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ABSTRACT: 
 
This paper presents a novel technique to improve geological understanding in regions of historic mining activity. This is achieved 
through inferring the orientations of geological structures from the imprints left on the landscape by past mining activities. Open source 
high resolution LiDAR datasets are used to fine-tune a deep convolutional neural network designed initially for Lunar LiDAR crater 
identification. By using a transfer learning approach between these two very similar domains, high accuracy predictions of pit locations 
can be generated in the form of a raster mask of pit location probabilities. Taking the raster of the predicted pit location centres as an 
input, a Hough transformation is used to fit lines through the centres of the detected pits. The results demonstrate that these lines follow 
the patterns of known mineralised veins in the area, alongside highlighting veins which are below the scale of the published geological 
maps.  
 
 

1. INTRODUCTION 

Detection of geological lineaments is a significant part of 
regional geological analysis, providing information on local 
geological structures. Lineaments are a broad category of 
features, corresponding to mappable linear surface features 
which may represent a subsurface phenomenon (O’Leary et al., 
1976). Traditionally, lineaments were digitised manually from 
airborne and spaceborne optical imagery or airborne geophysics; 
however, these methods  are time consuming, subjective and 
potentially unreliable (Masoud and Koike, 2017). In addition to 
the time and subjectivity issues, in many climates direct fault 
mapping is challenged by a lack of exposed surface rocks across 
large geographical extents (Yeomans et al., 2019). To address 
these issues, much research has been focused on developing 
semi-automatic methods for lineament detection, from early 
methods using potential field data (Blakely and Simpson, 1986) 
to modern MATLAB based toolboxes (e.g. TecLines; Rahnama 
and Gloaguen, 2014). Semi-automated methods historically have 
had difficulties with roads and field boundaries, along with 
vegetation obscuring the ground surface in optical imagery. 
Using LiDAR data instead of optical data can overcome some of 
these issues, as shown in Grebby et al. (2012).  
 
In many areas of the world, particularly in post-industrialised 
nations, the marks of historic mining activity are still visible on 
the landscape. Rather than using the natural geomorphology to 
map the structural geology to infer the mineralisation, it may also 
be possible to infer the mineralisation directly from the mining 
remains. Furthermore, in some cases data on mine workings and 
mineralised structures may be lost; therefore, methods such as 
this can add value. This method also could be used to search 
along strike for potential shafts that may have been covered or 
undetected. This paper presents a novel methodology which uses 
deep learning to detect historic mining remains from LiDAR 
data, prior to semi-automatically fitting lineaments in the area to 
infer potentially mineralised features. Herein, we summarise 
related work that utilises semi-automatic lineament detection and 
deep learning methodologies. The geology and mining history of 
the study area in the Dartmoor National Park is briefly outlined 
prior to detailing the algorithm and processing steps, concluding 
with the results and recommendations for further work. 

2. RELATED WORKS 

Primarily, semi-automatic lineament detection approaches 
follow a processing workflow of data representation, image 
enhancement, edge extraction and edge connection (Šilhavý et 
al., 2016, Masoud and Koike, 2017). The input data format can 
be an image from an optical multispectral satellite sensor (Soto-
Pinto et al., 2013, Rahnama and Gloaguen, 2014), a multiview 
hillshade from a Digital Elevation Model (DEM) (Šilhavý et al., 
2016, Masoud and Koike, 2017), a principal curvature image 
generated from a DEM (Bonetto et al., 2015) or a tilt derivative 
image generated from airborne geophysics and LiDAR data 
(Middleton et al., 2015,  Yeomans et al., 2019). The input image 
is then pre-processed to improve its characteristics for edge 
detection. The techniques used here vary based on the input raster 
type. Linear features are detected using either object-based image 
analysis (Middleton et al., 2015, Yeomans et al., 2019), Canny 
edge detectors (Mallast et al., 2011), Random Sample Consensus 
(RANSAC) algorithm (Bonetto et al., 2015) or variants of the 
Hough transform. The Hough transform is an image processing 
method for detecting lines, originally proposed by Hough (1962) 
and described in the context of lineament detection by Wang and 
Howarth (1990). It is robust to line gaps and noise, making it the 
algorithm of choice for lineament detection in many geological 
toolboxes such as ADALGEO (Soto-Pinto et al., 2013) and 
TecLines (Rahnama and Gloaguen, 2014). In general, following 
the line extraction, the approaches employ some form of post-
processing to improve segment connectivity and reduce noise.  
 
