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ABSTRACT:  

 

3D data generation often requires expensive data collection such as aerial photogrammetric or LiDAR flight. In cases such data are 

unavailable, for example, areas of interest inaccessible from aerial platforms, alternative sources to be considered can be quite 

heterogeneous and come in the form of different accuracy, resolution and views, which challenge the standard data processing 

workflows. Assuming only overview satellite and ground-level go-pro images are available, which we call cross-view data due to the 

significant view differences, this paper introduces a framework from our project, consisting of a few novel algorithms that convert 

such challenging dataset to 3D textured mesh models containing both top and façade features. The necessary methods include 3D point 

cloud generation from satellite overview images and ground-level images, geo-registration and meshing. We firstly introduce the 

problems and discuss the potential challenges and introduce our proposed methods to address these challenges. Finally, we practice 

our proposed framework on a dataset consisting of twelve satellite images and 150k video frames acquired through a vehicle-mounted 

Go-pro camera and demonstrate the reconstruction results. We have also compared our results with results generated from an intuitive 

processing pipeline that involves typical geo-registration and meshing methods. 

 

 

1. INTRODUCTION 

1.1 Introduction 

City-scale data generation often requires expensive data 

collection such as aerial photogrammetric or LiDAR flight 

(Haala and Cavegn, 2016; Schwarz, 2010). Depending on the 

required accuracy, resolution, the efforts in data collection and 

processing can exponentially grow.  Alternative and low-cost 

data sources are of particular interest for wide-area 3D modelling 

(Bosch et al., 2016): Satellite sensors running 24/7 offer 

overview images covering large regions for a single scan, which 

comparatively come with lower cost than aerial flights and do not 

require physical access to the area of interest (Qin, 2016).  On the 

other hand, there exist a large number of street-view images 

coming either from crowdsourcing platforms or collected using 

relatively cheap equipment (e.g. video frames from low-cost 

cameras) that provides high-resolution information of object 

facades. Both the overview and the street-view data are 

complementary to each other and their view differences being 

approximately 90° forms cross-view dataset, a combined use of 

which may yield a low-cost solution for city-scale 3D modelling. 

This paper describes the attempt to address this challenging task 

by proposing an automated framework to convert the satellite 

overview and street-view video frames to complete 3D textured 

mesh models that contain both top and side view features. 

The available commercial satellite images often have 0.3-0.5 

meter GSD (ground sampling distance) and ground-level images 

taking from street-view easily reaches a GSD of a few 

millimeters. With significantly different resolution, the resulting 

3D geometry may be associated with different uncertainties, 

which adds additional challenges to the mesh modelling task. In 

sum, to utilize the overview satellite images and street-view  

 

 

images for 3D mesh model reconstruction, major challenges 

include the following:  

1) The quality of 3D output separately generated from satellite 

images and street-view images are scene-specific and may differ 

in terms of completeness and accuracy. 

2) Due to the large view differences, the overview and street-

view dataset may share very limited region in common, and 

additionally the 3D output from the street-view dataset may come 

with no geo-referencing information and may contain non-rigid 

topographic distortions (e.g. trajectories drift or distortions due 

to inaccurate interior/exterior orientation estimation), which 

further add challenges in 3D geo-registration of the dataset. 

3) The combined 3D point clouds are from two sources with 

different resolution, uncertainty and radiometric properties of 

textures, obtaining visually consistent textured meshes can be 

extremely challenging. 

We introduce in our proposed framework three major 

contributions to address the above-mentioned challenges, these 

being: 1) we introduce a monocular video-frame based 3D 

reconstruction pipeline to achieve the minimal geometric 

distortion by leveraging the speed and accuracy in a 

photogrammetric reconstruction pipeline; 2) we introduce a 

novel cross-view geo-registration algorithm that takes point 

clouds generated from satellite multi-view stereo (MVS) images 

and from street-view videos, to co-register the street-view point 

clouds to the overview point clouds; 3) we extend the existing 

mesh approaches to accommodate point clouds with images 

coming from different cameras. The rest of the paper is organized 

as follows: Section 2 introduces related works and considerations 

of cross-view data processing; Section 3 introduces our 

methodology and contributions to the processing pipeline; 

Section 4 describes the experiment dataset and the results of the 

3D reconstruction Section 5 concludes this paper by discussing 

our planned future works. 
*corresponding author 
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2. RELATED WORKS AND CONSIDERATIONS 

2.1 Related Works 

The uses of multi-source 3D data have been attempted for 

different purposes, such as for localization, geo-registration, 

image synthesis and complete model generation (Gruen et al., 

2013; Lin et al., 2015; Regmi and Borji, 2018). For example, 

(Gruen et al., 2013) utilized a combination of UAV (Unmanned 

Aerial Vehicles) images and mobile LiDAR (Light Detection and 

Ranging) for 3D model generation, where the geo-registrations 

are performed by manually measured ground control points 

(GCP) on the LiDAR data, followed by a Bundle Adjustment of 

the UAV images. All were performed following a surveying-

grade process and thus minimal considerations were given to 

address topographical distortions.  

