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ABSTRACT: 
 
Unmanned aerial vehicles (UAVs) have been widely used for 3D reconstruction/modelling in various applications such as precision 
agriculture, coastal monitoring, and emergency management. For such mapping applications, camera and LiDAR are the two most 
commonly used sensors. Mapping with imagery-based approaches is considered to be an economical and effective option and is often 
conducted using Structure from Motion (SfM) techniques where point clouds and orthophotos are generated. In addition to UAV 
photogrammetry, point clouds of the area of interest can also be directly derived from LiDAR sensors onboard UAVs equipped with 
global navigation satellite systems/inertial navigation systems (GNSS/INS). In this study, a custom-built UAV-based mobile mapping 
system is used to simultaneously collect imagery and LiDAR data. Derived LiDAR and image-based point clouds are investigated and 
compared in terms of their absolute and relative accuracy. Furthermore, stability of the system calibration parameters for the camera 
and LiDAR sensors are studied using temporal datasets. The results show that while LiDAR point clouds demonstrate a high absolute 
accuracy over time, image-based point clouds are not as accurate as LiDAR due to instability of the camera interior orientation 
parameters. 
 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) equipped with global 
navigation satellite systems/inertial navigation systems 
(GNSS/INS) are becoming more popular for many applications 
because of their capability to carry advanced sensors and collect 
both high temporal and high spatial resolution data. UAV-based 
systems can provide accurate 3D spatial information at a 
relatively low cost, and therefore facilitate various applications 
including precision agriculture (Moghimi et al., 2020; Ravi et al., 
2019; Masjedi et al., 2018; He et al., 2018; Habib et al., 2016), 
infrastructure monitoring (Greenwood et al., 2019), and 
archaeological documentation (Lin et al., 2019; Hamilton, 
Stephenson, 2016).  RGB frame camera and LiDAR are the most 
common means to generate 3D point clouds for topographic 
mapping. Digital frame cameras onboard UAVs have been 
shown as a flexible and economical option for 3D reconstruction. 
The reconstructed image-based 3D model can be georeferenced 
using either ground control points (GCPs), known as indirect 
georeferencing, or trajectory information provided by a survey-
grade GNSS/INS unit onboard the UAV, known as direct 
georeferencing. LiDAR-based systems, on the other hand, will 
directly lead to precise and high-resolution 3D point clouds. 
However, georeferencing of LiDAR point clouds coming from 
mobile mapping systems must be conducted using the direct 
georeferencing technique. System calibration of UAV-based 
GNSS/INS-assisted imaging and/or ranging systems is a vital 
step for direct georeferencing, and consequently reconstructing 
accurate LiDAR/image-based point clouds. System calibration 
parameters consist of internal characteristics of the onboard 
camera/LiDAR sensors, as well as mounting parameters relating 
the GNSS/INS body frame to the camera/LiDAR frames. When 
using direct georeferencing, any deviation in the system 
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calibration parameters from their true values will adversely affect 
the accuracy of reconstructed object space.  
 
Point clouds coming from LiDAR and imagery have been 
evaluated and compared in different studies. Ni et al. (2014) 
studied the possibility of using image-based points clouds instead 
of LiDAR data in forested areas for biomass estimation. The 
authors analyzed and compared the image-based point cloud data 
to small footprint LiDAR data and large footprint LiDAR 
waveform data. They showed that the satellite stereo imagery 
could result in point clouds with points on both canopy and 
ground surfaces in unclosed forest but only the canopy surface in 
dense forest. Hence, in such cases, to calculate the height of the 
canopy using imagery, terrain elevation from other sources 
would be needed. Thiel and Schmullius (2017) compared UAV 
image-based point clouds and manned airborne LiDAR data over 
a forested area. Their results showed a high correlation between 
LiDAR and image-based point clouds with a slight superiority of 
the results coming from the latter. More specifically, while using 
LiDAR data, 45 out of 205 trees were not detected, and this 
number was only 14 when UAV image data was used. Elsner et 
al. (2018) compared UAV image-based 3D reconstruction results 
with wheel-based mobile LiDAR and manned airborne LiDAR. 
Their results suggested that image-based point cloud has 
consistently higher elevation than LiDAR data for all the utilized 
datasets. UAV-based photogrammetry and LiDAR were 
compared in a study conducted by Shaw et al. (2019). Similar to 
the results shown by Elsner et al. (2018), image-based point cloud 
showed a constant positive elevation bias from 4 to 9 cm when 
compared to the LiDAR surfaces and Real-Time Kinematic 
(RTK)-GNSS measurements. Lin et al. (2019) evaluated the 
relative performance of UAV LiDAR in mapping coastal 
environment when compared to the UAV photogrammetry. Their 
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results suggested that both LiDAR and image-based point clouds 
had a good degree of alignment with an overall precision of ±5 
to ±10 cm, with the LiDAR data outperforming the 
photogrammetric surface in terms of point density, ground 
coverage and ability to penetrate through vegetation. 
 