Historic mine workings can cause problems with traditional 
semi-automated methods due to the anthropogenic modification 
of the land surface and their lack of linearly connected features. 
Therefore, the use of a deep learning based method is useful to 
hone the lineament detection. Deep learning techniques for image 
processing have advanced rapidly in the last decade, fuelled by 
increases in processing power and available training datasets. A 
type of deep neural network, the Convolutional Neural Network 
(CNN) has become the dominant choice for most image 
processing tasks (Razavian et al., 2014). Ball et al. (2017) and 
Zhang et al. (2016) give a review of the applications of these deep 
learning models to remote sensing problems. However, they 
conclude that applications using LiDAR data, either applied 
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directly to the point cloud or using an image-like gridded 
representation, are less frequently studied than applications based 
on optical data. Many of the published LiDAR based remote 
sensing applications come from archaeology, where LiDAR is a 
widely used data source for both human interpretation of heritage 
landscapes (Bewley et al. 2005, Hesse 2010 and Moyes and 
Montgomery 2019) and semi-automated site detection based on 
template matching or traditional “shallow” machine learning 
methods (Freeland et al., 2016, Sevara et al., 2016 and Guyot et 
al., 2018). Despite the often simple geometry of the sites to be 
detected, the accuracies of these methods generally cannot 
approach human levels (Verschoof-van der Vaart and Lambers, 
2019). To attempt to improve performance, several recent studies 
have begun to examine how deep learning methodologies could 
be used (Trier et al. 2019, Verschoof-van der Vaart and Lambers 
2019). 
 
The primary difficulty encountered with most remote sensing 
deep learning studies is the lack of large domain specific datasets 
available for model training. Nogueira et al. (2017) give an 
overview of the relative merits of training a CNN model for 
remote sensing from scratch versus fine tuning an existing model. 
Fine tuning is most effective when the source and target domains 
are similar; therefore, a model which has been trained on the 
ImageNet database (Deng et al., 2009) of three channel colour 
images can successfully be fine-tuned for optical three channel 
colour satellite images (Ren et al., 2018). As LiDAR data is 
single channel height information, this can be more challenging 
to fine-tune successfully from colour imagery trained models 
(Ball et al., 2017, Verschoof-van der Vaart and Lambers, 2019). 
A solution may be found in the planetary and space science field, 
where large LiDAR datasets such as those from the Lunar 
Reconnaissance Orbiter (Zuber et al., 2010) can be combined 
with existing human annotated crater catalogues to generate 
greater amounts of training data. Silburt et al. (2019) built and 
trained a successful U-Net based model from these datasets, 
including publishing the fully trained model, named DeepMoon 
on GitHub.1 U-Net was designed originally for biomedical image 
segmentation by Ronneberger et al. (2015). U-Nets are a popular 
model architecture choice for problems with limited training data 
and have achieved good results on remote sensing problems (Bai 
et al. 2018, Zhao et al. 2019 and Jeppesen et al. 2019).  
 

3. MATERIALS  

The case study area chosen for this research is Dartmoor National 
Park, an upland area of moorland in the southwest of the UK. The 
predominant vegetation cover is heather, fern, bracken, gorse and 
marsh grasses. The area has been mined for tin and copper almost 
continuously from the 12th to the 20th centuries and the remains 
are pervasive and visually striking throughout the landscape 
(Newman, 2010). The type of objects to be detected were trial 
pits, mineshafts, and shallow pit workings. These mining remains 
are often overgrown and can pose a hazard to humans and 
livestock. Figure 1 shows how these objects present in the 
LiDAR data.  

 
1 available at https://github.com/silburt/DeepMoon.git 

 
Figure 1. Example of the types of mining features the model 

was trained to detect. LiDAR visualisation is a 315˚ azimuth 35˚ 
sun elevation hillshaded visualisation. Image originally 

published in Gallwey et al. (2019). Base DSM © Environment 
Agency 2015 

 
Dartmoor National Park is underlain by the Dartmoor Granite 
pluton and is the largest granite pluton exposed at surface (650 
km2) within the Early Permian Cornubian Batholith (Scrivener, 
2006). The granite is characterised by its peraluminous 
geochemistry and K-feldspar megacrysts (Simons et al., 2016). 
The area is variably mineralised and southern Dartmoor is known 
for tin veins of “black tin” or cassiterite (Dines, 1956). The test 
area for this study is focussed over the Hexworthy Mine (an 
amalgamation of Hootens Wheals and Hensroost mines) where 
the main vein structures trend approximately NNW and 
subordinate veins course ESE-WNW (Dines, 1956). The area 
shows demonstrable surface workings and provides an ideal case 
study site. 
 