Correlating the satellite overview and ground view images is 

extremely challenging, because the areas in common can 

sometimes be barely the ground and even less. There are two 

types of approaches that aim to address relevant tasks, such as 1) 

cross-view images localization (Lin et al., 2013; Lin et al., 2015; 

Tian et al., 2017) and 2) cross-view image synthesis (Regmi and 

Borji, 2018). Since the traditionally feature-based matching 

methods fail in cross-view data, the major technical approaches 

for cross-view data instead learn deep representations between 

cross-view data, with various strategies for learning scene-level 

descriptors used to match cross-view data, combing learned 

semantics and geometric transformation. A few earlier works 

also explored the use of manually crafted features for such a task  

(Castaldo et al., 2015; Lin et al., 2013). Most of the existing 

methods exploring 3D data co-registration, requires a certain 

portion of common regions and the transformation are often 

assumed to be simple models such as similarity or rigid 

transformations (Gruen and Akca, 2005; Rusinkiewicz and 

Levoy, 2001). Thus exploring methods for registering wide-area, 

cross-view dataset potentially with complex geometric 

distortions are particularly of interest. 

Meshing point clouds seems to be standard practice with many 

applicable algorithms available. However, for image-based point 

clouds, meshing requires the use of the visibility information 

between the view and each point (Labatut et al., 2009; Tran and 

Davis, 2006) which sometimes are not easily available for multi-

source data as first of all, they may share different camera model, 

and second of all, standard software packages generating point 

clouds from images do not offer such visibility information. As a 

result, a standard practice of using multi-source image-based 

point clouds only takes point-cloud based meshing methods 

(Kazhdan et al., 2006) which are designed for very dense point 

clouds and do not necessarily work well for point clouds with the 

level of uncertainty and complexity as the image-based point 

clouds.  

2.2 General Considerations  

Despite the aforementioned challenges, we consider the problem 

of turning the MVS satellite images and street-view Go-pro data 

to be approachable if scenario-specific information and 

intermediate results of the stereo reconstruction pipeline are 

accessible. To achieve, we have the following three 

considerations: 

1) Street-view video frames taking alongside the street do not 

offer an optimal camera network, thus it is possible the results of 

the 3D reconstruction contains geometric distortion, for example, 

trajectory drifts, or topographic distortion due to the incorrectly 

estimated interior/exterior orientations, which will further add 

challenges to the geo-registration, we therefore consider to 

optimize our photogrammetric reconstruction workflow by 

considering self-calibration for each incremental reconstruction 

to minimize the potential trajectory drift. 

2) We observed that in an urban environment, the boundary of 

objects from the satellite point clouds, e.g. buildings, might 

coincide well with the boundary produced by projecting the 

façade point clouds to the ground; therefore it can be seen as a 

view-invariant feature for co-registering the satellite point clouds 

and ground-view point clouds. 

3) Meshing methods will unlikely to work well on the combined 

point clouds (from satellite and street-view point clouds) without 

the use of visibility information. Although theoretically possible, 

re-implementing a meshing algorithm considering different 

camera models can be painstakingly trivial. We consider the 

satellite point clouds to associated with an orthophoto under a 

parallel projection, thus the visibility can be easily computed and 

incorporated into an image-based meshing (Labatut et al., 2009) 

and texture mapping pipeline (Waechter et al., 2014). 

 

2.3 The Proposed Data Generation Pipeline 

To sum, our proposed data generation pipeline considers three 

major components. As shown in Figure 1, which includes 

separate 3D data generation (for MVS satellite images and 

ground-level video frames), geo-registration and meshing. 

 
Figure 1. The general workflow of our processing pipeline. 

 

where MVRSP (based on (Qin, 2017)) and MetricSFM are 

respectively our developed system for processing the satellite 

data and ground-level video frames. The geo-registration and 

meshing methods will be introduced in Section 3. 