Despite the fact that the discrepancy between LiDAR and image-
based point clouds has been widely observed and reported, to the 
best of the authors’ knowledge, there is no investigation 
regarding the cause of such differences between the two sets of 
point clouds. To address this issue, this work aims at exploring 
possible factors that can cause discrepancies between LiDAR and 
image-based point clouds by using temporal datasets with 
different sensor settings. Temporal datasets are used to evaluate 
system calibration parameters, while the impact of sensor settings 
on the reconstructed point clouds is investigated through changes 
in camera focus settings.  
 
In this paper, image-based sparse point cloud is generated 
through a GNSS/INS-assisted Structure from Motion (SfM) 
strategy introduced by Hasheminasab et al. (2020). Then, dense 
point cloud is generated using an approach similar to the patch-
based multi-view stereo (PMVS) algorithm (Furukawa, Ponce, 
2009). LiDAR point cloud is reconstructed with the help of 
GNSS/INS trajectory and system calibration parameters. To 
evaluate the absolute accuracy of the derived point clouds, 
checkerboard targets are deployed in the study site and surveyed 
using RTK-GNSS technique. Also, a point-to-point strategy is 
proposed for assessing relative accuracy between the two sets of 
point clouds. 
 
The remainder of the paper is organized as follows: Section 2 
introduces the UAV-based data acquisition system and the 
datasets used in this study, Section 3 describes the approaches for 
deriving image-based and LiDAR-based point clouds as well as 
the strategies for assessing the quality of the point clouds, Section 
4 presents the experimental results, and Section 5 provides 
conclusions and recommendations for future work. 
 
 

2. DATA ACQUISITION SYSTEM SPECIFICATIONS 
AND DATASETS DESCRIPTION 

In this study, LiDAR and image-based point clouds are generated 
from data captured by a custom-built UAV-based mobile 
mapping system, shown in Figure 1. The system consists of a Dà-
Jiāng Innovations (DJI) Matrice 600 Pro (M600P) carrying a 
Sony α7R III (ILCE-7RM3) RGB camera, a Velodyne Puck Lite 
LiDAR sensor, and Applanix APX-15 UAV v3 GNSS/INS unit. 
The LiDAR unit, RGB camera, and GNSS/INS unit are rigidly 
fixed to one another. Direct geo-refencing information, i.e., the 
position and orientation of the system, is provided by the APX-
15 v3 unit at 200 Hz data rate. After post-processing of the 
GNSS/INS data, the expected positional accuracy is 2-5 cm, and 
the accuracy for pitch/roll and heading is 0.025° and 0.08°, 
respectively (Applanix, 2020). The Sony α7R III camera is a 42-
megapixel camera with a 7952 × 5304 complementary metal 
oxide semiconductor (CMOS) array, 4.5 μm pixel size, and a lens 
with 35 mm nominal focal length (Sony, 2020). The Velodyne 
Puck LITE, with a weight of 590 g, is a lighter version of VLP-
16 Puck (830 g) and consists of 16 channels. This sensor 
generates approximately 300,000 points per second with a 360° 
horizontal field of view and a 30° vertical field of view (±15° 
from the horizon). The maximum measurement range is 100 m 
with a ±3 cm range accuracy (Velodyne, 2020). 
 

