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ABSTRACT: 

 

Cubesats platforms expansion increases the need to simplify payloads and to optimize downlink data capabilities. A promising solution 

is to enhance on-board software, in order to take early decisions, automatically. However, the most efficient methods for data analysis 

are generally large deep neural networks (DNN) oversized to be loaded and processed on limited hardware capacities of cubesats. To 

use them, we must reduce the size of DNN while accommodating efficiency in terms of both accuracy and inference cost. In this paper, 

we propose a distillation method which reduces image segmentation deep neural network’s size to fit into on board processors. This 

method is presented through a ship detection example comparing accuracy and inference costs for several networks. 

 

 

1. INTRODUCTION 

Nowadays, cubesats platforms appear to be an attractive and low-

cost tool to acquire image data from outer space. However, 

downlink data capabilities are the bottleneck of the cubesats 

platforms. It is thus necessary to reduce the volume of data to 

downstream either by data compression or by data selection. The 

compression ratio required for image payloads is too high to be 

obtained by existing compression methods (Buciluǎ et al., 2006; 

Frosst and Hinton, 2017; Hinton et al., 2015). On-board, feature 

extraction based on deep learning (DL) (Greenland et al., 2018) 

provides, by now, the most efficient solution for upstream data 

reduction. Moreover, it can provide high-value information 

directly exploitable. However, the most efficient DL models are 

usually cumbersome due to ensembling methodologies, e.g. 

hundreds of millions of parameters in the case of the winners of 

Airbus Ship Detection challenge proposed on Kaggle1, and are 

not compatible with the limited performances of the processors 

available on board. 

 

Some missions integrate specific intelligence which can decide 

on storage or scenes acquisition regarding cloud detection, e.g. 

Forward Looking Imager (Greenland et al., 2018). On-board 

features extraction allows to decide on board if data should be 

stored and downlinked or not. It can also directly supply the 

information requested without downloading the full data image. 

Data reduction by DL-based feature extraction on board will 

improve the acquisitions capabilities for a defined bandwidth 

budget and will optimize data downlink providing useful 

information (Soukup et al., 2016). 

 

Instead of relying on ground operator, decisions can be made on 

board, with efficient algorithms. This aims to increase the 

payload’s autonomy, to release burden on ground segments and 

to reduce costs (since less operators are required) for creating 

valuable products. 

 

The point here is that all these specific, long, tedious and 

complicated developments in terms of methodology, software, 

integration and verification can be replaced by embedded 

 
*  Corresponding author 
1 e.g. 6th place candidate : https://www.kaggle.com/c/airbus-ship-detection/discussion/71782 

intelligence. For example, improving the reactivity may allow a 

simple constellation to continuously monitor events and to 

eventually downlink acquired/processed data when faced with 

predefined observed activities. Such scenario could also be 

compatible with satellites being interconnected and allowing 

downlink for the best positioned satellite on available reception 

stations. Moreover, the image processing chain on-board can be 

reprogrammable. The goal of the system design should be to 

make possible the replacement of the DL components by a new 

DL network, devoted to other feature extraction required by the 

mission. Thus, the same cubesat platform could be used for 

different user-driven missions contributing to optimize mission 

cost.  

 

However, existing state-of-the-art deep neural networks (DNN) 

which perform the best on earth observation (EO) tasks are huge 

networks (several hundred million parameters). They are often 

aggregates of several models and require a lot of computation 

power to be run (Bianco et al., 2018). On the other hand, 

hardware (HW) for computation, in satellites with an image 

payload, is very limited (Lentaris et al., 2018) due to power 

consumption restrictions (between 1 and 10 W against 250 W for 

a NVIDIA Titan X) and dissipation problems. For on-board 

processing, the reduction of the computational burden linked to 

inference is the priority (Abdelouahab et al., 2018; Qi et al., 

2018). 

 

Methods exist to reduce the number of operations of these huge 

high-performance networks, but the achieved reduction factors 

with most techniques, on fully convolutional networks, do not 

exceed a x4, x9 factor (Han et al., 2015a). Consequently, the best 

DNN cannot be used with a restricted computation power and 

there is no other choice but to use less reliable, less efficient and 

smaller networks. Although these smaller networks (<5 million 

parameters) fit in existing computation payload, they do not bring 

high accuracy making them potentially useless depending on the 

mission requirements. For example, the works of the Aiko 

society have focused on a library called Mirage AI aiming at 

improving on-board autonomy and, more generally, mission 

planning. Their work has focused on the reuse of simple or highly 
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efficient networks in terms of performance/number of operations, 

e.g. ship detection with fast detectors (SSD (Liu et al., 2016), 

YOLO (Redmon and Farhadi, 2018)) followed by a classification 

network (MobileNet, Howard et al., 2017). In this work, authors 

display a total size of 15MB for their networks with inference 

times of less than 1 second per image, the full image size and the 

final accuracy being not known. 

