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ABSTRACT: 

 

A high level of particulate matter in the atmosphere has an adverse long-term effect on human health. It has been associated with 

increased pulmonary tract and lung infections. It is more common in urban areas, especially megacities due to the confluence of 

industries and motorized machinery. Considering that most of the world’s population lives in urban areas, there is a need to monitor 

air pollution arising from particulate matter in order to ensure clean and safe air in cities in accordance with goal 11 of the Sustainable 

Development Goals. One way of doing this is through the use of Recurrent Neural Networks (RNN), which are suited for time varying 

data.  Particulate matter concentration recorded by a network of low-cost sensors in Stuttgart is trained on three of the most popular 

RNN variants: Standard LSTM, Peephole LSTM and Gated Recurrent Unit. Two optimizers are used, Stochastic Gradient descent and 

Adam. Training is done on a single sensor and the optimum weights transferred and used in the prediction of other sensor values. This 

study concludes that Gated Recurrent Unit with Stochastic Gradient Descent is the most effective of the three variants in predicting 

particulate matter PM2.5 concentrations. In addition to this, weight transfer between sensors is not affected by temperature, wind 

direction, wind speed and geographic distance between sensors but rather by atmospheric pressure and the similarity of recorded 

Particulate matter levels.  

  

 

1. INTRODUCTION 

1.1 Particulate Matter 

Particulate matter is a complex mixture made up of Sulphates and 

organic compounds. It is one of 4 elements that cause air 

pollution, the other three being Ozone, Nitrogen dioxide and 

Sulphur dioxide (WHO Regional Office for Europe, 2003). In the 

urban environment, it is majorly produced by motor vehicle 

fumes and coal combustion. Small dust particles also qualify to 

be considered as particulate matter but are at times left out due to 

their low inflammatory effect as compared to particles from 

combustion engine, coal, burning wood and oil. (Pope III et al., 

2002) established that for every 10μg/m³ increase in particulate 

matter in the environment, there was a relatable increase by 4%, 

6% and 8% of cardiopulmonary mortality.  

 

Particulate matter dictates air quality and is measured in 

micrograms per cubic meter of air. It is classified based on its 

aerodynamic size; the size of a unit sphere with the same 

aerodynamic properties of the matter. The potency of the 

particulate matter is inversely proportional to its size with the 

smallest having the greatest chance of reaching the lungs and 

entering the bloodstreams (Badura et al., 2018). Primary 

particulate matter is created from combustion and emitted 

directly to the atmosphere. It is composed of fine particles with a 

diameter <2.5 μm in size (PM2.5) while secondary particulate 

matter is produced through the mechanical breakdown or 

chemical combination of matter in the atmosphere and has a 

diameter < 10 μm in size (PM10) (Amaral et al., 2015). 

 

The presence of particulate matter in the atmosphere is 

empirically determined using two main methodologies; size 
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distribution and the more common concentration principle. Size 

distribution as its name infers seeks to determine the size of the 

aerosol content using a number of instruments such as 

microscopes and Impactors (Amaral et al., 2015). Concentration 

on the other hand measures the mass, number or surface area of 

particulates per a unit volume of air that passes through the 

sensor. Concentration measurement devices utilize Gravimetric, 

Optical counters, microbalances and electrical charge.  

 

Gravimetric falls under the concentration principle and is a 

traditional but very efficient way of measuring particulate matter, 

with an added advantage of determining the chemical 

composition of the particles (Whalley, Zandi, 2016). However, it 

is labour intensive, requires specialized instruments and lacks the 

instantaneous results needed in many of today’s IoT processes as 

the measurements have to be processed first before shared. Due 

to its high accuracy, it has been adopted by regulatory bodies 

such as the Environmental Protection Agency. 

 

The other two popular concentration methods include 

microbalances and Optical Particle Counters. Tapered Element 

Oscillating Microbalance (TEOM) provides for a near real time 

air quality index. It determines particles concentration by 

monitoring changes in the oscillating frequency of a quartz glass 

tube during interaction with particles in the environment (Amaral 

et al., 2015). TEOMS are also expensive for individuals leaving 

their operations to be handled by government departments 

responsible for environmental protection. 