The open access LiDAR data used in this study was sourced from 
the Environment Agency https://environment.data.gov.uk/. It has 
a resolution of 0.5 m and is provided as 1 km x 1 km ascii grid 
tiles in either Digital Surface Model (DSM) or Digital Terrain 
Model (DTM) format (Environment Agency, 2009). The DSM 
was chosen instead of the DTM as upland short sward vegetation 
is difficult to distinguish from bare earth in 0.5m LiDAR data 
(Luscombe et al., 2015) creating challenges for the filtering 
algorithms. The training, cross-validation and test datasets were 
generated from three geographically separate areas of Dartmoor 
National Park, each with high incidences of mining remains. 
Eleven 1 km2 tiles were used for training, with a single tile each 
for cross-validation and testing. The study area and dataset 
extents are shown in Figure 2. 
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Figure 2. Study area and dataset locations. Base DSM © 

Environment Agency 2009 & Getmapping Plc. Basemap © 
ESRI 2019 

 
4. METHODS 

The pipeline proposed in this research contains two modules: the 
first module detects mining pits using deep learning and the 
second module fits mineralisation trends to these detections using 
a Hough transform. Figure 3 shows the processing pipeline.  The 
training data was generated by creating a multilayer GIS for each 
area which included historic maps, aerial imagery and multiple 
visualisations of the LiDAR data. These layers were used to aid 
the human interpreter to manually digitise a dataset of over 1,500 
mining pits. The data was then exported as 256 x 256 pixel image 
patches with the pit locations as corresponding .xml labels. The 
images were exported with 52% overlap to avoid losing pits at 
the boundaries of images and to ensure every grid square had two 
prediction values. As the processing area is large and the 
elevation differences are often subtle, the images were initially 
exported with their full 16-bit float values for each pixel despite 
the CNN model requiring 8-bit inputs. The image patches were 
then rescaled individually to the 0-1 range before being remapped 
to 8-bit integer format.  
 

 

Figure 3. Processing workflow diagram showing both the deep 
learning pit detection module and the line fitting module 

 
For human interpretation, different LiDAR data visualisations 
have been shown to greatly enhance interpretation (Kokalj and 
Somrak, 2019). Following the workflows described in Kokalj 
and Hesse (2017) the additional data representations of 
Simplified Local Relief Models (SLRM) and the measures of 
positive and negative relief openness, calculated as the angular 
size of a sphere looking either up or down at each pixel location 
(Doneus, 2013) were generated from the exported tiles using the 
Relief Visualisation Toolbox (Kokalj and Somrak, 2019). Figure 
4 shows how these different visualisations look to a human.  
 

 
Figure 4. Different LiDAR visualisation techniques used for 
model training. Image originally published in Gallwey et al. 

(2019). Base DSM © Environment Agency 2009 
 

Due to the limited training data for this specific problem, the deep 
learning strategy chosen is fine tuning an existing model from a 
similar domain. Initially, an object detection model based on the 
Inception architecture (Szegedy et al., 2016) pretrained on the 
Microsoft Common Objects in Context dataset (Lin et al., 2014) 
was chosen, however, detection rates remained below 40% across 
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the fine tuning hyperparameter range. This is hypothesised to be 
due to the greater differences in source and target data types. A 
closer match can be found from the DeepMoon model, developed 
by Silburt et al. (2019), as detecting lunar craters from orbital 
LiDAR is a very similar task to detecting mining pits from aerial 
LiDAR. Alongside the dataset similarities, the model architecture 
is more appropriate, as very deep modern models such as 
Inception do not generally perform as well as simpler models 
such as U-Nets when training data is limited. 
 
For the transfer learning strategy, fine-tuning the model whilst 
keeping the final layer intact was chosen, as the final 
segmentation categories are geometrically if not conceptually the 
same. When choosing the fine-tuning learning rate and number 
of epochs (full passes through the training dataset), multiple 
different models were generated and assessed against the cross-
validation dataset. The best results were obtained when all model 
weights were unfrozen and the training was run over four new 
epochs, each containing 520 images with a learning rate of 10-4. 
Between epochs, random mirroring, rotating and shifting 
augmentation transforms were carried out. All training was 
carried out in Python 3.6 using TensorFlow (Abadi et al., 2015) 
and Keras (Chollet, 2015) using code adapted from Silburt et al. 
(2019). Alongside the validation metrics output from the 
TensorFlow console, manual assessment of 5 particularly 
challenging cross validation images was used to verify the epoch 
and learning rate choices. Figure 5 shows the model clearly 
begins to overfit after 4 epochs. 
 