 

One strategy to alleviate this issue is to try to extract the 

meaningful parts of these large and complex high-performance 

DNNs, possibly aggregates or ensemble models, using a 

teacher/student training method called distillation approach. This 

approach allows us to take into account what has been learned by  

the huge teacher model as mapping to vectors of real values and 

to approximate this mapping as best as we can. The interesting 

part is that this approach allows small architectures to reach 

rapidly much higher performances than conventional training 

(Hinton et al., 2015), even though a state-of-the-art training 

procedure is used such as augmentation, recent optimizer, 

learning rate scheduling and policies, stratification on data, batch 

accumulation, etc. Moreover, this approach being a first step, the 

other classic simplification methods (pruning, low rank 

approximation, quantization, weight sharing, …) can still be 

used. Cumulating the reduction from this approach and classic 

methods, it is possible to reach high enough reduction rates, e.g. 

(Polino et al. 2018), to bring high performances networks on 

board. This paper aims to demonstrate it in the specific context 

of image segmentation of remote sensing images. 

 

The objective of this study is to reduce the size, in terms of 

number of parameters, of a given high performance network. In 

order to fit on cubesats processing payloads, the aim is to produce 

a new network with around 1 million free parameters. This size 

should fit in mid capacities COTS (Commercial Off-The-Shelf) 

and available radiation tolerant HW (Lentaris et al., 2018) used 

on board the satellites. This objective should be reached with a 

minimum accuracy loss, a maximum loss of 5% of the 

performances is the target of the study. 

 

The rest of the article is organized as follows. Section 2 presents 

a synthetic literature review about the various approaches to 

reduce a DNN. In Section 3, the target segmentation task and the 

developed distillation method are presented. Then, experimental 

results are provided in Section 4 showing that distilled models 

are significantly smaller at the cost of very limited drop of 

performances. Finally, Section 5 concludes the paper and opens 

some perspectives to this work. 

 

2. RELATED WORK 

This section introduces the major approaches for DNN reduction 

in order to outline the specificities and interest of the proposed 

distillation method. 

 

2.1 Pruning methods 

Pruning methods have been initially developed to reduce 

overfitting in fully connected networks. These approaches aim at 

deleting connections between neurons in order to simplify the 

network. It is equivalent to setting a subset of the network 

weights to 0. There are several ways to select the weights to be 

nullified. The process can be based on complex optimization 

problem such as in (Hassibi et al., 1993), where authors use 

Taylor series approximation of the cost function to identify the 

optimal weights to delete. Other works have proposed to base the 

selection on heuristic criteria involving thresholding of the 

values. Using such methods, (Han et al., 2015b) have optimized 

both convolutional and fully connected layers of networks based 

on AlexNet (Krizhevsky et al., 2012) or VGG-16 (Simonyan and 

Zisserman, 2014) and obtained a reduction of the number of 

weights of a factor 10-12 and a reduction of processing time of a 

factor 3-5. These methods are very efficient to compress fully 

connected layers specifically, even though it means using sparse 

DNN which generally require the use of specialized hardware to 

handle sparse computation, according to the authors. 

 

Regarding convolutional layers, pruning can take several forms 

from deleting complete feature maps to deleting only one of the 

filters producing a given feature map (Li et al., 2016; Molchanov 

et al., 2016). The former is, for example, explored by (Li et al., 

2016) where authors delete feature maps produced by filters of 

low L1-norm. Using a complex reduction scheme, Li et al. 

succeed to reduce the computational burden by 30% with a VGG-

16 network (Simonyan and Zisserman, 2014) and a ResNet 

network (He et al., 2016). In a more general case, the reduction 

factor of the number of parameters in convolutional layers is 

closer to 2-4.  

 

Overall, this family of methods gives interesting results but does 

not allow to modify/simplify the architecture of the considered 

networks and is limited in terms of reduction capacity. In 

operational context, pruning is generally complemented with 

other compression methods such as code book, weight sharing or 

Huffman coding (Han et al., 2015a). However, these additional 

optimizations can produce a compressed version of the network 

but does not reduce the number of necessary computational 

operations. They can even create an additional cost during 

inference since it is necessary to decompress the network to use 

it. Finally, it is also generally necessary to re-train the network 

after the pruning process. 

