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ABSTRACT:

PointNet has been widely considered as a popular representation for unstructured point clouds with the aim of classification and
segmentation. To date, recent researches represent the limitation of the PointNet to pose estimation and alignment of real environment,
due to the low performance in pattern learning to complex scenes. This paper presents an end-to-end deep learning method for point
clouds registration of indoor environment. The proposed method involves three steps. Firstly, feature pre-processing extracts the
key-points by adaptive Harris 3D algorithm and generate the local group by point grouping. Second, hierarchical feature learning
network is trained to describe the local group as feature descriptors. Finally, loss function between feature descriptor is trained. The
key contribution is that we innovatively use the key-points to generate multi-layer feature vector, which can provide the contextual
local features of the indoor environment. The results shows that our method achieves comparable registration accuracy to the present
state-of-art geometric methods in the indoor environment. We comprehensively validate the accuracy of our approach using S3DIS
dataset. The high accuracy demonstrates that our method can be used in point clouds registration accurately.

1. INTRODUCTION

In recent years, three-dimensional (3D) mapping in indoor en-
vironment based on point clouds has received considerable crit-
ical attention. It has been an important data source for indoor 3D
model and information visualization, which are an integral part of
indoor service such as geo-hazard monitoring, urban asset man-
agement, and so on (Wang et al., 2019). Managing such indoor
structures for timely maintenance, smooth operation, and safety
can be quite challenging without up-to-date spatial information of
the structural conditions and space use. Individual point clouds
from single scanning position cannot provide the whole environ-
ment due to the limitation such as moving objects and long dis-
tance. It is necessary to register point clouds and obtain detailed
3D mapping from multi-position scanned point clouds.

Point cloud registration is a basic and important technology in
spatial information. Considering that feature descriptor is one of
the main factors in the process of registration, many researchers
proposed different kinds of feature space for point clouds regis-
tration. Traditional methods to obtain the completed and detailed
point clouds are mainly implemented by matching the geomet-
ric pairs of points and calculating the transformation. Geomet-
ric feature, such as ICP (Iterative Closest Point) and its variants,
establish the point corresponding and performing a least squares
optimization. However, these algorithms are sensitive to the qual-
ity of initialization and known to be susceptible to local minima
since it is difficult to explicitly establish closest point correspond-
ences due to the data noise. In addition, many of these descriptors
do not work well in the real environment due to the noisy and the
low density of the point clouds (Yew and Lee, 2018). Thus, de-
veloping the registration algorithm with higher feature space that
can be used in the 3D mapping is necessary.

Inspired by the process of the deep learning for image-based tasks,
such as moving object recognition and image understanding, sev-
eral feature learning algorithms are proposed after the popularity
of deep learning, which are proposed based on the properties of
∗ Corresponding author

point clouds, such as PointNet, PointCNN, PointNet++ (Li et al.,
2018, Qi et al., 2017a, Qi et al., 2017b). However, the unique
aspects of point clouds limit the performance of registration and
enhance the complexity of registration, including the lack of local
feature description and efficient feature analysis. Thus, there is
with great challenges to apply the training network for registra-
tion.

In this paper, we design a hierarchical learned feature to register
point clouds. Firstly, to improve the accuracy of registration,
the key points are extracted by an adaptive Harris3D algorithm.
To generate the grouping for training network, neighbourhood
points are selected around the key points with various size. Mini-
PointNet is used as the training network to extract the feature
vector. Multi-layer of the feature learning composes the fea-
ture descriptor. Transformation is trained by the LK algorithm
to achieve the registration (Aoki et al., 2019). Our contributions
mainly include two points: Firstly, for the input of mini-PointNet
training network, key points sampling, which considered as the
feature pre-processing is proposed, can be applied to the indoor
point clouds with multi-objects. Secondly, the feature descriptor
with hierarchical structure is constructed for registration, which
improves the performance of feature learning.

2. RELATED WORK

2.1 Classical Handed-crafted Feature

Survey work from (Pomerleau et al., 2015) provides a compre-
hensive review of traditional registration algorithms. Classical
handcrafted features are proposed before deep learning aiming to
find the correspondence between target and source point clouds.
The design of these features are mainly based on the geomet-
ric knowledge of the 3D point clouds (Besl and McKay, 1992,
Magnusson et al., 2007, Yang et al., 2013). Some algorithms are
designed by describing the geometry of each point locally. For
example, in the (Zhong, 2009), feature points are selected by the
principle direction or the unique curvatures and matched through
descriptor. 3D-SIFT focuses on reducing the influence of scale
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by using Difference-of-Gaussian (DoG) and representing the dif-
ference of the intensity values(Rusu and Cousins, 2011a). PFH,
FPFH consider the feature histograms and use surface normal
to describe the patch around each key point (Rusu et al., 2008,
Rusu et al., 2009, Tombari et al., 2010). However, around the key
points, these descriptors will fall into the spatial bin. Some hand-
crafted features are designed by describing the surface model.
For example, Rotational Projection Statistics (RoPS) calculates
the scatter matrix lying on the surface and obtaining the distri-
bution of projected points on the 2D planes (Guo et al., 2013).
However, it requires the surface data and can not be applied to
the raw point clouds. More evaluation of the handcrafted features
can be found in the review (Hänsch et al., 2014). Based on the
evaluation, the handed-crafted feature works well for the high-
quality surface and point clouds with low-noisy and high-density.
However, features are unstable and sensitive to the the number of
scans. As a result, point clouds in real world with noisy and lack
of points number will not work well (Yew and Lee, 2018).