 
Figure 1. The UAV-based mobile mapping system and onboard 
sensors used in this study. 

 
As mentioned earlier, rigorous system calibration is essential for 
achieving accurate georeferenced products through direct 
georeferencing. In this study, camera IOPs are estimated using 
the United States Geological Survey (USGS) simultaneous multi-
frame analytical calibration (SMAC) distortion model through an 
indoor calibration procedure similar to the one proposed by He 
and Habib (2015). Derived square root of a posteriori variance of 
the indoor calibration bundle adjustment procedure is 0.73 pixel, 
which is an indication of high precision of estimated IOPs. 
Mounting parameters, i.e., boresight angles and lever arm 
components, between GNSS/INS unit and the onboard 
imaging/ranging sensors are estimated through the rigorous 
system calibration procedure proposed by Ravi et al. (2018) using 
a calibration dataset collected on November 11th, 2019. Figure 2 
depicts the qualitative evaluation of the system calibration by 
showing the alignment among LiDAR, image-derived, and 
ground control points of a checkerboard target, where the 
planimetric and vertical alignments are shown by top view and 
slide view, respectively. As shown in Figure 2, the absolute 
accuracy of the LiDAR and image-based points is in the range of 
±2 to ±5 cm compared to the established GCP. 
 

 
Figure 2. Qualitative evaluation of 3D alignment among LiDAR 
(red), image points (green), and GCP (blue) after calibration for 
checkerboard target. 

 
In this study, four datasets were collected over a study site at 
Purdue’s Agronomy Center for Research and Education (ACRE) 
with different geomorphic features, i.e., grass, pavement, and 
building roof. To study the impact of camera settings on the 
reconstructed image-based point cloud, different focus settings 
were selected for the Sony camera, i.e., auto focus and manual 
focus. Table 1 summarizes the flight configurations and camera 
settings used for different datasets. The ground sampling distance 
(GSD) of the imagery is 0.6 cm at 41 m flying height.  As 
reported in Table 1, auto focus and manual focus modes were 
used in datasets A and B, respectively. 
 
To evaluate the absolute accuracy of the reconstructed point 
clouds, a total of twelve highly reflective checkboard targets were 
deployed in the study site, as shown in Figure 3. Centers of these 
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checkerboard targets were surveyed through the RTK-GNSS 
technique using a Trimble R10 GNSS receiver. Considering the 
distance between the rover receiver and the GNSS base-station, 
i.e., 6 km, the expected horizontal and vertical accuracy from the 
R10 is in the range of ±2 to ±3 cm and ±3 to ±4 cm, respectively. 
 

Dataset 
Name Date 

Camera 
Focus 

Settings 

Flying 
Height 

(m) 

Ground 
Speed 
(m/s) 

Lateral 
Distance 

(m) 

Imagery 
Overlap/ 

Side-
Lap  
(%) 

A-1 20200
304 

Auto 
focus 41 4.0 6 83/89 

A-2 20200
501 

Auto 
focus 41 4.0 6 83/89 

B-1 20200
304 

Manual 
focus 41 4.0 6 83/89 

B-2 20200
501 

Manual 
focus 41 4.0 6 83/89 

Table 1. Flight configurations and camera focus settings for the 
flight missions captured for the experimental datasets 

 
 

  
(a) (b) 

Figure 3. (a) Study site and deployed checkboard targets 
highlighted with the red boxes, and (b) sample images of the 
targets. 
 

3. METHODOLOGY 

In this section, first, the approaches for image-based and LiDAR-
based point cloud generation are described. Then, the strategies 
for accuracy evaluation of the derived 3D point clouds are 
discussed. 
 
3.1 Image-based Point Cloud Generation 

In this study, image-based point clouds are generated through 
five steps, namely, stereo-image matching, relative orientation 
parameter (ROP) estimation, exterior orientation parameter 
(EOP) recovery, bundle adjustment (BA), and dense matching.  
 
