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ABSTRACT: 
 
Dense image matching is essential to photogrammetry applications, including Digital Surface Model (DSM) generation, three 
dimensional (3D) reconstruction, and object detection and recognition. The development of an efficient and robust method for dense 
image matching has been one of the technical challenges due to high variations in illumination and ground features of aerial images 
of large areas. Nowadays, due to the development of deep learning technology, deep neural network-based algorithms outperform 
traditional methods on a variety of tasks such as object detection, semantic segmentation and stereo matching. The proposed network 
includes cost-volume computation, cost-volume aggregation, and disparity prediction. It starts with a pre-trained VGG-16 network 
as a backend and using the U-net architecture with nine layers for feature map extraction and a correlation layer for cost volume 
calculation, after that a guided filter based cost aggregation is adopted for cost volume filtering and finally the soft Argmax function 
is utilized for disparity prediction. The experimental conducted on a UAV dataset demonstrated that the proposed method achieved 
the RMSE (root mean square error) of the reprojection error better than 1 pixel in image coordinate and in-ground positioning 
accuracy within 2.5 ground sample distance. The comparison experiments on KITTI 2015 dataset shows the proposed unsupervised 
method even comparably with other supervised methods.  
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Dense image matching is essential to photogrammetry 
applications, including Digital Surface Model (DSM) 
generation, three dimensional (3D) reconstruction, and object 
detection and recognition (Xu et al, 2017). Given a pair of 
stereo images and its corresponding camera parameters, the 
goal of dense image matching is to generate the 3D point clouds 
of the overlap area between the stereo image pair 
(Szeliski,2010). The development of an efficient and robust 
method for dense image matching has been one of the technical 
challenges due to high variations in illumination and ground 
features of aerial images of large areas. Nowadays, due to the 
development of deep learning technology, deep neural network-
based algorithms outperform traditional methods on a variety of 
tasks such as object detection, semantic segmentation and stereo 
matching.   On the stereo matching benchmark KITTI, the top 
50 methods on the rank are deep learning-based, which show a 
significant advantage by utilizing deep neural networks for 
dense image matching tasks (Geiger, 2012). However, almost 
all the deep neural network-based methods are supervised 
learning methods, because of all the benchmarks provide 
accurate ground truth for validation. In real 3D data production, 
the accurate 3D points cloud ground truth is usually obtained by 
LiDAR system, which is really expensive for handling a large 
survey area (Yuan et al, 2019). Due to the difficulty of labeling 
ground truth depth, usable data for training a network is rather 
limited, making the supervised learning-based methods are 
difficult to apply to real applications (Zhou et al, 2017). To 
tackle the above problems, in this paper, we present an end-to-

end unsupervised multi-constraint Deep Neural Network for 
aerial image-based dense image matching. 
 

2. RELATED WORKS 

 
The early stereo matching methods (Kong, 2014) defined the 
initial matching cost calculated using various metrics (such as 
the Euclidean distance of pixel values). It is also very popular to 
fit the hyperparameters of graphic models (Zhang, 2007) with 
real ground data. In recent work, the confidence of the 
estimated matching cost has been studied (Spyropoulos, 2014). 
These methods train a random forest classifier to combine 
several confidence measures or a Markov random domain. 
In recent years, as deep neural networks show a great 
performance on object detection and classification tasts. 
Convolutional neural networks (CNN) have also been widely 
used in matching cost learning. Zbontar and LeCun (2015) 
describe patch based matching as a binary classification 
problem to determine the pixel-wise correspondence use deep 
neural networks. Later methods followed this work improved 
network architecture, such as MatchNet (Han, 2015). 
In order to take full advantage of the limited size and matching 
range of stereo depth, the researchers established more specific 
architectures and losses. GCNet(Alex 2017) proposed a method 
of generating 3D cost by intensively comparing the features on 
the pixels of the reference image with all possible matching 
pixels on the target image. The network finds the best match 
through soft argmin operator. PSMNet (Chang, 2018) uses 
pyramid space pools and hourglass networks to utilize image 
context. Later work (Cheng, 2018) added a post-processing 
module, resulting in better recovery details. These network 
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architectures provide a solid foundation for developing 
unsupervised learning methods. 
 
Unsupervised learning is becoming more and more popular in 
deep learning researches. In moving object prediction, 
autoencoders and visual representations, a lot of researcher 
choose to using unsupervised learning based methods. 
Unsupervised learning also works well with edge detection and 
optical flow calculation. Li et al. (2015) utilize the correlation 
between moving boundaries for object edges detections. The 
alternation between motion estimation and edge detection forms 
the basic steps of edge learning. Yu et al. (2016) defines a loss 
function with data and smoothing terms, similar to the objective 
function in the energy minimization strategy. Therefore, this 
method is utilizing the loss function to determing the optimal 
solution of whole task. In contrast, most of the dense image 
matching methods defines matching as a classification problem, 
which can be better solved in the occlusion area. 
 
