Zhang, Y., Wang, X., E, W., 2016.

Convolutional neural networks with low-rank regularization.

ArXiv151106067 Cs Stat.

Tan, S., Caruana, R., Hooker, G., Lou, Y., 2018. Distill-and-

compare: auditing black-box models using transparent model

distillation, in: Proceedings of the 2018 AAAI/ACM Conference

on AI, Ethics, and Society. ACM, pp. 303–310.

Vanhoucke, V., Senior, A., Mao, M.Z., 2011. Improving the

speed of neural networks on CPUs.

Wei, X., Liu, W., Chen, L., Ma, L., Chen, H., Zhuang, Y., 2019.

FPGA-Based Hybrid-Type Implementation of Quantized Neural

Networks for Remote Sensing Applications. Sensors, 2019 Feb

22;19(4). pii: E924. doi: 10.3390/s19040924..

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

1559

	TOWARDS DISTILLATION OF DEEP NEURAL NETWORKS FOR SATELLITE ON-BOARD IMAGE SEGMENTATION
	1. Introduction
	2. RELATED WORK
	2.1 Pruning methods
	2.2 Low rank approximation
	2.3 Other optimization methods
	2.4 Teacher models

	3. DISTILLATION METHOD
	3.1 Considered workflow
	3.2 Architecture modification

	4. EXPERIMENTS
	4.1 Task and dataset
	4.2 Compared methods
	4.3 Results and discussion

	5. CONCLUSION
	Acknowledgements
	References