 
Figure 5. Accuracy metrics for the cross-validation dataset by 
number of fine-tuning epochs. Adapted from Gallwey et al. 

(2019) 
 

To determine the most appropriate data representation, the 
accuracies of the DSM, SLRM and openness visualisation types 
were examined using the cross-validation dataset, as shown in 
Figure 6. For the purpose of geological line fitting we 
hypothesise that precision should take precedence over recall, as 
noise from false positives may have greater negative impact than 
missed detections. To test this theory, the positive openness 
representation model and the DSM representation models were 
selected for further processing. The positive openness model has 
the highest precision and the second highest recall, whereas the 
DSM model has the second highest precision and the highest 
recall. The DSM model also exhibits a higher overall F1 score. 
The lower scoring representations of SLRM and negative 
openness were not processed further. 
 

 
Figure 6. Accuracy metrics for the cross-validation dataset by 

dataset representation. Adapted from Gallwey et al. (2019) 
 
The outputs from the deep learning model are a binary mask 
image of pit probabilities for every 256 x 256 image tile. These 
individual image patch masks are then merged back into a single 
raster layer by taking the mean values. This allows every ground 
metre to be predicted twice, improving model robustness. This 
mosaicing is the final step in the pit detection module.  
 
The full area mask forms the input to the geological line fitting 
module. In this module the merged raster layer is pre-processed 
in Python using OpenCV (Bradski, 2000) to improve its 
characteristics for line fitting. A thresholding algorithm is applied 
to maintain only the pixels with a probability above 0.6 of 
belonging to the pit class. This removes some of the artefacts at 
image boundaries and also limits the amount of incorrect 
predictions and noise shown in the image. As it is easier to fit 
lines to dots rather than rings, the background is filled with white 
using a simple flood filling algorithm, which colours all 
connected pixels with the specified new colour. This step 
removes the rings leaving just the centres. For the final pre-
processing step, the image is inverted back to a black background 
to maintain consistency. These pre-processing steps are shown in 
Figure 7. 
 

 
Figure 7. Image pre-processing to optimise the prediction result 

mask prior to the line fitting operation 
 

To fit the lines, an interactive Hough transform program was 
created to allow the user to control the parameters of the 
transformation whilst viewing the fitted lines. This allows for 
suitable settings for the Gaussian blur filter, the edge 
enhancement filter and the Hough transform itself to be varied 
and their effects visualised. The Hough transform is sensitive to 
the specific geometry of an dataset, therefore, rather than set the 
parameters for the test dataset based on empirical assessment for 
each test image, as described in Rahnama and Gloaguen (2014) 
the interactive step allows the method to be easily used with 
multiple datasets of varying properties. This choice introduces 
compromises related to higher subjectivity and lower 
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automation; however, it improves generalisation and usability at 
the proof of concept stage. As can be seen in Figure 8, the 
essential trends do not change despite different settings, only the 
number and density of the extracted segments differ. This allows 
the user to adjust the detection to noise ratio appropriately. 
 

 
Figure 8. Sample of the interactive Hough transform program 

showing settings that are a) too low, b) suitable and c) too high 
 

After appropriate settings are chosen, the lines are converted 
from image to map coordinates and exported as georeferenced 
coordinate pairs. The lines can then be imported into a GIS 
software package for further visualisation and analysis such as 
bearing calculations.  

 
5. RESULTS AND DISCUSSION 

Firstly, the result analysis evaluates the accuracy of the deep 
learning module for detecting the mining pits. Full description of 
the model’s performance, evaluation criteria and results on 
multiple datasets are found in Gallwey et al. (2019). The accuracy 
metrics for both the DSM data representation and the positive 
openness data representation are given in Table 1. These were 
ground-truthed during a field visit to the test area. 
 