 
 

3. METHOD 

3.1 Dense Matching Learning Network 

Our Dense Matching Learning Network is an end-to-end 
trainable framework taking stereo image pairs as input and 
output the predicted disparity map. The whole network can be 
mainly divided into three parts, feature extraction parts, cost-
volume computation parts, and disparity prediction part. At 
first, the stereo image patches are utilized as the input for 
feature extractor, the feature extract layer are mainly conducted 
with 9 layers, after the feature extract, the extracted features are 
input into a correlation layer for cost volume calculation. Since 
the pixel based cost volume always affected by the pixel 
intensity noise and brightness changes, we employ a guided 
image filter to represent the cost aggreation to enhance the 
robustness of the estimated costs. At last, a soft Argmax 
operator is utilized for disparity prediction.The detailed 
explanation in what follows. 
  
3.1.1 Feature extraction  
 
We first employ a U-net (Ronneberger, 2015) like architecture 
for feature extraction, because common CNNs usually utilizing 
the sliced image patches as inputs and in our case we want 
using the whole raw image as inputs, further more U-net has a 
strong performance in object detection tasks, which makes it 
fulfil our requirements. The utilized U-net architecture 
contained with nine layers, the second to fifth layer are 
downsampled layer with PReLU activation function, and the 
fifth to ninth layer are the upsample layer with PReLU function 
and batch normalization. 
 
3.1.2 Cost-Volume Computation  
 
After the Unet liked feature extraction layer, a correlation layer 
same as Mayer (Mayer et al, 2016) proposed in their paper are 
employed for the cost-volume computation, at the meantime, an 
edge preserved guided image filter (He et al, 2013) base on the 
left image is employed to joint filter the cost-volume and the 
cost aggregation step is finished. 
 
3.1.3 Disparity Prediction 
 

After getting the filtered cost volume, the winner-takes-all 
strategy is utilized for disparity prediction. As the usually 
utilized Argmax operator is not derivable in the 
backpropagation. Here we use the soft Argmax operator to 
solve the problem  (Chapelle et al., 2010). 
With all the three components, the proposed networks can learn 
the dense image matching in an end-to-end manner. 
 
3.2 Multi-Constraint Loss Function 

The common supervised learning methods can use a large 
amount of ground truth data for loss function determination; 
however, for unsupervised learning, only a reasonable loss 
function can lead to good prediction results. To determine the 
loss function in our unsupervised learning networks, we chose a 
three-term based multi-constraints for optimization of the 
prediction results. 
 
3.2.1 Reconstruction Appearance Loss 
 
Through the learning networks the input left image Il can be 
easily wrapped from input right image Ir with the predicted 
disparity map dl, then we use the appearance loss function to 
encourage the predicted disparity and the right image can 
reconstruct the same image as the original left image. In order 
to justify the similarity between two images, we use the 
structure similarity function proposed by Wang (2004) and the 
L1 loss to build our appearance loss. The loss can be described 
as 
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Where Φ  is a 5×5 neighborhood of pixel p and the ˆ( , )l lI Iσ  
is the image structure similarity function from Wang’s paper, 

α  is a weighted factor, and  ˆlI  is the wrapped image based 
on the predicted left disparity map and the original right image. 
 
3.2.2 Left-right Consistency Loss 
 
In the traditional dense image matching methods, L-R check is 
an important step to eliminate the mismatched correspondence, 
thereby, we determine a same Left-right consistency loss to 
regularize the consistency of left disparity map and the right 
disparity map. The Left-right Consistency Loss can be 
described as 
 

1 ( ) ( ( ))l l r l
LR

p
L d p d p d p

N ∈Φ

= − −∑            (2) 

Where Φ  is a 5×5 neighborhood of pixel p, ld represent the 

left disparity map, and rd represent the right disparity map. 
 
3.2.3 Smoothness Loss 
 
The smoothness loss term is utilized to enforce the disparity 
smoothness, and it can be described as equation 3. 
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Where ld∂ and lI∂  are the gradient value of ld  and lI . 
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After all the final unsupervised loss function is determined as 
equation (4). 
 

( ) ( ) ( )l r l r l r
ap ap LR LR Smooth SmoothL L L L L L Lα β γ= + + + + +      (4) 

Where α , β  and γ  are the weighted factor to balance the 
influence of a different kind of the loss. 
 