 

3. METHODLOGY 

Following the above-mentioned pipeline (section 2.3, Figure 1), 

we briefly introduce our proposed methods in processing the 

cross-view data for 3D reconstruction. 

 

3.1 Multi-view Stereo (MVS) Satellite Processing 

The MVS satellite processing follows methods in (Qin, 2017; 

Qin, 2016), which takes a pair-wise reconstruction followed by a 

DSM (Digital Surface Model) fusion. The core matching 

algorithm uses a hierarchical Semi-Global Matching 

(Hirschmüller, 2008) with modifications to accommodate large-

format images (Qin, 2014). We consider taking more than two 

images to obtain sufficient redundancies for 3D reconstruction. 

The satellite images are selected by following the approach of 

(Qin, 2019) based on the available images and their metadata 

from the digital globe (DG) (DigitalGlobe, 2020), and the images 

consist of both WorldviewI/II images (data will be introduced in 

Section 4). The readers may refer to specific details of the 

reconstruction in (Qin, 2017; Qin, 2019; Qin, 2016). 

 

3.2 Point Cloud Generation from Go-Pro Video Frames 

We take the standard structure-from-motion / photogrammetry 

reconstruction pipeline (Cernea, 2015), and implemented a few 
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strategies borrowed from the SLAM (Simultaneous Localization 

and Mapping) community (Mur-Artal and Tardós, 2017), which 

includes feature extraction and matching under the assumption of 

a continuous trajectory. To allow the optimal output accuracy, we 

performed bundle adjustment with self-calibration with every 10 

images added into the incremental orientation, this leverages the 

speed and accuracy in terms of computing a very large number 

of images (in the scale of 150K images). We call our system 

MetricSFM. This system fully utilizes the trajectory consistency 

information in the video sequence to improve the speed and 

accuracy of structure from motion. More specifically, for feature 

detection, we use the ORB feature detector (Rublee et al., 2011) 

to extract key points considering its efficiency and performance. 

For feature matching, we take the velocity model presuming that 

neighbouring images travel with a constant speed, our method 

firstly matches each keypoint 𝑝𝑖  on the current image 𝑖 to two 

neighbouring images 𝑖 − 1  and the next image 𝑖 + 1 , and 

generate the best matches 𝑝𝑖−1  and 𝑝𝑖+1  through minimal 

descriptor distances. The velocity model assumes the flows  in 

the image space to be constant within a threshold (we take 20 

pixels), and takes this as the constraint and the run the matches 

again to generate more matches to ensure sufficient observations 

especially for cases where repeated patterns present 

(walls/windows) for relative orientation and bundle adjustment. 

The dense matching were performed using standard matching 

pipeline in the open-source software OpenMVS (Cernea, 2015). 

 

3.3 Geo-registration of the Overview and Street-view Point 

Clouds 

Given point clouds generated from both the overview and the 

street-view, we take a three-step approach which computes the 

alignment on the building boundaries derived from both data 

sources, being: 1) Building Detection, 2) Individual Building 

Boundary Matching, and 3) Global Building Boundary 

Adjustment. 

Building Detection: We extract both overview and street-view 

point clouds. The overview building boundaries are extracted 

using a well-developed morphological top-hat method (Qin and 

Fang, 2014; Vincent, 1993) applied on the DSM, with NDVI 

(Normalized Difference Vegetation Index) (Carlson and Ripley, 

1997) for removing the trees from the binary masks.  The street-

view buildings are detected using a rather heuristic approach: we 

first separate the façade points from the ground points determined 

by normal vectors. And these points are further segmented using 

a region growing method(Tremeau and Borel, 1997) and those 

with very high projected density (to the ground) are determined 

as buildings. 

Individual Building Boundary Matching: We use a heuristic 

registration algorithm that perform a targeted exhaustive search 

in the rotation space given a determined scale (either by GPS 

observations or given by a few known points). For each rotation 

hypothesis we compute the smallest, which are performed for 

each possible pair. 

Global Building Boundary Adjustment: A local and pair-wise 

segment match is unlikely to provide a global solution and a 

“winner takes all” strategy may result in many outliers. 

Therefore, we consider a smooth constraint that penalizes those 

determined transformation parameters of neighbouring segments 

to be different, to achieve a more consistent set of transformation 

parameters for point clouds of a trajectory. The transformation 

parameters associated with each segment are discretized and thus 

the global adjustment can be performed as a labelling problem 

solved by a classic graph-cut formulations (shown in Equation 

(1)) (Boykov et al., 2001), in which the cost term C(S𝑖 , 𝑇𝑖)is 

defined as for each segment, the registration error given a 

transformation hypothesis T, and the smoothness term 

PS𝑖,S𝑗
(𝑇i,  𝑇j)  defines difference between transformation 

parameters (angular difference and translation difference). The 

goal is to find for each street-view point cloud segment S𝑖, the 

transformation parameters 𝑇𝑖 out of a set of hypotheses 𝒯, such 

that the energy defined in Equation (1) is minimized. 

