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ABSTRACT:

Light Detection And Ranging (LiDAR) is an active remote sensing technology used for several applications. A segmentation of
Airborne Laser Scanning (ALS) point cloud is very important task that still interest many scientists. In this paper, the Connected
Component Analysis (CCA), or Connected Component Labeling is proposed for clustering non-planar objects from Airborne Laser
Scanning (ALS) LiDAR point cloud. From raw point cloud, sub-surface segmentation method is applied as preliminary filter to
remove planar surfaces. Starting from unassigned points , CCA is applied on 3D data considering only neighboring distance as
initial parameter. To evaluate the clustering, an interactive labeling of the resulting components is performed. Then, components
are classified using Support Vector Machine, Random Forest and Decision Tree. The ALS data used is characterized by a low
density (4-6 points/m²), and is covering an urban area, located in residential parts of Vaihingen city in southern Germany. The
visualization of the results shown the potential of the proposed method to identify dormers, chimneys and ground class.

1. INTRODUCTION

Light Detection And Ranging (LiDAR) is an active remote
sensing technology used for several applications. A segment-
ation of Airborne Laser Scanning (ALS) point cloud is very
important task that still interest many scientists. Most of point
clouds segmentation methods are typically adapted to extract
planar surfaces as roof faces and other surfaces from airborne
laser scanning data. For this purpose, different segmentation
methods have been developed based, for example, on Hough
transform (Maltezos, Ioannidis, 2016), RANSAC (Chen et al.,
2012), or surface growing (Alharthy, Bethel, 2004). Kada and
Wichmann (Kada, Wichmann, 2012) had proposed point cloud
segmentation algorithm called subsurface growing. As indic-
ated by its name, the algorithm is an extension of the well-
known surface growing approach, in which the growing process
continues below the surfaces. The purpose was to gather better
model data, as roof features and shapes become more appar-
ent regarding these subsurface segments. Despite the fact that
the subsurface growing algorithm gives good results, even for
complex building roof shapes, the problem remains with roof
faces generated by dormers and chimneys. Several dormers and
chimneys remain not identified because their shapes are com-
posed of several planar faces. Although the planar segment-
ation methods of point clouds often serve their purpose, those
methods are not suited to segment non-planar objects like power
lines, cars, trees and any object with free form shape. There
is less works related to non- planar objects segmentation from
point clouds. The aim is to combine planar and nonplanar seg-
mentation methods in order to increase entities identification.
Clustering is the process of grouping points with similar feature
vectors into a single cluster separate from points with dissim-
ilar feature vectors. In the literature, the point clouds cluster-
ing methods are usually used for clustering multi-planar seg-
ments and 3D building facades (Zolanvari et al., 2018). For this
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purpose, large roof segments are extracted with a sub-surface
growing method and the remaining points (e.g. dormers and
chimneys) with a clustering methods. The Connected Com-
ponent Analysis, or Labeling (CCA), is a known method of
clustering that was widely used in image processing. In this
paper, the CCA is exploited for clustering non-planar objects
from Airborne Laser Scanning (ALS) LiDAR point cloud. The
proposed method does not take only k nearest neighbors point,
but rather all points that the distance from each one is less than
a fixed distance beforehand. Starting from a random point be-
longing to initial set of points, this point is labeled with the cur-
rent label symbol and is removed thereafter from the set. It is
different compared from that proposed in the literature (Zhang
et al., 2016). Our method does not stop at immediate neigh-
bors of the interest points, but continues until no further neigh-
bors are found. In order to evaluate the clustering algorithm,
classification of components is performed. Support Vector Ma-
chine, Random Forest and Decision Tree classifiers are tested
and compared. The visualization of the results shown the great
potential of connected component analysis when applying it for
clustering non-planar surfaces such as dormers and chimneys.
This paper consists of three sections. Following a description of
the methodology, Connected component labeling is introduced.
Then , classification step is detailed. Experimental results are
visualized followed by discussions. The conclusion summar-
izes the findings of the present work.

2. METHODOLOGY

This paper focuses on on non-planar surfaces clustering of raw
airborne LiDAR data. First of all, sub-surface growing seg-
mentation method is applied on LiDAR point cloud as prelim-
inary filter to extract planar roof surfaces. Then, from untreated
points, an adapted algorithm of connected components labeling
is applied. Finally, in order to evaluate the clustering algorithm,
an interactive resulting components labeling is performed , fol-
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Figure 1. Flowchart of the full method

lowed by classification process. The classifiers Support Vec-
tor Machine, Random Forest and Decision Tree are tested and
compared. The classification is optimized using grid search and
cross validation. The results illustrate the potential of connected
component labeling for clustering both of non-planar objects
such as roof superstructures and planar surfaces like ground.
The flowchart of the proposed method is depicted in Figure 1.

2.1 Connected Components Labelling

Connected components analysis (CCA) ,or connected compon-
ents labeling, is a clustering algorithm basically used for image
processing. In the context of LiDAR data, Milaresis et al. em-
ployed CCA to recognize the background and foreground ob-
jects from digital elevation model (Miliaresis, Kokkas, 2007).
Zhang et al. exploited CCA from 3D point cloud for the clas-
sification in urban area (Zhang et al., 2013). in (Xiao et al.,
2016), CCA is used for tree points clustering. However, closely
located and intersected trees are clustered together as multi-tree
components, which required further treatment with mean shift
segmentation. In (Vosselman, 2013), Vosselman exploited k-
nearest neighbors for clustering connected component of point
clouds using a fixed neighborhood size.
The proposed CCA does not consider only k nearest neighbors
point, but also the neighbors of neighbors. It is different than the
one presented in (Zhang et al., 2016), where the authors con-
sidered only the immediate neighbors for forming components.
The proposed algorithm extends the process until no points are
found. The process of CCA is described in algorithm 1.

