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ABSTRACT: 

 

Dense point clouds can be nowadays considered the main product of UAV (Unmanned Aerial Vehicle) photogrammetric processing 

and clouds registration is still a key aspect in case of blocks acquired apart. In the paper some overlapping datasets, acquired with a 

multispectral Parrot Sequoia camera above some rice fields, are analysed in a single block approach. Since the sensors is equipped 

with a navigation-grade sensor, the georeferencing information is affected by large errors and the so obtained dense point clouds are 

significantly far apart: to register them the Iterative Closes Point (ICP) technique is applied. ICP convergence is fundamentally based 

on the correct selection of the points to be coupled, and the paper proposes an innovative procedure in which a double density points 

subset is selected in relation to terrain characteristics. This approach reduces the complexity of the calculation and avoids that flat 

terrain parts, where most of the original points, are de-facto overweighed. Starting from the original dense cloud, eigenfeatures are 

extracted for each point and clustering is then performed to group them in two classes connected to terrain geometry, flat terrain or 

not; two metrics are adopted and compared for k-means clustering, Euclidean and City Block. Segmentation results are evaluated 

visually and by comparison with manually performed classification; ICP are then performed and the quality of registration is assessed 

too. The presented results show how the proposed procedure seem capable to register clouds even far apart with a good overall 

accuracy. 

 

1. INTRODUCTION 

Dense point clouds can be nowadays considered the main product 

of UAV (Unmanned Aerial Vehicle) photogrammetric 

processing. They were largely studied in literature from several 

points of views such as algorithms and strategies for their 

generation, quality assessment, both in terms of accuracy and 

precision, segmentation techniques. Clouds registration is also a 

key aspect in case of blocks acquired apart; that usually happens 

when large datasets, covering wide areas, are acquired with 

several UAV mission or when time-series are considered. In the 

former case, data can be processed following a single block 

strategy and therefore a cloud is generated for each of them, in 

the latter one, clouds are obtained at different times; in either 

case, clouds must be registered to each other. Besides, similar 

issues can be observed in data acquired by Terrestrial and Aerial 

Laser Scanning systems where some misalignments can be 

present between scans. 

The authors have already worked on this topic and have recently 

published a study about (Franzini et al., 2019). The work 

analysed the geometric consistency of two overlapping datasets, 

acquired with a multispectral Parrot Sequoia camera above some 

rice fields. The blocks were processed within Pix4D software 

package following different strategies. One of them concerned 

the Direct Georeferencing (DG) of each single photogrammetric 

block using the information registered by the camera GPS 

receiver. Since this is a navigation-grade sensor, the 

georeferencing information is affected by large errors and the so 

obtained dense point clouds are significantly far apart. The paper 

focused on their geometric consistency by exhaustively 

evaluating the distance between the generated point clouds using 

the Iterative Closes Point (ICP) technique. 

 
*  Corresponding author 

 

As is well-known in literature (Besl and McKay, 1992; Chen and 

Medioni, 1992; Toldo et al., 2010), ICP is a procedure aiming to 

align point clouds without requiring the identification of 

homologous points. It starts by associating each point of a cloud 

to its closest point belonging to another cloud. The obtained 

coupled points are then used to estimate a coordinate 

transformation, typically a roto-translation, having six 

parameters, also known as a rigid body transformation (Low, 

2004). The procedure is iterated until the latest estimated 

transformation is negligible.  

The process is strongly affected by point cloud shape because 

certain types of geometry can lead to an instable solution which 

means that the minimizing transformation is not unique (Gelfand 

et al., 2003). A common example is constituted by two planes 

that are parallel to each other and to the xy-plane. Once the planes 

are aligned, there are still three degrees of freedom: a relative 

translation between them in the xy-plane and a rotation around 

the z axis. This example is not too far from a real case in which a 

flat area was surveyed with an UAV, like the rice fields of our 

test-site. The choice of a subset of points is commonly adopted 

for improving final solution stability since the selected features 

have characteristics suitable to solve this rank deficiency. 

However, the correct points selection heavily affects the final 

alignment accuracy, therefore this step represents a crucial task 

(Glira, 2015). 

In the previous paper, a double density points subset is proposed 

to solve this task where the choice of the density level is 

connected to the terrain characteristics: lower in flat areas and a 

higher in variable terrain where ditches or dirt roads 

embankments are present. This approach reduces the complexity 

of the calculation, avoids that flat terrain parts, where most of the 

original points, are de-facto overweighed and favour the ICP 
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convergence.  However, the construction of this double density 

structure was realized with a manual approach limiting the 

extensive use of the proposed procedure to large dataset. 