 

The Optical Particle Counter on the other hand utilizes light 

dispersion to quantify the concentration of particles in the 

atmosphere. The scattered light is detected by a photometer and 

gives feedback on the amount of particulate matter present in the 
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atmosphere (Badura et al., 2018). The low complexity behind its 

operation makes it affordable to produce and use. Furthermore, 

an environmentally aware public eager to participate in air 

pollution initiatives has created an ecosystem of volunteers and  

commercial entities manufacturing a wide variety of optical 

counters and their associated accessories (Karagulian et al., 

2019). This has improved the spatial density of the particulate 

matter sensor grid and made available a huge pool of data that is 

transmitted and consumed in real time. 

 

1.2 Recurrent Neural Networks 

An artificial neural network is a computational replica of a 

biological neural network. A neuron is a unit which fires up when 

a linear combination of its inputs exceeds a particular threshold 

(Norvig, Russell, 2009). Many of these units interconnected 

together make up an artificial neural network. 

 

There are two ways of connecting neurons in a system: through 

a feed forward mechanism and through a recurrent system. The 

feed forward network directs its flow in one direction whereas 

the recurrent network allows output to be fed back into the input. 

This makes recurrent networks capable of having memory as the 

previous outputs can be used to determine the response of the unit 

to the new inputs. 

 

In theory, a Recurrent Neural Network should be able to learn 

over long time sequences but this is not the case. If one applies 

the sigmoid function (activation function) on the data for quite 

some time, it flattens out or rather vanishes thereby stopping the 

learning process. The problem of the vanishing gradient has been 

solved through the introduction of the Long Short-Term Memory 

cell by (Hochreiter, Schmidhuber, 1997). Thus, LSTM then 

enable the network to remember by preserving loss transfer 

during backpropagation allowing the network to continue 

learning.  

 

Long Short-Term memory utilizes gates to aid the Recurrent 

Neural Network remember long term dependencies. These gates 

are: The input, forget and output gates.  

 

 
Figure 1. LSTM (Source: (Olah, 2015)) 

 

In the standard case, the three gates are present and separate. The 

activation function for the gates is the sigmoid function while the 

activation function for the main neuron is tanh. 

                   

                 𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                     (1) 

                 𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                       (2) 

                 Ć𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                               (3) 

                 𝐶𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ Ć𝑡                                          (4) 

                 𝑜𝑡 = 𝜎(𝑤0[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                     (5) 

                 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                                    (6) 

 

where  𝑥𝑡  = input x at time t 

 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 = forget, input and output gates 

 𝑏𝑓,𝑖 𝑜𝑟 𝑜  = bias factor 

 Ć𝑡  = neuron output 

 𝐶𝑡 = current cell state 

 ℎ𝑡 = hidden layer 

 w = weight 

 

A modification of the standard LSTM yields another RNN 

variant. This contains peep holes that allow the gates to know the 

previous cell state of the RNN layer. LSTM peephole allows for 

the RNN to be extended and be able to time and count sequences 

without the need for short-term training (Gers, Schmidhuber, 

2000). 

 

                 𝑓𝑡 = 𝜎(𝑤𝑓[𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                   (7) 

                 𝑖𝑡 = 𝜎(𝑤𝑖[𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                       (8) 

                 𝑜𝑡 = 𝜎(𝑤𝑜[𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                   (9) 

 

where  𝐶𝑡−1  = previous cell state 

 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 = forget, input and output gates 

 𝑏𝑓,𝑖 𝑜𝑟 𝑜  = bias factor 

 

The third variant that will be investigated is the Gated Recurrent 

Unit.  It simplifies the standard LSTM architecture by collapsing 

the input and forget gates into a reset gate and an update gate. 

This results in the combination of the current cell state with the 

hidden state (Cho et al., 2014). 

 
Figure 2. GRU (Source: (Olah, 2015)) 

 

                 𝑧𝑡 = 𝜎(𝑤𝑧[ℎ𝑡−1, 𝑥𝑡])                                             (10) 

                 𝑟𝑡 = 𝜎(𝑤𝑟[ℎ𝑡−1, 𝑥𝑡])                                              (11) 

                 ĥ𝑡 = 𝑡𝑎𝑛ℎ(𝑤[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])                                   (12) 

                 ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ĥ𝑡                               (13) 

 

where  𝑥𝑡 = input x at time t 

 𝑧𝑡  = update gate  

 rt  = reset gate  

 ℎ𝑡 = current hidden layer 

 ℎ𝑡−1 = previous hidden layer 

 w = weight 

 

1.3 Gradient Descent 

Gradient Descent is an optimization technique during 

backpropagation that seeks to achieve the lowest possible loss 

value by iteratively moving close to the minima of a 

differentiable function (Ruder, 2016). Two important optimizers 

used to implement gradient descent include: Stochastic Gradient 

Descent (SGD) and Adaptive Moment Estimation (Adam). 