2.2 Learned Feature

With the development of deep learning, learned 3D feature descriptor
are widely used to describe the unstructured point clouds. Some
of them operate on the depth image, while others operate on the
point clouds directly (Zeng et al., 2017, Kehl et al., 2016). For
example, PointNet uses point clouds as input to realize classific-
ation and segmentation. The structure of training network fol-
lows the neural networks and realizes theoretical insight into raw
point clouds (Qi et al., 2017a). As the extension of PointNet,
PointNet++ is proposed to improve the performance of complex
environment, by hierarchically extracting feature with local fea-
ture (Qi et al., 2017b). However, the inherent lack of structure
presents difficulties in using point clouds registration directly in
deep learning architectures.

Some researches have focused on developing deep leaning fea-
ture for the purpose of point clouds registration. For example, a
deep learning feature descriptor extracted by a Siamese network
is proposed to register mobile point clouds in the indoor envir-
onment. However, the descriptor use RANSAC to reduce the
wrong matching points. The method also requires another refine-
ment step using ICP to improve the accuracy (Zhang et al., 2019).
PPFNet proposes the pairs of point clouds feature and global con-
text to improve the descriptor (Deng et al., 2018). PointNetLK
considered the PointNet as the ”imaging function” and designed
the modified Lucas Kanade (LK) algorithm as the loss function to
minimize the distance between the candidate point clouds (Aoki
et al., 2019). This work provides us a good intuition that clas-
sical imaging matching algorithm can be used as the loss func-
tion for the point clouds training. However, the performance of
the various approaches does not consider different level of fea-
ture description (Groß et al., 2019). Despite the good perform-
ance and achievements of these works, none of the work consider
both related feature with key points and comprehensive learning
structure for point clouds registration. Thus, it is with great chal-
lenges and potential to apply the learning features for matching
and registration.

3. METHOD

Our work can be considered as the design of deep learned feature
with feature analysis and the application in the indoor environ-
ment. In section 3.1, we introduce the innovation and mathem-
atics of the proposed algorithm. In section 3.2, the derivation of
feature pre-processing is introduced. In section 3.3, we describe
the hierarchical feature structure and training model used for the
point cloud alignment.

3.1 Overview

Let φ denotes the feature function. φ presents the R3×N → RK .
For an input point cloud P , φ(P ) will obtain a K-dimensional
feature vector descriptor. The Multi-Layer Perceptron (MLP)
is operated to each point, then the output is the feature vector,
with K-dimension. Following the PointNet ++, the φ is designed
with multi-layer to extract both local and global feature (Qi et al.,
2017b).

The registration process is formulated as follows. Let PS , PT be
two groups of input data, the source point clouds and target point
clouds, respectively. The T, T ∈ SE(3), which represents the
rigid-transform, is the best aligns from source PS to target PT .
The alignment process can be described as finding T such that
φ (PT ) = φ (T ·PS).

In order to compute ∆T each time, an iterative optimization solu-
tion is designed as equation.

φ (PS) = φ (PT ) +
∂

∂ξ

[
φ
(
T−1 ·PT

)]
ξ (1)

Where Jacobian J will be denoted as J = ∂
∂ξ

[
φ
(
G−1 ·PT

)]
,

J ∈ SE(6). For each J , Jacobian can be approximated by a
finite difference gradient, which calculated by the equation:

Ji =
φ (exp (−tiTi) ·PR)− φ (PT )

ti
(2)

Where ti is the infinitesimal perturbations of the parameters ξ. R
is the generate of the exponential map with twist parameters. J+

is the Moore-Penrose inverse of J .

PS ← ∆T ·PS ∆T = exp

(∑
i

ξiRi

)
(3)

The transformation matrix will the re-computation with the loop-
ing function, using equation 3. Then a new source data will be
updated by calculating with the new transformation matrix. The
final pose estimation T is the composition of each iterative loop,
as equation 4. The iterative computation is based on the threshold
for ∆T .