In the past years, several authors have instead proposed and 

compared automatic sampling strategies having different levels 

of complexity: Masuda and Yokoya (1995) have evaluated the 

benefits of a random sampling while Rusinkiewicz and Levoy 

(2001) have proposed a technique in which points are selected in 

such a way that the distribution of their normals, in angular space, 

is as uniform as possible. Gelfand et al. (2003) have extended the 

last sampling strategy (Rusinkiewicz and Levoy, 2001) 

considering the eigenvectors of the covariance matrix. Since each 

eigenvector corresponds to a main motion, that can be described 

as a rotation around an axis and a translation along that axis, the 

analysis of theirs values can allow to evaluate stability of the 

transformation.  

Based on the spatial information of all 3D points within the local 

neighbourhood, invariant moments representing geometric 

properties can be calculated for each of them (Maas and 

Vosselman, 1999). The eigenvalues can directly be used to 

describe the local 3D structure or, alternatively, further measures 

based on these eigenvalues can be derived which encapsulate 

special geometric properties such as linearity or planarity (West 

et al., 2004; Mallet et al., 2011). These geometric descriptors, 

called eigenfeatures, can then be used to identify points useful for 

ICP registration. This strategy has the advantage to be applicable 

to any type of clouds be it produced by photogrammetry, as in 

the present paper, of by laser systems. 

Within this work, the eigenfeatures are used to characterize all 

the points and, starting from these descriptors, relevant ones are 

extracted from the original clouds in order to be used for ICP 

registration. Once again, a double density points subset is created. 

In this new realise, the choice between low- and high-density 

areas is done not manually but fully automatically thanks the use 

of eigenfeatures. K-means technique is used to group them in two 

cluster according to their geometry, flat terrain or not; besides, 

two distance metrics are compared, Euclidean and City Block. 

Finally, ICP registration is performed using the so-obtained 

segmentation. 

 

2. METHODOLOGY 

The proposed methodology for the point cloud registration 

consists of four steps procedure: eigenfeature extraction and 

selection, k-means clustering, point cloud segmentation and 

weighted ICP registration. All the steps are implemented in 

Matlab, realise 2019b. 

 

2.1 Eigenfeatures extraction and selection 

The adequate choice of a neighbourhood for determining the 

eigenfeature values of each point, depends on the characteristics 

of the cloud data especially to its points density and 3D shape. 

The choice can be based on a-priori definition of the search area 

in terms of radius or number of points (Friedman et al., 1977; 

Arya et al., 1998), or adapting this parameter according with the 

local geometry of the point cloud (Weinmann et al., 2015c; 

Farella et al., 2019). While the former requires an empiric 

knowledge of the scene, the latter is more versatile because it is 

not restricted to a specific dataset. The procedure implemented in 

this paper follows the first strategy and fixes a constant search 

radius because the area is flat, almost comparable to a surface, 

and the density is substantially uniform. This means that for each 

point belonging to the cloud, a list of 𝑘 neighbours, falling in 

search radius, can be associated. 

Then, for each 3D point 𝑿 and its 𝑘 neighbours, the derived 

normalized eigenvalues 𝑒𝑖 with 𝑖 = 1,2,3 can be extracted using 

the Principal Component Analysis (PCA). These values, obtained 

from the covariance matrix, represent the variation of the points 

distribution along the three principal orthogonal directions.  

Eigenvalues can be combined to obtain some shape descriptors 

called eigenfeatures (Weinmann et al., 2015a; Farella et al., 

2019) which enclose: linearity 𝐿𝑒, planarity 𝑃𝑒, scattering 𝑆𝑒, 

omnivariance 𝑂𝑒, anisotropy 𝐴𝑒 , eigentropy 𝐸𝑒, sum of 

eigenvalues Σ𝑒 and change of curvature 𝐶𝑒; Table 1 reports theirs 

mathematical formulation. 

 

Eigenfeature Formula 

Linearity 𝐿𝑒 =
𝑒1 − 𝑒2

𝑒3
 

Planimetry 𝑃𝑒 =
𝑒2 − 𝑒3

𝑒1
 

Scattering 𝑆𝑒 =
𝑒3

𝑒1
 

Omnivariance 𝑂𝑒 = √𝑒1 ∙ 𝑒2 ∙ 𝑒3
3  

Anisotropy 𝐴𝑒 =
𝑒1 − 𝑒3

𝑒1
 

Eigenentropy 𝐸𝑒 = − ∑ 𝑒𝑖 ∙ 𝑙𝑛(𝑒𝑖)
3

𝑖=1
 

Sum of eigenvalues Σ𝑒 = 𝑒1 + 𝑒2 + 𝑒3 

Change of curvature 𝐶𝑒 =
𝑒3

𝑒1 + 𝑒2 + 𝑒3
 

Table 1. Eigenfeatures mathematical formulation 

Eigenfeatures extraction was easily implemented in our modules 

thanks to the use of geoFEX Matlab toolbox (GeoFEX toolbox), 

developed by the Institute of Photogrammetry and Remote 

Sensing in Karlsruhe, Germany (Weimann et al., 2015b). 