In stereo-image matching step, Scale Invariant Feature 
Transform (SIFT) (Lowe, 2004) algorithm is used to detect local 
features along with their descriptors. Then, similar to what was 
introduced by Hasheminasab et al. (2020), rather than conducting 
a traditional exhaustive search among the feature descriptors, the 
available GNSS/INS trajectory is used to reduce the search space 
and consequently the matching ambiguity. Matching ambiguity 
is common when dealing with images captured over areas with 
homogeneous nature, which is the case for the dataset used in this 
study consisting of homogeneous patches of grass, pavement, 
and building roofs. Once conjugate features are established 
between overlapping images, the relative orientation parameters 
including two positional and three rotational parameters are 
estimated between the stereo-pairs using coplanarity constraint. 

This constraint enforces the coplanarity of the light rays 
connecting the perspective centers of the imaging sensor, object 
point, and the respective image points. In the EOP recovery step, 
a local coordinate system is first defined by a stereo-pair that has 
the maximum number of feature correspondences. The remaining 
images are then sequentially augmented into this reference frame 
through rotation and translation averaging techniques. Then, a 
GNSS/INS-assisted bundle adjustment is conducted to refine the 
derived EOPs, 3D coordinates of the object points, and boresight 
angles. These four steps together comprise the Structure-from-
Motion (SfM) framework. Figure 4 shows a sample of generated 
sparse point cloud and corresponding orthophoto from A-1 
dataset. As can be seen in Figure 4, the reconstructed image-
based 3D points (30,000 points) are not well-distributed over the 
study site, i.e., most points belong to grass areas while few points 
are reconstructed on building roof and pavement surfaces. 
 

 
Figure 4. Generated sparse point cloud (colored by height) with 
30,000 points and corresponding orthophoto for A-1 dataset. 
 
In order to generate well-distributed dense point clouds, a dense 
matching strategy inspired by the PMVS algorithm (Furukawa, 
Ponce, 2009) is implemented. The approach starts with detecting 
Harris features (Harris, Stephens, 1988) in each image. To 
conduct feature matching, each image in the image block is 
sequentially selected as reference, and its K-nearest images 
(K=10 in this study) are considered as candidate images. Using 
the refined EOPs from SfM results, the epipolar constraint is 
applied to establish candidate matching features between the 
reference image and each candidate image. Next, a patch 
corresponding to a given pair of matching features is defined as 
follows: a) the 3D point derived by light-ray intersection from the 
matching features is regarded as center; b) the norm of the patch 
is defined so that it is oriented toward the reference image; and 
c) size of patch is pre-defined according to GSD of the image, 
e.g., 6 cm × 6 cm patches. Then, corresponding patches in image-
space are derived through back-projection of the patch in 
question into all candidate images. In the next step, Normalized 
Cross Correlation (NCC) is used to measure the similarity 
between image patches in reference image and each candidate 
image. A patch in the reference image is retained if at least five 
candidate images are matched. Going through all the images, a 
sparse set of patches is generated in the object space. And then a 
denser set of patches is obtained through an 
expansion/interpolation procedure. The final dense point cloud is 
derived after visibility and consistency checks are conducted 
within the point clouds where wrong and/or occluded patches are 
removed. Figure 5 depicts a sample of generated dense point 
cloud from A-1 dataset. Comparing Figure 5 with Figure 4, one 
can easily observe the improvement in the distribution as well as 
the number of points in the generated dense point cloud. 
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Figure 5. Generated dense point cloud (colored by height) with 
80,000 points and corresponding orthophoto for A-1 dataset. 