 

A standard gradient descent will use all the datasets in a training 

sample to obtain the generalized weights for each iteration. 

However, when the training dataset is large, the method becomes 

computational uneconomical. This is compounded by the fact 

that sampled data units are individually composed of attributes 

known as features. To remedy this, stochastic gradient descent is 

used. SGD randomly selects one sample in a provided training 

batch set to compute the weights per each iteration (Srinivasan, 

2019). Only one learning rate is used leading to a uniform 

stepping size being applied to the weights of all features present 

in the sample. 
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Adam is an extension of SGD (Kingma, Ba, 2014). However, 

instead of utilizing only one learning rate for all the features 

present in the single chosen dataset within a batch, it adapts the 

learning rate to each individual feature. This creates different step 

sizes for the available features and can be useful when irregular 

distribution patterns are present amongst features in a sample. 

 

2. DATA  

The geographical area of study is Stuttgart city administrative 

unit. It lies on coordinates 48.78° north of the equator and 9.18° 

east of the Greenwich meridian. As of 20th February 2020, the 

city has three functioning particulate matter sensors ( 

Landesanstalt für Umwelt, Messungen und Naturschutz Baden-

Württemberg, 2020) : Stuttgart Arnulf-Klett-Platz, Stuttgart Am 

Neckartor and Stuttgart-Bad Cannstatt. Luftdaten, a project by 

OK Lab Stuttgart, has a dense network of low-cost PM sensors 

in the city, with approximately 350 sensors. 

 

The data used in this study consists of PM10 and PM2.5  

measurements crowdsourced by OK Lab Stuttgart (OK Lab 

Stuttgart, 2019) as part of the ‘Hack your city’ citizen science 

project (Wissenschaft im Dialog, 2015) and hourly weather data 

composed of temperature, humidity, pressure, wind speed and 

wind direction obtained from OpenWeatherMap 

(OpenWeatherMap, 2019). Both sets of data are aggregated into 

hourly samples. Luftdaten temporal resolution is 2.5 minutes, but 

aggregated into hourly values in this study. 
 

QGIS (QGIS Development Team, 2019) is used to visualize the 

hourly PM data and meteorological information. Weather data 

has a spatial coverage within and close to the Stuttgart region. 

The time window of data capture is close to 5 months spanning 

from 28th May 2019 until 11th November 2019, the date of the 

data download.  

 
The PM data is clipped to the Stuttgart region and its data filtered 

using QGIS to a timeframe similar to the weather stations dataset. 

The resulting dataset consists of 351 particulate matter sensors 

having a total of 882305 records from 8th May 2019 at 15:00 Hrs 

GMT to 11 November 2019 15:00 Hrs GMT. The available 52 

weather stations have a total of 176161 records containing 

meteorological data from 28th May 2019 at 15:00 Hrs GMT to 11 

November 2019 15:00 Hrs GMT. 

 

All Weather stations are used in the study. They are not clipped 

to Stuttgart as some stations are not within the study area but 

closer to sensors on the border of the study area. 

 
Figure 3. Weather Stations and PM sensors after filtering to 11th 

Nov 2019 and Stuttgart boundary 

3. EXPERIMENT AND RESULTS 

This research is made up of 4 categories: data preparation, 

selection of the base sensor, training of the recurrent neural 

networks and finally investigation of weight transfer. This is 

illustrated in Figure 4 below 

 

 
Figure 4. Workflow 

 

3.1 Complete sensor dataset 

Python (Python Software Foundation, 2019) available as 

PyQGIS in QGIS is used to sort through the data and identify the 

optimal sensors, which are sensors that remitted data 

continuously for a specified time duration. This is informed by 

the study period during which historical weather data is available. 

Thus, 5 months is chosen as the threshold. Taking 1 month to 

have 4 weeks, sensors considered as having enough data need to 

have a minimum of 3360 records corresponding to 3360 hours in 

a 5-month duration. 