Even if all the eigenfeatures have been extracted, it must consider 

they may contain redundant information. Besides, some of them 

can be substantially irrelevant; linearity for instance, which 

expresses the local similarity of the cloud to linear elements, do 

not contribute significantly in case of flat terrain. In our specific 

case, eigenfeatures capable to identify the presence of elements 

of discontinuity, such the change of curvature, could contain the 

information useful for a reliable registration.  

As highlighted by some authors (Weimann et al., 2013; Roffo, 

2016), it is often desirable to select a compact subset of the most 

relevant features which allows for classification/clustering 

without significant loss of information. As we have chosen an 

unsupervised approach, eigenfeatures selection is a difficult task 

due to the absence of class label that could guide it. Among 

unsupervised selection method, we have adopted the Laplacian 

Score (LS), proposed by He et al. (2005), which is based on the 

observation that data from the same class are often close to each 

other, therefore the importance of a feature is evaluated by its 

power of locality preserving. 

 

2.2 K-means clustering 

K-means clustering is an unsupervised method that aims to 

subdivide 𝑛 observations into 𝑘 clusters; a cluster refers to a 

collection of observations aggregated together according to 

certain similarities. Each observation is allocated to each cluster 

through reducing the inner distances; in other words, k-means 

identifies 𝑘 centroids and allocates each observation to the 

nearest one, while keeping cluster as small as possible (Jain, 

2010). The algorithm aims at minimizing an objective function, 

in this case a squared error function, that is (Bora et al., 2014): 
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𝐽 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 (1) 

 

where 𝑘 and 𝑛 are the cluster and observation numbers, 

respectively, and 𝑐𝑗  is the centroid of the j-th cluster. The 

observations 𝑥𝑖
(𝑗)

 are vectors which can contain 𝑚 descriptors. 

For a point cloud, they can be composed, for instance, by six 

elements, 3D position and RGB values; in the proposed strategy, 

these vectors contain the set of selected eigenvalues (Section 

2.1). For our specific dataset, information about colour is not 

used because data concerns some blocks acquired with a 

multispectral Parrot Sequoia camera (see Section 3 for more 

information); with this sensor, point clouds are produced using 

the green band only and this radiometric information does not 

contribute significantly to clustering. 

The objective function can be represented by different distance 

metrics among which Euclidean and City Block, both tested in 

the present paper. Euclidean, or squared Euclidean, distance 

between two observations, 𝑎 and 𝑏, with 𝑚 dimension is 

calculated as (Deza and Deza, 2013; Bora et al., 2014) 

𝑑 = √∑(𝑎𝑖 − 𝑏𝑖)2

𝑚

𝑖=1

 (2) 

 

while City Block (Manhattan) distance is defined as (Deza and 

Deza, 2013; Bora et al., 2014) 

𝑑 = ∑|𝑎𝑖 − 𝑏𝑖|

𝑚

𝑖=1

 (3) 

 

If we considered two points in the xy-plane, the shorter distance 

between them is along the hypotenuse, which represents the 

Euclidean distance. The City Block distance is instead calculated 

as the sum of the distances in x and y direction, which is similar 

to the way people move in a city, like Manhattan, where it is 

possible to walk around the buildings but not through them. 

Finally, the number of clusters 𝑘 is not always known in advance 

and some methods can be used to find it. Among them, there is 

the silhouette coefficient (Kaufmann and Rousseauw, 1990; Lletı 

et al. 2003) that is capable to measure how similar an observation 

is to its own cluster compared to the other ones; an high value 

indicates that the observation is well matched to its own group 

and the cluster numerosity is appropriate. In our case, k-means is 

used to subdivide the points in clusters that have the same shape 

characteristics. As explained in Section 1, data nature can 

significatively influences ICP registration: flat terrain could 

insert instability while discontinuities, such as ditches or 

escarpments, may instead facilitate algorithm convergence. 

Clustering procedure allows to separate these two typologies of 

terrain thanks to the use of eigenfeatures (that are shape 

descriptors); for our purposes, 𝑘 should then be set equal to 2. 