 

Pruning methods have already been used to produce DNNs to be 

used in processing on-board the satellites. In the Euclid mission 

(Stivaktakis et al., 2019), the redshift estimation relies on a 1D 

CNN (Convolutional Neural Network) based on a LeNet network 

(LeCun et al., 1998). To reduce the memory footprint, the authors 

have used several methods: use single precision, prune the 

weights values (below a given threshold) to keep 30% of the 

coefficients, group weights in centroids, store them into a code 

book and use a smart clustering weight method. In the end, the 

memory footprint was reduced by a factor x54, with an increase 

in error rate of 0.8%. Most of the compression was done on the 

fully connected layers and especially the final layers. These final 

layers were modified in order to transform the regression 

problem into a classification problem with 1,000 classes. Let us 

note that pruning methods generally behave better in conjunction 

with retraining. 

 

2.2 Low rank approximation 

Pruning methods work extremely well for fully connected layers 

but often do not exceed 50% weight reduction for convolutional 

layers. Here, to reduce both computation and weights, some 

authors use low rank approximation on the convolutional layers. 

These approaches see the convolution blocks as 4D tensors and 

try to find low-rank approximations (for given specific norms) 

for them. The approximations can be found using SVD (Single 

Value Decomposition) like-decompositions, and some of their 

generalisations, or using more explicit representations. Several 

papers (Denton et al., 2014; Jaderberg et al., 2014; Tai et al., 

2016) showed that it is possible to speedup forward computation 

by a factor of 2 without having to re-train the model and to reduce 

the number of operations by a factor of 2 in convolutional layers. 

Overall, the low rank constraint is an efficient regularization 
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technique, providing state-of-the-art accuracies (classification on 

Imagenet cases) but reduces weight sizes only for convolutional 

layers with a modest reduction factor compared to other 

reduction methods. 

 

2.3 Other optimization methods 

Many other methods were proposed to reduce DNN. Most of 

them focus mainly on the code optimization aspect. For example, 

quantification of weights can be performed to go from variables 

coded in single-precision floating-point format (float32) to 

variables coded in signed integer format (int8) reducing by a 

factor of 4 the memory footprint and opening the possibility to 

implement code optimization procedure such as SIMD 

instructions (Single Instruction Multiple Data, see (Vanhoucke et 

al., 2011)). Moreover, further benefits can be expected in terms 

of execution simplification and computing time in FPGAs (Field 

Programmable Gate Arrays) since int8 instructions are much 

simpler to implement in terms of logic gate numbers. 

 

To go further, it was also proposed to recourse to weight sharing 

as performed after pruning step in previous section 2.1. This 

approach, proposed by (Han et al., 2015a), introduces the idea of 

using tabulated values that allow us to encode the high-precision 

values using table indices with less memory weight.  

 

As explained before, these methods focusing on 

code/computation optimization can generally be used in addition 

to other methods focusing more on the optimization of the 

network architecture, with the limitations already presented (see 

section 2.1). It is possible to use most of them with the distillation 

method proposed in this paper. Studying their impact/efficiency 

is out of the scope of this article which is why they are not 

discussed in the remaining of this paper. 

 

2.4 Teacher models 

The idea of teacher models was introduced by (Buciluǎ et al., 

2006). It aims at transferring the knowledge of a big teacher 

network in a smaller DNN by training the small DNN to predict 

the output of the teacher model.  

 

This technique, denoted usually by distillation, allows to change 

network topology (remove layers, bridges, pooling layers) or 

modify elementary blocks (from convolution to depthwise 

convolution). It is performed in a teacher/student fashion, where 

each network has its own topology. Consequently, this method is 

compatible with both large, possibly aggregate, teacher models 

and small, compact student models. The aim is to find a small 

network mimicking the results of a large network. Distillation 

have already been used in various application frameworks such 

as acoustic models (Hinton et al., 2015) or tabular data (Tan et 

al., 2018). In this paper, a distillation process is developed in the 

specific context of image segmentation as described in the next 

section. 