 

After the identification of the optimal sensors, the next step is to 

assign them meteorological information of their respective 

closest weather station. To accomplish this, proximity analysis is 

first carried out in PyQGIS and the nearest weather station to 

each sensor identified. Then, a join operation is done to move all 

the datasets of the selected weather stations to their respective 

particulate matter sensors.  

 
Figure 5. Geographical distribution of the Complete Sensor 

Dataset 

 

 

Out of the 351 sensors available in the Stuttgart area as of 

November 11th 2019, only 81 sensors were found to be active 

through the 5-month threshold period.  
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3.2 Base sensor selection 

In this study, transfer of optimum weights from one sensor to the 

rest of the sensors in the network is of interest. Thus, tuning of 

the hyperparameters is only to be done on a single sensor, dubbed 

the Base sensor. Selection of a base sensor is dependent on the 

frequency of its recordings, nearness to a weather station as well 

as closeness to PM10 value of a government sensor. 

 

First, the statistical mode is used to filter through the 81 sensors 

and identify their frequency with respect to the number of 

recordings.  

 

 

Figure 6. Frequency of recordings 

 

11 sensors, which formed the majority had 3380 recordings. The 

mode is used as a measure of sensor stability with the recordings 

consisting of a high number of sensors assumed to be most 

reliable.  

 

A new proximity analysis is run to locate the government sensors 

closest to the 11 sensors identified to have 3380 recordings. This 

is followed by a Pearson correlation coefficient calculation to 

determine the strength of correlation of the sensors to PM10 

values of the government sensor. The average of the correlation 

coefficient is then calculated.  
 

                 𝜌𝐿𝐺 =
𝐶𝑜𝑣(𝐿,𝐺)

𝜎𝐿𝜎𝐺
                                                      (14) 

 

where  L = Low-cost sensor PM10 reading 

 G = Government sensor PM10 reading 

 𝜌𝐿𝐺= Pearson correlation coefficient 

 𝐶𝑜𝑣(𝐿, 𝐺) = covariance between L and G 

               𝜎𝐿𝜎𝐺 = product of the standard deviation of L and G 

 
The proximity analysis reveals that two Government sensors: 

Stuttgart-Neckartor and Stuttgart Arnulf-Klett-Platz are nearest 

to the 11 selected sensors. Sensor ID 5127, 2590 and 4827 

coefficient of correlation scores are closest to the average 

coefficient of correlation of all the sensor’s PM10 readings with 

that of the government sensors. 
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Table 1. Comparison of Sensors with 3380 recordings  

 

Proximity to a weather station was also considered and Sensor ID 

5127 emerged as the most suitable of the three due to its closeness 

to Gablenberg weather station.  
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Figure 7. Base sensor location 

 

3.3 Training of Recurrent Neural Networks 

This stage involves training the recurrent neural network to 

accurately predict future PM2.5 values. Training is only done on 

the base sensor’s dataset. The tuned hyperparameters yield 

optimum weights which are then used to predict particulate 

matter values for the 81 sensors in the network. 

 

3.3.1 Selection of Hyperparameters: The dataset is split into 

train and test sets. Sequential learning uses prior information to 

determine future occurrences and thus, the last records within a 

time series are normally set aside for validation (Hewamalage et 

al., 2019). In our dataset, the test sample consists of the last 256 

records, corresponding to the first 11 days of November 2019. 

 

The input features include PM10, temperature, humidity, 

pressure, wind speed, month, date and time. These values are 

used to predict the output which is PM2.5. Normalization is 

performed on the features to ensure that the calculations between 

the different entries would have a common denominator. Z score 

normalization, also known as Standard scalar is used. 

 

                 𝑛𝑒𝑤 𝑥 =
𝑥−𝜇

𝜎
                                                        (15) 

 
where  𝑥 = a record in a feature dataset 

 𝜇 = mean of the feature dataset 

 𝜎 = standard deviation 

 

Later, an inverse z-coding procedure will be used to remove the 

normalization effect and enable the interpretation of predicted 

values within the real-world scale. 

 

The first RNN variant to be investigated is the standard LSTM 

utilizing the Adam optimizer. Tensorflow 1.15 (GoogleBrain 

Team, 2019) is used. 

 

Training involves tuning the hyperparameters to obtain a low 

Root Mean Square Error and a high R2 score values. R2 also 

known as the coefficient of determination is used to measure the 

agreeableness of the predicted values to the actual value. It ranges 

from 0 to 1. The hyperparameters that are considered include the 

input sequence length, output sequence length, batch size, hidden 

layers, epoch and learning rate.  