T = ∆Tn · . . . ·∆T1 ·∆T0 (4)

3.2 Feature Pre-processing

In order to reduce the noisy in the point cloud data, a pre-process
is designed including statistical filtering and voxel filter (Zhang
et al., 2019, Rusu and Cousins, 2011a). The statistical filtering
is used to remove the noise points and voxel filter is used to re-
duce the resolution. The process of the point cloud registration
is to calculate the transformation for the coordinate alignment.
Since the transformation matrix can be calculated from the sev-
eral matching pairs of points between the source and target point
clouds, it is more efficient to use the most informative points than
all the points. Compared with the farthest point sampling (FPS)
or random sampling, key points has better performance of the fea-
ture extraction given the same number of key points. Key points
sampling is considered as the feature analysis in this paper.

In the review of key points sampling, several researches show
that the Harris 3D method is robust to several transformations
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Figure 1. Point clouds input source PSand target PT are passed through feature learning and a MLP to compute the feature vectors
φ (PS) and φ (PT ) . The jacobian matrix J is computed by using theφ (PT ) . Pose information ∆ T will be updated incrementally

if the value is higher than the thresh. During the training, one lose function is used, which is based on the difference between the
estimated transform and the ground truth transform.

including noise, local scaling and presence of holes (Guo et al.,
2014, Hänsch et al., 2014). In this paper, the adaptive Harris 3D
method is used to extract the key points from source and target
point clouds (Sipiran and Bustos, 2011). If one point is selected
as the key points, the cluster of neighbourhood points will be
considered as the local patch to represent points. The selection of
the neighbourhood point is shown in the Algorithm 1.

Algorithm 1: Neighbourhood definition
Result: Size of neighbourhood points, N
initialization;
N = 0; K = 4; δ = 0.025
while p ∈ P do

Calculate the shortest path as:
Calculate the DelaunayQ;

end
ringk(p) = {q ∈ Q′||shortestpath(p, q)| = k}
while k ≤K do

if dring (v, ringk(p)) ≥ δ&dring (v, ringk−1(p)) ≤
δ then
N = N+1;

else
N = N

end
end

z = f(x, y) =
p1
2
x2 + p2xy +

p3
2
y2 + p4x+ p5y + p6 (5)

Based on the neighbourhood set for each point, given a point p,
p ∈ PS , p ∈ PT , the neighbouring points are translated to fit
a quadratic surface based on the equation 5. Then the derivat-
ives of f(x, y) is calculated in the point. A symmetric matrix E
is defined using the derivatives of this function, as the equation
6. Then the highest Harris responses will be selected as the key
points. The neighbourhood points will be selected as the local
patches.

E =

(
p24 + 2p21 + 2p22 p4p5 + 2p1p2 + 2p2p3
p4p5 + 2p1p2 + 2p2p3 p25 + 2p22 + 2p23

)
(6)

3.3 Hierarchical Feature Learning

The feature descriptor is composed of a number of feature layers
to achieve the hierarchical structure (Qi et al., 2017b). For each
feature layer, an N ∗ (d+ C) matrix is used as the input that
represents N points with each point composes of d-dimensional
coordinates and C-dimensional point feature. It outputs a N ′ ×
(d+ C′) matrix. The N ′ represents the sub-sampled points with
d-dimensional coordinates and extracted C′-dimensional point
feature. The layers of the descriptor will be introduced in the
following paragraphs.

In the sampling layer, given input points{x1, x2, . . . , xn}, a sub-
set of points {x1, x2, . . . , xm} are extracted using the section 3.2,
so that xxy is the most informative point for each layer. Compar-
ing with random sampling or farthest point sampling (FPS), this
method provides more useful information to point cloud registra-
tion. The output of the sampling layer is N , which represents N
selected points.

In the grouping layer, the input to this layer is N ∗ (d+ C) with
N ∗ d - dim coordinates and C - dim feature. It outputs several
points set with a size of N ′ × K × (d + C). Each point set
corresponds to a local region for PointNet to convert the point
into one fixed length feature vector. The K varies to adapt to
points set. Neighbourhood points are selected in the step of fea-
ture pre-processing. Compared with the other methods, such as K
nearest neighbor search or other threshold method, it has a better
performance on requiring the local pattern (Jiang et al., 2018).

In the PointNet layer, points set with a size of N ′×K× (d+C)
is the input. The output size is N ′ × (d+ C), which is the basic
building block for the local pattern learning from PointNet (Qi et
al., 2017a). The function can be summarized as follows:

f (x1, x2, . . . , xn) = γ (MAXi=1,...,n {h (xi)}) (7)
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Figure 2. Different overlapping with the initial transformation.
(a)ratio of overlapping is 95%, (b)ratio of overlapping is 75%,
(c)ratio of overlapping is 50%, (d)ratio of overlapping is less

than 30%. The point clouds in gray scale is target point clouds,
while the point clouds in RGB is the source scale.