 

3. DISTILLATION METHOD 

The proposed workflow aims at reducing the number of free 

parameters drastically. The aim of this paper is to simplify 

networks reaching very high accuracy, obtained using all the 

state-of-the-art training strategies without restriction. However, 

classic methods to reduce neural networks are not sufficient for 

such huge models. In fact, pruning studies show that a reduction 

of a factor 2-3 in the number of free parameters in convolutional 

layers can be achieved without significant accuracy drop 

(Molchanov et al., 2016) even so, these results are dependent of 

the involved application and architecture. A similar work can be 

done on linear subspace approximations (e.g. SVD on matrix) 

when trying to reduce the number of free parameters in linear 

operators, like convolution or fully connected blocks. Here, the 

literature reports reduction factors around 2 or 3 (Lee et al., 

2019). 

 

Then, quantization is often reduced to computations in int8 

instead of float32. Despite a reduction of the memory footprint 

by a factor 4, this does not reduce the number of free parameters 

of the network. However, it does improve the global speed since 

less elementary operations are required when computing int8 

arithmetic (Wei et al., 2019). 

 

The objective is thus to obtain a better reduction using a 

distillation method, the other simplification techniques being 

considered complementary. 

 

3.1 Considered workflow 

The first step is to train a complex state-of-the-art DNN using the 

complete available data. This process should use all the 

conventional methods improving the results such as 

augmentation, recent optimization strategy, complex learning 

rate scheduling, etc. 

 

The idea is to benefit from all the complex learning methods 

available regardless of the cost to obtain the best teacher network. 

As an example, it is common to find huge models with more than 

200 million free parameters to obtain the best performances such 

as the one developed in Kaggle-like competitions. 

 

In order to fit on cubesats processing payloads, the next step is to 

produce a new network with around 1 million free parameters as 

stated in the objective of this paper. The method adopted in this 

study is to use a distillation process in order to reach this 

objective. The distillation strategy is very straightforward as 

illustrated in Figure 1. The smaller student network is trained to 

predict the output of the teacher network using a weighted MSE 

loss function defined as follows: 

 

𝑀𝑆𝐸 =  
1

𝑁
∑ 𝑤𝑛‖𝒚𝑛 − �̂�𝑛‖2

2𝑁
𝑛=1         (1) 

 

where �̂�𝑛 stands for the predicted probability vector gathering the 

probabilities to belong to each of the 𝐶 classes, 𝒚𝑛 for the 

reference probability vector produced by the teacher, 𝑤𝑛 is the 

weight associated to sample n which depends of the class of the 

sample (in experiments, 0.9 for ‘ship’ and 0.1 for ‘non-ship’). We 

do not present the formula with associated weight for each class, 

but it is straightforward. 

 

Figure 1. Distillation process 
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3.2 Architecture modification 

As stated earlier, distillation is the only method allowing a 

change of network architecture at the cost of a special training. It 

is actually possible to consider any architecture as student 

network. In this paper, we propose to start from standard 

architecture such as U-Net network and to implement some 

architecture modifications aiming at simplifying specific layers 

of the networks. The substitution of conventional convolutions 

by depthwise separable convolutions (Chollet, 2017; Howard et 

al., 2017) is in particular implemented. Such approach reduces 

the number of free parameters of these layers by a constant factor 

of 9. This proposition was implemented in the experiments 

described in Section 4. 

 

After this architecture simplification, the second modification 

proposed in this paper to reach the desired number of free 

parameters is the reduction of the number of features used in the 

output of the intermediate layers. It is a simple way to go from a 

specific architecture to an architecture with the desired number 

of parameters. 

 

These modifications are performed on a well-established network 

architecture, such as U-Net for segmentation task (Ronneberger 

et al., 2015). Applying these simplifications allows one to reach  

a desired number of parameters that can be fitted into a given HW 

platform. 

 

4. EXPERIMENTS 

4.1 Task and dataset 

The task that was used to test this reduction framework is the 

Airbus Ship Detection Challenge proposed on Kaggle2. The 

objective is to perform the best ships detection by segmenting 

remote sensing satellite images. The dataset is composed of more 

than 200k 3-channels RGB images of 768-by-768 pixels. 

Unfortunately, no information on the origin and resolution of the 

images is provided by Airbus. The dataset has very unbalanced 

classes since ships are small objects and, moreover, only around 

one quarter of the images contain ships for a total of around 

200,000 labelled ships. Figure 2 shows a few examples of images 

with their associated ground truth segmentation. 

 

A split of the dataset into train and test sets is provided by the 

authors of the dataset where the ground truth is only available for 

 
2 https://kaggle.com/c/airbus-ship-detection 

the training set and the results on the test can be evaluated using 

Kaggle website. In addition, for the presented experiments the 

training set was split in a train and validation set with a ratio of 

80%/20%. 