 

To achieve the best quality of results, the output sequence length 

is set at 1, representing a prediction of 1 hour into the future. This 

is because we are interested in the comparison of different RNN 

variants at their best prediction time which is often within a short 

time step. Prediction quality starts to deteriorate with increasing 

time steps (Bui et al., 2018). Another hyperparameter that can be 

calculated is the hidden dimension. This is the size of the hidden 

layer that is encoded and later decoded during prediction of the 

outputs. By convention, it is two thirds of the sum of the input 

and output sequence (Reddy et al., 2017).  

 

The input sequence length, the learning rate, the batch size and 

the epoch are then tuned iteratively to achieve low RMSE and 

high R2 score values. The batch size is an important parameter as 

it directly affects the number of iterations or in other terms, the 

number of times new weights are applied and updated by the 

network. A small batch size equates to a higher number of 

iterations and by extension, more updates to the weights. The 

input sequence length refers to how far we want the RNN unit to 

remember previous states. It contributes to the loss calculation 

during the forward propagation process. The epoch refers to the 

number of runs the training data is passed through the RNN 

framework. In this particular study, a large epoch is needed to 

ensure that a large proportion of the training dataset is used in the 

training. The learning rate is then tuned to a positive small value. 

If the learning rate is set to large values, one risks missing the 

optimum weights while very small values increase the time 

needed to train the network. Once the hyperparameters have been 

set, a tensor flow session is started. A session is used to do the 

actual training by specifying computer resources and calling the 

graph function used to model the LSTM and the optimizer. At the 

moment, Tensor flow allows for only one session to run a single 

graph function. The following hyperparameters shown in Table 

2 are found to be the most optimum to predict 1 hour into the 

future utilizing hourly dataset from the base sensor. 

 

LSTM with Adam Optimizer 

Hyperparameter Value 

Input sequence 20 

Output sequence 1 

Hidden layer 14 

Batch size 6 

Epoch 5000 

Learning rate 0.01 

Table 2. Hyperparameters values  

The optimum hyperparameters took 20 seconds to train the model 

and its predicted values when compared to the actual readings for 

the first 11 days of November yielded a high R2 Score of 0.81, 

with a low RMSE of 2.38.   

 

 

Figure 8. Prediction vs Actual PM 2.5 values using LSTM 

Adam 
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3.3.2 Choosing a suitable RNN Variant: The optimal 

hyperparameters tuned and trained on LSTM-Adam combination 

are transferred to 5 other RNN variants. These include LSTM 

with SGD optimizer, LSTM peep-holes with Adam optimizer, 

LSTM peephole with SGD optimizer, GRU with Adam 

Optimizer and GRU with SGD optimizer. The base sensor is still 

used to provide the training and testing dataset. To improve on 

robustness, each of the 6 variants is trained 100 times and the 

average RMSE, average R2 score, average training and testing 

time recorded.  

 

GRU RNN variant with an SGD optimizer outperformed the 

others attaining the lowest RMSE and consequently highest R2 

score after the 100 loops and is taken to be robustly the best RNN 

variant in this study. 

 

 

Table 3. Comparison between different RNN variants and 

optimizer combinations  

 

3.3.3 Optimum weight determination: GRU-SGD, after 100 

loops, resulted in an average R2 score of 0.82 and an average 

RMSE of 2.27. The weights leading to these results are not 

optimum as they have been aggregated. There is a need to locate 

the best performing weights within the 100 loops. This is 

achieved by identifying the minimum RMSE and maximum R2 

score within the 100 loops, which are found to be weights 

generating RMSE of 1.98 and an R2 score of 0.87. The 

subsequent graph is shown in figure 9.  

 

Figure 9. Prediction vs Actual PM2.5 values using GRU SGD 

 

While utilizing GRU-SGD, the base sensor’s performance 

improved as illustrated in Figure 9. PM2.5 levels are seen to be 

increasing as summer (May) gives way to winter days 

(November). This can be an indication of increased motor vehicle 

use as well as heating during the approaching cold season. GRU-

SGD provides for a suitable forecasting model in predicting the 

first 11 days of November as evidenced by the trend that closely 

follows the peaks and troughs of the actual data. 