E(𝒯) =  ∑ C(S𝑖 , 𝑇𝑖)

i

+ ∑ PS𝑖,S𝑗
(𝑇i,  𝑇j)

𝑖,j

, (1) 

 

Once the transformation parameters are determined, we use the 

transformation parameters to re-adjust the images to update the 

poses of the images for the purpose of 2D-3D geometric 

consistencies and the following texture mapping. 

 

3.4. Meshing and Texture Mapping of the Cross-view Data 

 

Meshing algorithms for image-based 3D dataset requires 

visibility information for surfaces and such information can be 

difficult to obtain for 3D point clouds generated from images 

with different views, sources, resolutions and uncertainties. 

Considering it is technically trivial, we therefore propose a 

meshing algorithm that regards the satellite point clouds to be 

associated with orthophoto under a parallel projection. With this 

assumption, we have modified the existing image-based point 

cloud meshing (Labatut et al., 2009) and texture mapping method 

(Waechter et al., 2014): 1) we extended state-of-the-art image-

based surface reconstruction method by incorporating geometric 

information produced by satellite images to create wide-area 

surface model. 2) We extended a texture mapping method to 

accommodate images acquired from different sensors, i.e. side-

view perspective images and satellite images. 

 

3.4.1. Meshing 

 

The base method (Labatut, et al. 2009) takes the constructed 

Delaunay tetrahedrons from the point clouds as the input to 

determine the surface. These tetrahedrons can be viewed as a 

connected graph, in which the tetrahedrons are the notes and 

shared/common faces are edges. Our method extends from this 

base algorithm by incorporating point clouds generated from the 

satellite images.  

 

Our meshing pipeline builds meshes generated from street-view 

images and satellite point clouds consists of three steps: 

 

1. We form Delaunay tetrahedrons using the combined point 

cloud set from the satellite and street-view based point 

clouds.  

2. We take the visibility information from the MetricSFM 

pipeline and build visibility information using the parallel 

projection by associating the satellite point clouds with 

orthophoto views.  

3. Solve minimum s-t (source-sink, acyclic) cut for labelling 

problem and extract surface following the method of 

(Labatut et al., 2009) 

 

Figure 2 shows the surface model built from street-view only data 

with base method (Labatut et al., 2009) and the surface model 

built from both street-view and satellite images with ours, which 

shows that although the satellite point cloud based meshes 

present relatively coarse information on the roofs, it completes 

the street-view based meshes which are visually more 

informative. 
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3.4.2. Texture Mapping using overview and street-view 

images 

 

Our texture mapping framework is based on Waechter’s work 

(Waechter et al., 2014), which has been well practiced and widely 

used in many famous open source projects, e.g. TexRecon 

(Waechter et al., 2014) , OpenMVS (Cernea, 2015), etc.  We 

consider that the street-view images are perspective and the 

satellite orthophoto is in parallel projection. Given these many 

images serving as potential source of texture, the first step is to 

pick a best image for each triangle face: by rendering faces onto 

images applying perspective and parallel projection respectively, 

in the meantime using depth buffer to determine the nearest faces, 

every visible view is assigned a weight to be associated with a 

face. Then the best view selection problem can be solved using a 

belief propagation algorithm.  

 

Seamless texture fusion is also taken into account in our method, 

follows the base algorithm (Waechter, et al. 2014), our pipeline 

adjusts the color from different sources and fuses the seams 

between patches by using color balance and Poisson blending. 

Figure. 3 shows an example result of our multi-source texture 

mapping method on the produced mesh surface using our mesh 

reconstruction pipeline. The readers may refer more details of the 

method in (Song and Qin, 2020) 

 

 
Figure 3. An example of the textured meshes reconstructed from 

our propose pipeline using both satellite and street-view data. 