 
3.2 LiDAR Point Cloud Generation 

Raw LiDAR data includes intensity and range measurements 
along with the direction where the laser beams is pointing. By 
coupling the range and orientation of the laser beams, we can 
obtain the position of the laser beam footprint relative to the laser 
unit frame, denoted by 𝑟𝑟𝐼𝐼𝑙𝑙𝑙𝑙(𝑡𝑡) . The position, 𝑟𝑟𝑣𝑣𝑚𝑚(𝑡𝑡) , and 
orientation, 𝑅𝑅𝑣𝑣𝑚𝑚(𝑡𝑡), of the vehicle frame relative to the mapping 
frame are derived through direct georeferencing. The laser unit 
frame and vehicle frame are related using the calibrated mounting 
parameters, which consist of the lever arm, 𝑟𝑟𝑙𝑙𝑙𝑙𝑣𝑣 , and the boresight 
rotation matrix, 𝑅𝑅𝑙𝑙𝑙𝑙𝑣𝑣 . The 3D coordinates of a ground point, I, in 
the mapping frame can then be derived using Equation 1 (El-
Sheimy et al., 2005).  
 

𝑟𝑟𝐼𝐼𝑚𝑚 = 𝑟𝑟𝑣𝑣𝑚𝑚(𝑡𝑡) + 𝑅𝑅𝑣𝑣𝑚𝑚(𝑡𝑡)𝑟𝑟𝑙𝑙𝑙𝑙𝑣𝑣 + 𝑅𝑅𝑣𝑣𝑚𝑚(𝑡𝑡)𝑅𝑅𝑙𝑙𝑙𝑙𝑣𝑣 𝑟𝑟𝐼𝐼𝑙𝑙𝑙𝑙(𝑡𝑡) (1) 
 
In this study, the rotation axis of the Velodyne onboard the UAV 
is parallel to the flying direction. To ensure that the LiDAR points 
are mainly coming from the object space in question, i.e., area 
below UAV, an object point is reconstructed only when the 
direction of corresponding laser beam is less than ±70° from 
nadir. Reconstructed LiDAR point cloud from A-1 dataset is 
illustrated in Figure 6. 
 

 
Figure 6. Reconstructed LiDAR point cloud (colored by height) 
with 31,000,000 points for A-1 dataset. 

 
3.3 Accuracy and Comparative Analysis of Generated Point 
Clouds  

In this section, we first present the strategies for evaluating the 
absolute accuracy of the derived LiDAR and image-based point 
clouds against RTK-GNSS survey. The approach for estimating 
the relative accuracy between the LiDAR and image-based point 
clouds is then introduced. 
 
The absolute accuracy of the derived point cloud is assessed 
against the RTK-GNSS measurements of twelve checkerboard 

targets that were set up in the field before data acquisition. 
Starting with establishing the point correspondence between the 
RTK-GNSS points and the LiDAR and image-based point cloud, 
the coordinate differences between the point pairs are calculated, 
and the statistics including the mean, standard deviation (STD), 
and root-mean-square-error (RMSE) are reported. Conducting a 
reliable comparison between points (RTK-GNSS measurements) 
and point clouds is contingent on establishing point 
correspondence, which is introduced below:  
• Image-based point cloud: The center points of the 

checkerboard targets are manually identified in the images. The 
3D coordinates of the center points, hereafter denoted as 
image-derived 3D coordinates of targets, are then estimated 
through multi light-ray intersection, using camera IOPs and the 
refined EOPs derived from the SfM strategy.  

• LiDAR-based point cloud: In the first step, centers of the highly 
reflective checkerboard targets are manually identified from 
the LiDAR point cloud based on the intensity information, and 
denoted as initial points. The initial points are expected to have 
a horizontal accuracy of ±3 to ±5 cm due to the noise level of 
the LiDAR data caused by i) the GNSS/INS trajectory errors, 
and ii) the nature of LiDAR pulse returns from highly reflective 
surfaces. Then, a strategy based on iterative plane fitting is 
proposed in order to derive reliable Z coordinates. First, a 
spherical region centered at each initial point is created with a 
pre-defined radius, e.g., 0.5 m. An iterative plane fitting is 
conducted using all the LiDAR points in the spherical region to 
find the best fitted plane. Finally, the center point is defined as 
the projection of the initial point on the best-fitted plane, and 
hereafter denoted as LiDAR-derived 3D coordinates of the 
targets. Figure 7 illustrates a sample of deriving point 
correspondence in LiDAR point cloud. Figure 7(a) shows the 
RGB image of a highly reflective checkerboard target, where 
the coordinates of the target center are determined through an 
RTK-GNSS survey. Figure 7(b) depicts a sample of highly 
reflective checkerboard target in the LiDAR point cloud, the 
initial point (red point), and the LiDAR-derived 3D coordinates 
of the targets (green point).  
 