3.3.4 Weight transfer: The optimum weights obtained are 

applied to all sensors in the complete sensor dataset. Out of 81 

sensors, 57 sensors had an R2 score between 0.7 and 1, an interval 

that agrees with (Amaral et al., 2015) who found out that most 

manufactured low-cost particulate matter sensor had a similar R2 

score range. 

 

. Figure 10. Successfully trained sensors using transferred 

weights. 

 

3.4 Weight transfer investigation 

3.4.1 Distance: The geographical distance of sensors relative 

to the base sensor does not produce a significant effect on the 

prediction of future PM2.5 values after transfer of weights. 

Sensors further away from the base sensor had a good prediction 

as sensors closer to the base station. Thus, the weight transfer 

amongst sensors is not tremendously affected by the distance 

between sensors.  

 

Fitting a linear regressive curve creates an inverse relationship 

between prediction success and distance as one moves further 

away from the base sensor. 

 

 
 

Figure 11. Effect of Distance from Base sensor on R2 Score 

 

3.4.2 Particulate matter 10: PM10 is a strong indicator of the 

future levels of PM2.5. Sensors with a greater than 0.5 correlation 

of PM10 with the base sensor showed a higher prediction score 

than sensors with less correlation of PM10. 
 

Fitting a curve on the scatter data brought to light a directly 

proportional relationship between correlation of PM10 between 

sensors and the success in the transfer of weights. 

 

RNN Variant + 

Optimizer 

Average 

R2  

Average 

RMSE 

Average 

Time 

(seconds) 

LSTM-Adam 0.79 2.45 19 

LSTM(Peephole)-

Adam 

0.79 2.41 26 

GRU-Adam 0.80 2.44 21 

LSTM-SGD 0.79 2.49 19 

LSTM(Peephole)-

SGD 

0.79 2.53 25 

GRU-SGD 0.82 2.27 20 
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Figure 12. PM10 Correlation and R2 Score 

 

3.4.3 Particulate matter 2.5: PM2.5 is the output of this 

prediction exercise. Sensors that exhibited a high correlation of 

PM2.5 with the base sensor also fared better when it came to 

prediction using transferred weights.  

 

 

Figure 13. PM2.5 Correlation and R2 Score 

 

3.4.4 Pressure: Pressure is the only weather variable in the 

study that showed a clear improvement effect on predictions 

using transferred weights. Overall, all the sensors in the complete 

sensor dataset had a greater than 0.5 pressure correlation 

coefficient with respect to the base sensor. However, sensors 

exhibiting close to 1 correlation with the base sensor performed 

the best when it came to prediction using transferred weights. 

 

Pressure correlation coefficient showed a directly proportional 

relationship to the R2 Score and by extension, transfer of weights. 

 

Figure 14. Pressure Correlation and R2 Score 

 

3.4.5 Temperature, wind direction and speed: The 

correlation of temperature, wind direction and wind speed of the 

sensors and the base sensor had little effect on the predictive 

power of the network.  

 

Temperature correlation coefficient was greater than 0.5 for most 

sensors but that was not an advantage when it came to prediction 

using transferred weights. The correlation coefficient of wind 

direction and wind speed between the sensors and the base sensor 

was in the medium range and had no effect on their prediction 

performance  

 

 

Figure 15. Temperature Correlation and R2 Score 

 

Figure 16. Wind direction Correlation and R2 Score 

 

Figure 17. Wind speed Correlation and R2 Score 

 

3.5 Conclusion 

In this study, 3 variants of recurrent neural networks and 2 

optimizers resulting to 6 combinations have been evaluated and 

the Gated Recurrent Unit utilizing the SGD optimizer has been 

found to perform the best of the 6. 

 

Hyperparameter tuning was successfully done on the LSTM 

Adam utilizing data from one sensor (the base sensor) and 

transferred to a different model, the GRU-SGD. The optimal 

weights obtained from the base sensor were used to predict the 

first 11 days of November for all the sensors in the dataset. Out 

of 81 sensors, 57 had an acceptable R2 Score that ranges between 

0.7 and 1. 

 

A high PM2.5, PM10 and pressure correlation of the sensors with 

the base sensor has an effect on the transfer of weights as 

evidenced by the R2 score.  

 

Distance, Temperature, wind direction and wind speed have little 

to no effect on the transfer of hyperparameters. 
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