4. EXPERIEMT AND ANALYSIS 

4.1 Datasets 

 
The evaluative experiments were performed using sets of 
unmanned aerial vehicle images. The UAV image dataset is 
contained with 44 images in near Beijing area, and mainly 
covered with farmland and small buildings. The detailed 
parameters of the dataset is shown in table 1. In order to 
evaluate the actual positioning accuracy, we use the high 
accurate pass points as the checkpoints for actual positioning 
accuracy evaluation. And the comparison experiment is 
conducted on the KITTI 2015 dataset. 
 

Table 1. Technical parameter of the test images 
 

Item Beijing 

Aerial craft Unmanned Aerial 
Vehicle (UAV) 

Camera PhaseOne IXU-1000 
Principal distance (mm) 51.21293 

Format (pixels) 11608 × 8708 
Pixel size (µm) 4.6 

Ground sample distance (GSD) 
(cm) 7 

Relative flying height (m) 779 
Longitudinal overlap (%) 60 

Lateral overlap (%) 30 
Number of mapping strips 4 
Number of control strips 4 

Number of images 88 
Number of ground control 

points 21 

Number of pass points 55701 
Block area (km2) 2.8 × 2.8 

Maximum topographic relief 
(m) 54 

Average terrestrial height (m) 508 
 
4.2 Quality assessment 

 
The exact position of the flying strips and the ground control 
points are shown in Fig.1. To quantitatively analyze the 
accuracy of the proposed method, the root mean square 
error(RMSE) of the reprojection error is utilized to determine 
the matching accuracy in image coordinate. The calculation of 
the reprojection error is shown as equation (5).  
 

∑
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where  is the matching accuracy in the image; n is the 
number of the dense image matching points; , , , 
and  are the coordinate vectors. 
 
The actual height accuracy in the ground is calculated by using 
the pass points as the checkpoints and calculate the height 
displacement between the checkpoints and the dense image 
matching generated 3D points. The actual height accuracy can 
be calculated through equation (6): 
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=
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where n is the number of checkpoints and ih∆ is the height 
error of the ith checkpoint. 
 

 
 
 
 

Figure 1. The Distribution of the Beijing UAV datasets 
 
 
4.3 Analysis 

Figure 2 shows the original input left image and the predict 
disparity map. From the disparity map we can find the overall 
completeness is high, but the disparity map still contained some 
noise. By using the camera parameter, we calculate the overall 
RMSE of the projection error among the 87 stereo pair is better 
than 1 pixel, and the actual positioning accuracy achieved 18 
cm, which is better than 2.5 GSD.  
The generated disparity map is the raw output with out any 
post-processing. We believe that using those outputs by 
utilizing some filtering methods, the visualization of the 
generated disparity map will be more smooth and reliable.  
From figure 2 (b), we can find in the boundary of the continual 
building area, the generated raw disparity map will occure some 
noise and holes, the reason is the texture information in these 
areas are highly repeated, which makes the correlation layer can 
not generate reliable cost volume. Which makes the generated 
disparity are noisy and with some unmatched pixels.  
Overall, the building outlines and the small object such as cars 
and the road can be detected through the raw disparity map. 
 

  Orientation point       Check point       + Perspective 
center point 
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(a) 

 
(b) 

Figure 2. Matching results, (a) input left image,(b) output 
disparity map 

 
4.4 Comparison experiments 

 
The comparison experiments is conducted on the KITTI 2015 
benchmark, we selected 3 supervised deep learning methods for 
comparison, namely MC-CNN (Zbontar, 2015), Deep Enbed 
(Zhou, 2015) and Dispnet (Mayer, 2016). The comparison 
results is shown in table 2. 
 

Table 2. The comparison results 
 

Methods >2 pixel >3 pixel 
NOC ALL NOC ALL 

MC-CNN 13.20 15.83 11.35 13.21 
Deep Enbed 9.81 11.26 7.29 8.51 

Dispnet 9.56 10.74 7.19 8.23 
Ours 11.27 13.03 8.35 9.41 

 
From table 2, we can find that our methods can achieve the 
even accuracy results than supervised learning methods, and 
better than the MC-CNN method. 

 

5. CONCLUSION 

In this paper we proposed a unsupervised matching methods for 
dense image matching, The experimental results showed that 
the proposed method achieved the RMSE (root mean square 
error) of the reprojection error better than 1 pixel in image 
coordinates, an in-ground positioning accuracy within ±2.5 
GSD (Ground Sampling Distance).The comparison experiments 
on KITTI show the proposed unsupervised learning method 
even comparably with other supervised methods. In the future, 
we expect to enhance the networks and the loss functions 
further. The structural similarity loss in the unsupervised loss is 
illumination sensitive, could also be improved. 
. 
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