 
 

 
(a) (b) 

Figure 7. A sample of point correspondence in LiDAR point 
cloud: (a) a checkerboard target in an RGB image, and (b) the 
LiDAR points of the checkerboard target, initial point, (red 
point), and LiDAR-derived center of the target (green point). The 
LiDAR point cloud is colored by intensity, where points with low 
and high intensities are shown in black and white, respectively. 

 
In addition to evaluating absolute accuracy of the point clouds, 
relative accuracy between the LiDAR and image-based point 
clouds is assessed. The differences between the LiDAR and 
image-based point clouds are evaluated on a point-by-point basis. 
The point correspondence between two sets of point clouds is 
first established. For a given point in image-based point cloud 
(denoted as image point), its closest LiDAR point is identified. 
To ensure reliable correspondence, the distance between these 
two points must be smaller than a pre-defined radius, e.g., 1 m. 
Next, a spherical region centered at the source point with a pre-
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defined threshold, e.g., 0.5 m, is created. Then, an iterative plane 
fitting is conducted using all the LiDAR points in the spherical 
region. The plane is considered valid if the RMSE of normal 
distances of the points from the best-fitting plane is smaller than 
a pre-defined threshold, e.g., 0.3 m, and ratio of retained LiDAR 
points is more than 50%. Finally, the image point is projected 
onto the best-fitted plane, and the projection defines the 
corresponding LiDAR point. Once the point correspondence is 
established, the coordinate differences between the image points 
and the corresponding LiDAR points can be evaluated. 
 
One should note that due to the homogeneous texture of the gable 
roof in the study site, the majority of reconstructed points are on 
the ground surface with horizontal orientation. Therefore, 
discrepancy between LiDAR and image-based point clouds can 
be reliably evaluated only in vertical direction. Therefore, only Z 
discrepancies between the LiDAR and image-based point clouds 
will be considered as the criterion for relative accuracy 
evaluation. 
 

4. EXPERIMENTAL RESULTS 

This section reports the results of absolute and relative accuracy 
of the LiDAR and image-based point clouds for the four datasets. 
As mentioned in Section 2, LiDAR and image-based point clouds 
are generated using system calibration parameters estimated from 
a dataset collected on November 11th, 2019. 
 
4.1 Absolute Accuracy of Image-based Point Cloud 

As described in Section 3.3, image-derived 3D coordinates of the 
targets are estimated through multi light-ray intersection. The 
mean, STD, and RMSE of the differences between the image-
based and RTK-GNSS coordinates for the twelve targets are 
reported in Table 2. According to the statistics reported in Table 
2, there is a misalignment between image-based point clouds and 
RTK-GNSS measurements of the targets in all X, Y, and Z 
directions. Moreover, one can observe that large Z RMSE errors 
are mainly caused by a constant shift between image and target 
points along vertical direction (large mean Z values in Table 2). 
On the other hand, large STD values in X and Y directions show 
a horizontal misalignment of the image-based point cloud. 
Figures 8(a) and 8(b) depict the X and Y differences between the 
image-based and RTK-GNSS coordinates for the twelve targets 
for A-1 dataset, respectively. As shown in Figure 8, there is a 
systematic difference in both X and Y coordinates. More 
specifically, the differences increase as the points deviate further 
away from the mean (represented by blue line in Figure 8).  Based 
on the large STD reported in Table 2 and the pattern of 
differences shown in Figure 8, one can conclude that there is a 
scaling issue in the XY-plane, which is caused by inaccurate 
system calibration parameters. Considering the fact that 
inaccurate lever-arm components only cause constant shifts in the 
object space and boresight angles are solved for during the bundle 
adjustment process, it can be deduced that non-optimal camera 
IOPs are the source of error. Moreover, since the principal 
distance only leads to variation along the Z direction, the 
inaccurate distortion parameters are most likely to be the cause 
of the scaling issue. In conclusion, although accurate IOPs were 
estimated in the system calibration procedure, interior camera 
parameters are hypothesized to be changing over time. This is 
also observed by comparing the derived absolute accuracy of 
datasets which have the same camera settings but captured on 
different dates, i.e., A-1/A-2 with auto focus settings and B-1/B-
2 with manual focus settings. Looking again into Table 2, one 
can note that RMSE of differences between image-based and 
RTK-GNSS coordinates of the targets changes from 6-10 cm in 