 

   

   
   

Figure 2. Dataset Kaggle “Airbus Ship Detection” 

 

4.2 Compared methods 

Since the goal of the experiment is to make the most performant 

ship detection networks suitable for execution on-board the 

satellites, obtaining these high-performance networks is the first 

step. In our experiments we started with a 37 million free 

parameters model based on a Ternaus16 architecture with a 

VGG16 encoder (Iglovikov et al., 2018). This network achieves 

high performances in the ADS ship detection competition, i.e., 

3% below the top-1 Kaggle score. Thus, it is used as teacher 

networks in the distillation framework. The distillation aims at 

reducing the number of parameters of this model. 

 

For the network reduction part, 4 student models have been 

trained using the proposed distillation framework. All these 

networks are based on a standard architecture, specifically a U-

Net architecture (Ronneberger et al., 2015). The number of 

parameters of this baseline architecture is gradually reduced from 

4 million of free parameters to 0.5 million. Table 1 shows how 

the number of features, before each reduction of the spatial 

resolution (maxpooling layer), is gradually reduced to obtain a 

specific number of parameters. In the end, the network selection 

Model 
Number of free 

parameters 

Number of feature maps 

by layers 
Training time 

(1x Nvidia 1080Ti) 
F2 score 

U-Net vanilla 31 M 64/128/256/512/1024 Long > 1 week 0.733 

     

Ternaus16 37 M 64/128/256/512/512 Long > 1 week 0.827 

Ensemble-DNN (1st place 

Kaggle competitor) 
30 M (x10) NA NA 0.855 

Distilled U-Net 1 4 M 64/128/256/512/1024 32 hours 0.781 

Distilled U-Net 2 2 M 64/128/256/512/512 32 hours 0.780 

Distilled U-Net 3 1 M 64/128/256/256/256 32 hours 0.774 

Distilled U-Net 4 0.5 M 64/128/192/192/192 32 hours 0.757 

     

Table 1. Comparison of architecture and performances of all considered models. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

 
1556



 

depends both on the hardware capacities and the performance 

requirements. In terms of memory occupancy, these networks 

with roughly 0.5 million parameters can fit on most standard 

FPGA, with approximately a few megabytes of BRAM (Block 

Random Access Memory (RAM), dual-port RAM module 

present into the FPGAs). Thus, if we can maintain high 

performances for such networks, they will be suitable for 

execution in FPGA on board the satellites and achieve the use 

case demonstration success. It has been demonstrated by the 

execution of the inference of the network “Distilled U-Net 4” (0,5 

million parameters) with performance 0.757 in F2 -score, in a 

mid-range FPGA (the one included in the Xilinx ZCU102 test 

board) very similar of those used on-board the satellites. 

 

These 4 student networks have been trained using a stochastic 

gradient descent with a momentum of 0.9 and Nesterov 

acceleration. The learning rate was initialized at 0.01 and 

gradually reduced using a plateau patience of 80 epochs, i.e., after 

80 consecutive epochs without reaching a better minimum of the 

loss function, the learning rate is reduced by half. Finally, an 

augmentation procedure has been used during training 

performing standard transformations randomly on the input 

images (rotation, zoom, flip, illumination change). 

 

It should be also noted that the results produced by the networks 

have followed a final postprocessing step. The networks produce 

probabilities to belong to each class but the evaluation procedure, 

described in the next section, requires having binary masks as 

outputs. The first step of the postprocessing is thus a binarization 

of the output using a threshold value. The thresholding operation 

corresponds to choosing a specific operating point on ROC 

(Receiver Operating Characteristic) curve of the model. In the 

following experiments, several thresholds have been tested and 

the one corresponding to the best result on the validation set have 

been kept.  

 

The second and last step of the postprocessing involves 

performing a morphological opening on the mask (disk of radius 

2 as structural element). 

 

The simplified networks performances are evaluated on unseen 

data and compared to the more accurate but bigger networks: 

Ensemble-DNN and Ternaus16, and to a U-Net vanilla, the same 

architecture than student networks but learned by classical 

training from input images. Ternaus16 is the high-performance 

teacher network considered for the distillation. Ensemble-DNN 

is the segmentation model built by aggregating the results of 

several networks that get the 1st place in Kaggle challenge 

associated to the dataset. This latter network is not used as teacher 

since the way the set of results are combined in an ensembling 

method could alter the distillation process and this matter is out 

of the scope of this paper. 