Nevertheless, as reported in Section 4.2, a preliminary silhouette 

analysis is performed in order to confirm the correctness of our 

hypothesis. 

 

2.3 Point cloud segmentation 

As reported in the Section 1, ICP is an algorithm capable to 

register overlapping points clouds through an iterative procedure 

that minimize an error metric at each step. The registration does 

not require the identification of any homologous points because 

it is based on the association of each point of a cloud to the closest 

point belonging to another cloud; a coordinate transformation is 

then estimated and applied to one set of points. The procedure is 

iterated until the mutual distance between the two clouds is 

minimized. However, certain types of geometry can lead to a rank 

deficiency which means that the minimizing transformation is not 

unique; this happens for instance when two parallel planes are 

taken into consideration such as UAV blocks acquired on flat 

areas. This corresponds to our intuitive notion of three degree of 

freedom: a planimetric translation and a rotation around the 

vertical axis. The choice of a suitable subset of points is 

commonly adopted for improving the stability of the solution. In 

the proposed strategy, the subset is chosen through a subsampling 

in compliance with the clusters obtained at the previous stage. 

Indeed, the clouds are segmented in two regions characterized by 

a different point density: lower in flat areas (cluster #1) and a 

higher in variable terrain (cluster #2).  

A structure, called skeleton in the following, is then obtained by 

overlapping a 2 m width grid to the clouds and down-sampling 

them according to k-means results: the cells lying on flat terrain 

is set to a density of 1 pt/m2, therefore the spacing is 1 m, while,  

the others, which lie where there are ditches and escarpments, is 

set to 64 pt/m2, with a spacing of 0.125 m. By imposing a suitable 

threshold on the ratio between the two cluster in each cell, the 

two classes, low and high density, are decided quite effectively. 

The points horizontal positions are established following a 

regular grid while their vertical components are estimated by 

interpolation. The use of such structures introduces a threefold 

advantage: improves the algorithm stability (that is the main 

task), decreases the complexity of the ICP calculation, avoids 

overweighting of flat areas, and reduces point clouds noise thanks 

to interpolation. The skeletons so produced are then used for next 

step, ICP registration. 

 

2.4 Weighted ICP registration 

Once the skeletons are created, they are used to estimate the ICP 

transformation. As we do not use the original point clouds, but a 

subset of them, we can say that we perform a weighted estimation 

because the points belonging to discontinuities have a larger 

weight, due to their numerosity, respect to those lying in flat area. 

This allows a larger stability to the final transformation. 

First, each point of one skeleton is coupled with the closest points 

belonging to the other one using a k-d tree approach; then, an 

outlier rejection is performed based on the points’ mutual 

distances, on colour difference, and on angle between their 

normal difference. Therefore, the selected couples are used to 

estimate a 3D rigid-body transformation based on a point-to-

plane metric (Chen and Medioni, 1992; Low, 2004) whose 

formulation is 

𝐶𝑃𝑇𝑜𝑝𝑡 = arg min
𝑇

∑((𝐶𝑃𝑇 ∙ 𝑃𝐶𝐵𝑖 − 𝑃𝐶𝐴𝑖) ∙ 𝑛𝑖)
2
 (4) 

 

where 𝑃𝐶𝐵𝑖 is the generic point of the skeleton 𝐵; 𝑃𝐶𝐴𝑖 is the 

correspondent point of the skeleton 𝐴, derived by nearest 

neighbour searching; 𝑛𝑖 is the normal vector at point 𝑃𝐶𝐴𝑖; 𝐶𝑃𝑇 

is the 4 × 4 transformation matrix estimated from previous 

iteration; 𝐶𝑃𝑇𝑜𝑝𝑡 is the 4 × 4 transformation matrix estimated 

during the current iteration. The process is stopped when the 

latest estimated transformation is negligible. 

The complete description and full flowchart for the implemented 

ICP is reported in (Franzini et al., 2019). 

 

3. THE EXPERIMENTAL DATASET 

3.1 The equipment 

The dataset was acquired with the HEXA-PRO™ UAV, which is 

operated by the Laboratory of Geomatics of the University of 
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Pavia and is shown in Figure 1. The vehicle was made by a small 

Italian company named Restart® and has the following main 

characteristics: 6 engines (290 W each one), Arducopter-

compliant flight controller, maximum payload of 1.5 kg (partly 

used by the gimbal, weighting 0.3 kg), flight autonomy of 

approximately 15 min. The UAV was equipped with a Parrot 

Sequoia camera (see Figure 1c). Sequoia has a high-resolution 

RGB camera with a 4608 × 3456 pixels sensor, a pixel size of 

1.34 μm, and a focal length of 4.88 mm; the ground sampling 

distance (GSD) is 1.9 cm at 70 m height above ground level 

(AGL). Sequoia also has four monochrome cameras that are 

sensitive to the following spectral bands: green (G, 530–570 nm), 

red (R, 640–680 nm), red-edge (RE, 730–740 nm), and near-

infrared (NIR, 77–810 nm). Their resolution is 1280 × 960, with 

a pixel size of 3.75 μm and a focal length equal to 3.98 mm; the 

GSD is 6.8 cm at the 70 m flying height (AGL), which was 

adopted for the described survey. 