A-1 dataset collected on March 2020, to 12-27 cm in A-2 dataset 
collected on May 2020. Similar results hold true for datasets with 
manual focus settings, i.e., B-1/B-2. In addition, comparing the 
results of A-1/B-1 and A-2/B-2 datasets, the accuracy of image-
based point clouds is not consistent using different focus modes, 
which further proves that the utilized focus mode can affect the 
accuracy of the derived point cloud. 
 

Dataset Statistics 
Criteria 

X 
Differences 

(m) 

Y 
Differences 

(m) 

Z 
Differences 

(m) 

A-1 
Mean(m) 0.04 0.02 0.10 
STD (m) 0.04 0.07 0.03 

RMSE (m) 0.06 0.07 0.10 

A-2 
Mean(m) 0.08 0.01 0.27 
STD (m) 0.10 0.16 0.02 

RMSE (m) 0.12 0.16 0.27 

B-1 
Mean(m) 0.03 0.00 0.13 
STD (m) 0.03 0.05 0.02 

RMSE (m) 0.04 0.05 0.13 

B-2 
Mean(m) 0.05 0.01 0.23 
STD (m) 0.07 0.11 0.03 

RMSE (m) 0.08 0.11 0.23 

Table 2. Mean, STD, and RMSE of the differences between 
image-derived and RTK-GNSS coordinates of the twelve check 
points for the four datasets. 

 

  
(a) (b) 

Figure 8. Differences in (a) X coordinates and (b) Y coordinates 
shown by red arrows between image-derived and RTK-GNSS 
coordinates of the twelve ground targets for A-1 dataset where 
blue lines represent mean of X and Y coordinates of the 
reconstructed site (magnitude of the arrows is magnified by a 
factor of 100). 
 
4.2 Absolute Accuracy of LiDAR Point Cloud 

To assess the absolute accuracy of the LiDAR point cloud, 
LiDAR-derived 3D coordinates of the twelve checkerboards 
were computed using the strategy proposed in Section 3.3. The 
absolute accuracy is assessed by evaluating the differences 
between the LiDAR-derived coordinates and the corresponding 
RTK-GNSS.  
 
Figure 9 shows the LiDAR-based point cloud colored by 
intensity and the RTK-GNSS measurements (the red points) of 
two ground targets in A-1 dataset. As can be seen from the top 
and side view illustrations in Figure 9, the LiDAR and RTK-
GNSS points are well-aligned in the horizontal and vertical 
directions. Quantitative accuracy assessment results for the four 
datasets are listed in Table 3. According to Table 3, the RMSE 
values of differences in X and Y directions for all datasets are 
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within 5 cm. One should note that these planimetric differences 
arise from the difficulty in identifying the actual center of targets 
in the LiDAR data. Also, looking into Z differences in Table 3, 
RMSE values in the vertical direction are in the range of 2-4 cm. 
Overall, small RMSE values reported in Table 3 verify the 
accuracy and reliability of the LiDAR data over two different 
dates. Furthermore, the compatibility between LiDAR and RTK-
GNSS validates the stability of system parameters regarding the 
LiDAR sensor. 
 

 
(a) 

 

 
(b) 

Figure 9. Alignment between LiDAR data (colored by intensity) 
and RTK-GNSS points (colored in red) of checkerboard targets: 
(a) Target 3 and (b) Target 9 for A-1 dataset. 
 