Input data type Precision Recall F1 
DSM 0.81 0.80 0.81 
Positive openness 0.86 0.55 0.67 

 
Table 1. Results from both visualisation types evaluated against 

the test tile ground truth locations 
 
It can be seen that whilst the F1 scores are higher for the model 
trained using the DSM data representation, the model trained 
using positive openness has higher precision, making it less noisy 
for line fitting. As the linear mineralised trends are typically 
made up of over 10 individual pits, the lower recall score may 
prove acceptable in this context. Figure 9 shows the predicted pit 
locations from the positive openness model, overlaid with the 
true pit locations. It can be seen that a cluster of pits left of centre 
have been missed by the algorithm; on the site visit these pits 
were the shallowest in the area, indicating that the model 
performs adequately for detecting the larger pits associated with 
more activity and therefore greater mineral concentrations.  

 
Figure 9. Results in the Dartmoor test area with the true pit 

locations shown in red and the predicted pit locations in cyan. 
Base DSM © Environment Agency 2009 

 
To evaluate the results of the line fitting module, the angles of 
the polylines generated from the Hough transform for both data 
representations were compared to those published in Yeomans et 
al. (2019), shown in Figure 10. The general trends show good 
agreement; however, direct comparison is challenging due to the 
differing scales of the datasets. The lineaments generated by 
Yeomans et al. (2019) are for the entire south west of England 
while those generated here are only for a 16 km2 area of Dartmoor 
National Park. It can be seen that the DSM shows clearer 
correlations with the lineaments extracted in Yeomans et al. 
(2019). 
 

 
Figure 10. Comparison of half rose plots showing dominant 
ESE trends. a) shows regional polyline angles observed by 
Yeomans et al. (2019), b) shows polyline angles from lines 

fitted in this study using the model trained on the DSM 
representation and c) shows the polyline angles from lines fitted 

using the positive openness representation. 
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Alongside the lineaments from Yeomans et al. (2019), the 
generated lines were also compared to those provided by the 
British Geological Survey (BGS) in their 1:50,000 linear geology 
vector map layer (BGS, 2016), shown in Figure 11.  
 

 
Figure 11. Results showing the British Geological Survey’s 

1:50,000 linear geology layer compared to a) manually digitised 
high resolution lines and b) the lines generated by the automated 

algorithm. Geological Map Data BGS © UKRI 2020, base 
DSM © Environment Agency 2009 

 

Again, the differing data scales proved challenging, with scale 
related imprecisions noticeable in the BGS data when viewed at 
1:5,000 due to a resolution of 50m at 1mm line thickness. Figure 
11a shows the BGS data alongside higher resolution probable 
mineral vein locations, digitised manually from the LiDAR data. 
It can be seen that several smaller linear features are not present 
on the BGS layer, along with a deviation in angle on the southern 
end of the main north-south vein. Figure 11b shows the 
automatically extracted lines from the positive openness 
representation plotted against the BGS data. It can be seen that 
the general trends are positive, with the algorithm picking up 
several line angles more precisely than the 1:50,000 layer, but 
that it does not extend far enough in many instances. For the 
additional mineral vein locations inferred in Figure 11a, two were 
picked up by the algorithm, and two were missed. It is 
hypothesised that as the algorithm is fitting lines to densities of 
detected pits, the shorter line segments are due to the CNN not 
detecting a large enough cluster of points at the extremities of the 
lines, leading to missed sections. This can be attributed to the 
lower recall of the positive openness predictions. Another factor 
is that neither CNN model was trained to detect trenches that do 
not contain pits; the two missed east-west veins are primarily 
trenches containing very few pits, likely the cause of the missed 
line detections. Figure 11c shows the results from the lines 
automatically extracted using the predictions from the DSM 
representation. There are many more detected lines and the result 
appears noisier than that shown in Figure 11b, although the more 
southerly east-west trench missed by the BGS data has been 
picked up. 
 

6. CONCLUSIONS 

The geological lines generated using this technique correlate with 
the trends of the well-known lineaments in the Dartmoor area, 
both those semi-automatically extracted from LiDAR data by 
Yeomans et al. (2019) (Figure 8) and those published by the 
British Geological Survey (BGS) in their 1:50,000 mapping 
products (BGS, 1995). The results using the positive openness 
representation provide cleaner results when viewed on a map; 
however, the results from the DSM representation are more 
successful at detecting missed lines at high resolutions and show 
greater directional agreement on the half-rose plot. Further work 
to incorporate trench identification into the deep learning model 
would improve detection accuracy, alongside further refinements 
of the Hough transform parameter selection process. This 
preliminary work demonstrates that the lines produced from this 
technique can aid geological interpretation in regions of historic 
mining activity, particularly where records have been lost or are 
incomplete. 
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