2.2 Classification

There are two approaches for point cloud classification, point-
based and segment-based classification (Elberink, Vosselman,
2012). In point-based classification approach, class label is af-
fected point by point. For segment-based classification, a prior
segmentation method is required before the classification. The
class label is assigned by segment and the points of segment
share the same class label (Vosselman et al., 2017). In this
paper, a clustering of SSG unassigned points is performed us-
ing CCA. The resulting components facilitate the interactive la-
beling step described in paragraph 3.2. For classification, each
component is replaced by its points. The considered features
are (x, y, z). The Classifiers SVM (Kang, Yang, 2018, Mallet
et al., 2011), Random Forests (RF) (Li et al., 2019, Niemeyer

Algorithm 1: Connected component analysis
Input: S set of point cloud {pi} |i = 1..n
Input: ND : Neighborhood distance.
Input: LAB = 0 : Label of empty component.
Output: (Components, lab(points))

1 for Each point pi in S do
2 lab(pi) = 0;
3 while (∃p ∈ S|lab(p) = 0) do
4 p : current point to treat;
5 list← {p};
6 LAB ← LAB + 1;
7 while (list 6= ∅) do
8 c← push back (list);
9 lab(c)← LAB;

10 set = {neighbors(c,ND)};
11 delete c from list;
12 list← list ∪ set;

13 return (Components, label(points))

et al., 2014) and Decision Tree (DT) (Li et al., 2016, Crasto et
al., 2015), widely used for LiDAR data classification are tested
and compared.

3. RESULTS AND DISCUSSION

3.1 Study area

The proposed approach is applied on ALS point cloud provided
by the German Society for Photogrammetry, Remote Sensing
and Geoinformation (DGPF) (Cramer, 2010). It was acquired
by Leica Geosystems using a Leica ALS50 system and is char-
acterized by a low density (4-6 points/m²). The area covers
urban Vaihingen city in southern Germany. It is marked by the
presence of several roof superstructures, as shown in Figure 2.

3.2 Interactive components labeling

For evaluation purposes, the training set is selected, as can
be shown in Figure 3. An interactive labeling of components
is achieved before the classification. The targeted classes are
dormers, chimneys and ground. The components are draped
over orthophoto and labeled manually. Than, the label of points
is deducted according to the component they belongs to.
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Figure 2. A part of the region of interest in the orthophoto,
showing abundance of roof superstructures.

Figure 3. The parts of region forming training and testing sets.

3.3 Data preparation

The learning data set is randomly split in training (70%) and
testing (30%) subsets. Classifiers parameters are determined
using grid search and cross validation. Table 1 shows the details
of each class.

3.4 Clustering results

Figure. 4 shows connected component analysis result of unas-
signed points (Figure 4.(a) using distance of 1.5 m. The res-
ulting components are differently colored to differentiate from
each other. The distance is empirically chosen considering the
point cloud density (4 to 6 point/m²) and the particularity of
the roof superstructures size. From 106,833 unassigned points
(Figure 4 (a)), 15,817 components are generated (Figure 4 (b)).
In Figure 4.(c), only components with more than five points are
considered.

Classes Designation Components number Total points

class 1 dormer 341 5606
class 2 ground 47 1021
class 3 chimney 155 1597

Table 1. Detail of each class from selected samples regions

(a)

(b)

(c)

Figure 4. Connected component analysis. (a) Raw points. (b) all
resulting components considering neighboring distance of 1.5 m.

(c) components with size greater than five points.
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3.5 Evaluations metrics

To evaluate CCA algorithm, the components are subject to clas-
sification process. The performance measurements used for
classification are overall accuracy (OA), execution time and
area under the curve (AUC) score.

Metrics OA(%) AUC Time (s)

SVM 86.22 0.96 11.75
RF 83.93 0.93 2.17
DT 82.26 0.90 0.02

Table 2. Classification of components using different classifiers

3.6 Components classification

The Table 2 illustrates the components classification results.
Good scores are achieved by the tested classifiers. The best
result is recorded with SVM classifier OA (86.22%) and AUC
(0.96). Figure 5 shows multiclass receiver operating charac-
teristic curve for SVM classifier. Classes dormers and ground
AUC scores exceeds 0.90 and is close to 0.99 for chimneys
class. The figure 6 shows an examples of resulting compon-
ents projected over the orthophoto. The components represent
the classes dormers, ground and chimneys. The neighborhood
distance metric directly affects the components results. Test-
ing another distance is time-consuming, due to the components
interactive labeling required. This can be seen as drawback
of connected component labeling method. The second disad-
vantage of the CCA method is the dependence of the resulting
components to the chosen neighborhood distance. The figure 7
shows two dormers considered as a single due to their proxim-
ity. In deed, there is no universal metric usable for all the cases.

Figure 5. Receiver Operating Characteristic Curve for SVM
classifier. Class 0: dormers; class 1: ground; class 2: chimneys.

CONCLUSIONS

In this paper connected component labeling for both of planar
and non planar objects clustering is proposed. Only a neigh-
borhood distance is initially defined. To evaluate the clustering,

(a)

(b)

(c)

(d)

Figure 6. Component projected over orthophoto. (a) Gable
dormers (b)Shed dormers. (c) Ground. (d) Chimneys.

interactive labeling is done, followed by component classifica-
tion step. Support vector machine, Random forest and decision
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Figure 7. Two dormers considered as a single component due to
their proximity.

tree classifiers were exploited. The results demonstrate the rel-
evance of the proposed method to identify dormers, chimneys
and ground. Interactive labeling task being long and tedious,
only Vaihingen city data set was tested. In future work, further
data sets will be studied and compared to the obtained results.
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