Dataset Statistics 
Criteria 

X 
Differences 

(m) 

Y 
Differences 

(m) 

Z 
Differences 

(m) 

A-1 
Mean(m) 0.03 0.01 0.03 
STD (m) 0.02 0.03 0.01 

RMSE (m) 0.04 0.03 0.04 

A-2 
Mean(m) -0.01 0.00 0.01 
STD (m) 0.03 0.02 0.02 

RMSE (m) 0.03 0.02 0.02 

B-1 
Mean(m) -0.02 0.01 0.03 
STD (m) 0.03 0.05 0.02 

RMSE (m) 0.03 0.05 0.04 

B-2 
Mean(m) -0.01 0.00 0.01 
STD (m) 0.03 0.03 0.02 

RMSE (m) 0.03 0.03 0.02 

Table 3. Mean, STD, and RMSE of the differences between 
LiDAR-derived and RTK-GNSS coordinates of the twelve check 
points for the four datasets. 
 
4.3 Comparative Quality Assessment of Image-based and 
LiDAR Point Clouds 

In this section, a comparison between LiDAR and image-based 
point clouds is conducted for the four datasets. As described in 
Section 3, for each point in image-derived dense point cloud, 
corresponding LiDAR point is identified using the point-to-plane 
matching technique. To evaluate the relative accuracy between 
the two sets of point clouds, only Z discrepancy is considered due 

to the fact that the majority of reconstructed points belong to 
horizontal surfaces in the study site. Figure 10(a) shows the 
image-based point cloud for A-2 dataset, where each point is 
colored by its height difference from the corresponding LiDAR 
point, ranging from +15 cm (blue) to +30 cm (red). Also, in order 
to have a better visualization of the derived image-based point 
cloud for A-2 dataset, each point is colored by its height value 
and is illustrated in Figure 10(b), ranging from 0 m (blue) to 15 
m (red). In addition, an orthophoto of the A-2 dataset is shown in 
Figure 10(c). Looking into Figure 10(a) one can observe spatial 
discrepancy patterns over the study site. More specifically, the 
elevation difference for ground points changes from +30 cm to 
+15 cm from central part to the perimeter of the study site. 
Moreover, the elevation differences between the point clouds 
depend on the height of the reconstructed object points. For 
points on the highest part of the roof (western part, see Figure 
10(b)), elevation differences are approximately +15 cm, while 
points in neighboring ground area exhibits +30 cm vertical 
discrepancy from LiDAR points. For other three datasets, i.e., A-
1, B-1, and B-2, similar discrepancy patterns are found, which 
indicate that the Z discrepancy between the two sets of point 
clouds is not coming from random errors, but caused by non-
optimal system calibration parameters. Similar to what was 
explained in Section 4.1, it can be concluded that the camera 
IOPs are the source of the observed scaling issue in the image-
based point clouds.   
 

  

 

(a) (b) (c) 
 
Figure 10. Image-based point cloud colored by (a) Z discrepancy 
to LiDAR point cloud and (b) height, as well as (c) orthophoto 
for A-2 dataset. 
 

5. CONCLUSIONS AND RECOMMENDATIONS FOR 
RFUTURE WORK 

In this study, a comprehensive comparison between UAV-
derived LiDAR and image-based point clouds has been 
conducted in order to assess the potential of using UAVs for 3D 
mapping applications. The experimental results show that the 
LiDAR point clouds are accurate and reliable over time, which 
further proves the stability of LiDAR system calibration 
parameters. However, it has been observed that there is a 
variation in camera IOPs over time, which adversely affects the 
accuracy of the derived point cloud. Considering the fact that 
consumer grade cameras like the Sony α7R III used in this study 
are not designed specifically for mapping applications, variation 
in their internal characteristics over time should be expected. 
Hence, frequent camera calibration needs to be done for image-
based mapping applications that require high accuracy. In this 
regard, using LiDAR-derived control points for refining camera 
IOPs will be a possible focus of the future work. Consequently, 
camera IOPs can be refined in every flight for UAV-based mobile 
mapping systems equipped with LiDAR sensors. 
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