Where {x1, x2, . . . , xn} represents the unordered point clouds,
xi ∈ R(d). The set function is designed to transform the points
set to a feature vector. γ and h are the multi-layer perceptron
(MLP) networks.f is the set function and invariant to the input
source and target point clouds.

In the PointNet, maximum pooling function, average pooling func-
tion and weighted sum pooling function are used as the sym-
metric pooling function, following the MLP operation (Qi et al.,
2017a), to realize the permutation invariance and unordered point
clouds. In this paper, maximum pooling function will be used as
the pooling function.

4. EXPERIMENTAL RESULTS

4.1 Experiment Design

We experiment with various type of objects with different real
indoor scenarios. Stanford S3DIS indoor dataset is used to gen-
erate the source and target point clouds (Armeni et al., 2017). To
evaluate the performance in the indoor environment, we demon-
strate the use of proposed method to estimate the transformation
in the Area 1 from S3DIS dataset. The dataset contains the cor-
responding semantic annotations and global XYZ images as well
as surface normals.

To evaluate our method, we discuss the effect of different ratio of
overlapping. To prepare the target point clouds and source point
clouds, we implement the rotation and translation on the test data
with different ratio of overlapping. Initial rotation and translation
for test are in the range of [0, 5] meter and [0,90] degree. Figure
2 shows the different overlapping and initial transformation as
the example. For evaluation purpose, three algorithm including
ICP, NDT and Go-ICP are considered as the base line (Besl and
McKay, 1992, Yang et al., 2015). The compared algorithms are
implemented with the same point clouds without any additional
process.

For each training dataset, we prepare the h5 file for the point
clouds and property, respectively. For each input data, the size
of training and testing data is N ∗ 4096. Since we only consider
the feature of geometry, only coordinate value is used and nor-
malized from XY Z into X ′Y ′Z′. For parameters setting, the
epochs, batch size, learning rate and the momentum are set to
200, 16, 0.01, 0.9. The experiments are implemented on a single
GPU with Tensorflow 1.70.

4.2 Experiment Result

Point clouds are pre-processing by detecting key points and group-
ing. This step is implemented by PCL and Open3D (Rusu and

Figure 3. Feature pre-processing. Harris key points are selected
and shown in the white point. The raw point clouds are shown in

the gray scale.

Figure 4. The group of neighbourhood points are selected from
the point clouds around the key points. (a) Key points (b)

Adaptive neighbourhood selection. (c) KNN neighbourhood
selection. (d) Radius neighbourhood selection.

Cousins, 2011b, Zhou et al., 2018). Figure 3 shows the points
sampling (partial data in Conference Room 1 from S3DIS), with
the radius is 0.1. As shown in Figure 4, compared with other
neighbourhood selection algorithm, the adaptive method will de-
termine the size of neighbourhood points without a constant value.

Different scenario Our method ICP Go-ICP
Hallway 1.32 4.5 1.43
Conference Room 1.53 1.8 4.28

Table 1. Accuracy of different type of indoor environment (cm)

Two standard indoor environments are selected to evaluate our
method. The ratio of overlapping between target and source point
clouds is 100 %. Figure 5, 6 show the registration results confer-
ence and hallway, comparing to the ICP, NDT and Go-ICP. As
shown in figure 5, 6 and Table 1, our method can get good per-
formance in two standard indoor environments.

To evaluate the effect of different ratio of overlapping, the root
mean square error (RMSE) is calculated, as shown in Table 2.
For ICP, the RMSE is calculated based on corresponding points
after registration. For our method, with the true transformation
between the target and source point clouds, the RMSE is calcu-
lated as equation.
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Figure 5. The conference environment. (a) is our method. (b)is
the result of ICP. (c) is the result of NDT. (d) is the result of

Go-ICP.

Figure 6. The hallway environment. (a) is our method. (b)is the
result of ICP. (c) is the result of NDT. (d) is the result of Go-ICP.

RMSE =

√∑N

i=1
‖Tst · S − Tour · S‖2

N
(8)

Where N is the number of the corresponding points. Tst is the
known transformation matrix between source and target point
clouds. S represents the source point clouds.

Different overlapping Our method ICP
95% 1.3 4.5
75% 3.6 21.7
50% 5.4 21.9
Less than 30% 10.2 -

Table 2. Accuracy of different ratio of overlapping (cm)

5. CONCLUSION

A learned feature registration algorithm with point pre-processing
and hierarchical training network is proposed in this paper. Ad-
aptive Harris 3D algorithm is used to detect the key points and the
hierarchical feature descriptor obtains the feature of the extracted
points. The results show that our approach achieve good accuracy
and computational efficiency with different ratio of overlapping
in the indoor environment. In the future, we will evaluate on more
dataset and scenes to improve the accuracy of the algorithm.
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