 

4.3 Results and discussion 

The results obtained with the different models are show in Table 

1. It is possible to compare the performances in terms of F2-score 

for the segmentation task. The F2-score is computed on the class 

of interest in this application, i.e., the class ship. The F2-score is 

the metric used in the original ADS challenge and, since ground 

truth of the test set is not available, evaluation on the test set is 

done through Kaggle website which provides the F2-score as 

results. It is computed based on the number of true positives (TP), 

false negatives (FN), and false positives (FP) resulting from 

comparing the predicted object to all ground truth objects. In 

particular, a predicted object is considered a "hit" if its 

intersection over union with a ground truth object is greater than 

a given threshold. Then, the final score is generated by averaging 

the F2-score obtained with different thresholds (0.5, 0.55, 0.6, 

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95) where the F2-score is 

computed with the following formula, with 𝛽 = 2, 

 

𝐹𝛽 − 𝑠𝑐𝑜𝑟𝑒 =  
(1+𝛽2).𝑇𝑃

(1+𝛽2).𝑇𝑃 +𝛽2.𝐹𝑁 + 𝐹𝑃
        (2) 

 

From the results shown in Table 1, it is possible to draw several 

conclusions. First of all, we can see that there is indeed a drop of 

performances between the teacher network Ternaus16 and the 

student networks. The drop of performance appears to be around 

5% for the biggest distilled model (Distilled U-Net 1) and 

remains stable until reduces for the model of 1 million parameters 

(Distilled U-Net 3). It seems that below 1 million parameters 

performances start to decrease more constantly. However, when 

comparing with U-Net vanilla (version learned from scratch, 

without distillation) which is the original architecture of the 

distilled model, it is worth noting that even the performances of 

the distilled model with 0.5 million parameters (Distilled U-Net 

4) gives better results. It proves that the distilled models can 

benefit from the high-performances teacher model even though 

if the architecture is entirely different (Ternaus 16 to U-Net). 

 

 

Figure 3. Performances of U-Net 2 (2 million parameters) when 

learning is done from scratch. 

 

To further assess the interest of distillation, a second experiment 

was carried. In this experiment only one network architecture was 

considered, the architecture used for the Distilled U-Net 2 with 2 

million parameters. The aim was to verify the performance 

reachable with this architecture when directly training it from 

scratch. As shown in Figure 3, the results showed that it is indeed 

possible to reach the same accuracy but at the cost of a very time-

consuming training process. The distilled version was trained 32 

hours when it was necessary to train the “from-scratch” version 

for 20 days on the same HW (1x NVIDIA 1080 Ti). 

Similarly, as a third experimental setup, the lighter models 

Distilled U-Net 3 and 4, with respectively 1 million and 0.5 

million parameters, have been trained from scratch for 32 hours. 

The results obtained with these two models, referred to as “From 

scratch” U-Net 3 and 4, are presented in Figure 4. These results 

have been obtained using the same training procedure described 

in Section 4.2. They show that, with the same amount of training 

time and the same architecture, the distilled networks managed 

to learn faster thanks to the teacher network. More precisely, 

Figure 4 shows that the results of the “from scratch” models are 

very dependent of the postprocessing step and especially the 

operating point chosen on the ROC curve. 

0,5

0,6

0,7

0,8

0,9

1

0 500 1000
Epoch

Performances of "from-scratch" U-Net 2

precision recall

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1553-2020 | © Authors 2020. CC BY 4.0 License.

 
1557



 

 

 

Figure 4. Comparison of performances between networks 

learned from scratch and distilled networks in function of the 

binarization threshold. 

 

5. CONCLUSION 

Distillation is a generic and re-usable workflow for simplifying 

DL networks for defining new Earth Observation (EO) products 

generated on-board the satellites. It can reduce the uptaking cost 

of innovative deep learning technologies for on-board use. 

 

This paper presented a distillation strategy that allows the user to 

reduce the size of a network to desired number of parameters in 

order to fit in a specific hardware. 

 

A use case performing segmentation of EO images was 

implemented and showed, in particular, that is possible to reduce 

drastically the number of parameters with a minimal drop of 

performances. Moreover, the proposed reduction framework has 

the advantage to be compatible with additional reduction 

methods (pruning, quantization, etc). 

 

Future works include the study of the influence of additional 

reduction methods on the performances of the model. 

Additionally, the presented method is to be tested on other 

datasets, more specifically additional use cases featuring planes 

or building detection are being considered. 
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