 

4. RESULTS 

4.1. Data Description 

   We take the Ohio State University (OSU) Columbus Campus 

as our test site, of which we have collected twelve overlapping 

satellite images consisting of WorldView-I and WorldView-II 

images. These images selectively form 31 pairs used for the 

reconstruction, and many of these images are not from the same 

year thus creating challenges for the reconstruction. Table 1. 

provides an overview of the first 10 pairs used from the acquired 

images: not all of these pairs forms in-track stereo, while the large 

redundancy does provide the advantage in producing more 

accurate surface model. Figure 4. shows the generated digital 

surface model. The achieved RMSE (root-mean-squared-error) is 

1.26 meters evaluated through LiDAR point clouds, and the 

RMSE reached 0.60 meters by excluding changed buildings, 

rivers and trees.  
 Intersection 

angle (degree) 

Sun difference angle 

(degree) 

Time difference 

(days) 

1 7.54 0.03 0 

2 28.53 0.08 0 

3 26.08 19.17 93 

4 10.46 4.98 378 

5 11.82 9.92 619 

6 17.92 5.01 378 

7 17.88 6.36 304 

8 9.65 21.80 3024 

9 8.66 21.78 3024 

10 11.70 26.16 1350 

Table 1. Examples of Metadata of pairs used for satellite-based 

3D reconstruction. 

 

     

 
Figure 4. The generated Digital Surface Models of the OSU 

campus using our satellite data processing pipeline. Top-view 

shows enlarged views.  

 

We have also collected approximately 300 GB of Go-pro videos 

covering a trajectory equivalent to 33 km, and the reconstruction 

for the street-view images take 150k frames (with a resolution of 

1500 × 2000 pixels per frame) out of these videos. Figure 5. 

shows the reconstructed point clouds of approximately two thirds 

of the region. The pose estimation time takes approximately 20 

hours and dense matching takes 4hrs in a normal i-7 desktop 

computer. 

 

 
Figure 2. Reconstructed mesh models. Top: with only street-

view images; bottom, with the combined satellite and street-

view data. 
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Figure 5. Dense reconstruction using our MetricSFM for two 

thirds of the campus region, totalling 7 billion color points. 

 

4.2 Experiment Results 

We demonstrate that the resulting geometry shows completeness 

in terms of the rooftop and façade information (for places where 

street-view images are available). Figure 6 provides an overview 

of the registered point clouds and a comparison showing the mis-

registration using a typical point cloud based algorithm 

(Rusinkiewicz and Levoy, 2001). Our co-registration achieves an 

RMSE of 1.44 m in error, which are reasonable considering that 

the satellite point clouds have a resolution of 0.5 m. 

 

  

(a) ICP (b) ours 

 

 
(c) Co-registered point clouds, point size of the satellite point 

clouds and street-view point clouds are appropriately 

adjusted to optimize the visualization in this figure. 

 

Figure 6. Registration result of ICP (a) and our method (b) on the 

distorted street-view trajectory. (c) shows part of the registered 

street-view point clouds generated on 150k Go-Pro images. 

 

 

With the registered point clouds, we are able to generate the 

meshes using our proposed meshing pipeline introduced in 

section 3.4. Figure 7. shows the reconstructed meshes (shaded 

and textured) using our pipeline, and we have also included the 

results from a pure point cloud based meshing method, which 

visually demonstrates much worse results. In Figure 8, we have 

also included the reconstruction results of a relatively larger 

region using our reconstructed pipeline. 

 
Figure 8. A screenshot of the generated textured mesh of the OSU 

campus area using our proposed pipeline, which includes 

information from the top-view and details on the facades. 

 

5. CONCLUSIONS 

In this paper, we report the results of our work that aims to 

perform 3D reconstruction from overview satellite and ground 

view images (called cross-view dataset). We present our 

processing framework (Figure 1.) that consists of three major 

components: 1) 3D reconstruction separately from the top-view 

satellite images and ground-level images; 2) Cross-view geo-

registration between the satellite point clouds and street-view 

point clouds; 3) Meshing reconstruction based on the combined 

satellite and ground point clouds. In each of these components, 

we present our developed systems and on-going research efforts 

in addressing the potential challenges (introduced in Section 1.1) 

, and the in-progress results. We demonstrate that our proposed 

pipeline is able to achieve visually more consistent textured 

meshes, in comparison to a standard and intuitive processing 

method. The proposed framework and the attempts for 

integrating satellite and street-view images and converting them 

to textured models can be of particular interest for data collection 

in areas where standard datasets such as aerial/UAV (unmanned 

aerial vehicle) photogrammetric/LiDAR flights. This work is 

ongoing and the current geo-registration procedure is rather 

computationally heavy, our future works include a focus on the 

registration algorithms and further optimizing individual 

modules of our processing pipeline and part of these modules will 

be made available once they are optimized for practical uses.  
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