 

 

Figure 1. The HEXA-PRO UAV used for the survey equipped 

with the Parrot Sequoia camera 

 

3.2 The blocks structure 

On September 13, 2017, a photogrammetric survey was 

performed on the Santa Sofia farmstead, near Pavia, Northern 

Italy. The test-site is a flat area of about 36 ha, used exclusively 

to cultivate rice. The whole acquisition was obtained by five 

flight missions, the outlines for which is shown in Figure 2, 

where the optical orthomosaic, which was used as background, 

was derived from a previous survey. In total, the project 

constituted about 1300 multispectral images, each composed of 

four bands. The AGL height was 70 m and image overlapping 

was 80% and 60% along- and across-track, respectively.  

The present paper will only focus on flights 3 and 4, as it has a 

methodological purpose. The former is composed by 293 images 

while its extension is 12 ha; the latter has 226 images and covers 

an area of about 9.5 ha. The outline of the overlapping area 

between the two flights is highlighted in red in Figure 2. 

 

3.3 The photogrammetric processing 

The photogrammetric project is carried out with Pix4Dmapper 

Pro, version 4.4.9. Since the original paper (Franzini et al., 2019) 

deals with precision farming applications, only the four 

multispectral channels were considered, having 6.8 cm GSD. The 

higher resolution RGB imagery is then disregarded, as it is 

recorded in the JPEG format with a high compression factor, and 

has low quality compared to photogrammetry requirements. 

Since the paper faces a method for point clouds registration, only 

Direct Georeferencing (DG) is considered as it is the most 

disadvantageous configuration. No Ground Control Points 

(GCPs) are inserted and images geolocation is obtained from the 

GPS receiver integrated with the camera; information contained 

in the EXIF files is instead adopted as internal parameters. As we 

knew from the Pix4D technical support, the parameters delivered 

into the EXIF are individually determined for each item at the 

factory. Their reliability is good, as reported in (Fernández-

Guisuraga et al., 2018), in which the changes between nominal 

and optimized camera parameters were as low as 0.01%. The 

processing followed the usual pipeline (Casella et al., 2019; 

Casella et al., 2020) image alignment, tie point extraction, bundle 

block adjustment (BBA); the two blocks are processed 

independently. Dense point clouds are generated using half 

image size resolution and obtaining an average density between 

11 to 14 points per m3. In a preliminary test, the original image 

size resolution was also evaluated, but higher point density did 

not significantly improve the generation of orthophotos and 

reflectance maps. 

 
Figure 2. The sub-block compositions in which light blue lines 

represent the flight outlines; overlapping areas are clearly 

visible. Area considered in the paper is highlighted in red 

 

4. RESULTS 

The section describes the results obtained using the proposed 

strategy for point clouds registration. Since the paper has a 

methodological approach, only a subset of the available 

photogrammetric flights is taken into consideration: Blocks 3 and 

4 (Figure 2). For the same reason, only point clouds generated 

using DG configuration are processed because it represents the 

most disadvantageous configuration. Since the Parrot Sequoia 

sensor has a navigation-grade receiver on-board, the 

georeferencing information is affected by large errors and the so 

obtained dense point clouds are significantly far apart. Figure 3 

shows the two generated green band orthophotos in which a 

significant planimetric shift is clearly present between the two 

blocks. Another suitable method to evaluate clouds distance is 

the use of profiles: Figure 4 highlights the position of an East-

West longitudinal profile in the overlapping area. The two 

extracted profiles, 1 m thick, are reported in Figure 5 where blue 

and red lines represent Block 3 and Block 4, respectively. The 

image depicts the existence of a z-shift and a significant rotation. 

Some preliminarily steps are done before ICP registration: the 

common enveloped area is determined, and the two clouds are 

trimmed according to it. Besides, a further precautionary buffer 

is added to avoid edge effects. Clouds are then processed 
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following the steps previously described (Section 2): 

eigenfeatures extraction and selection, K-means clustering, point 

cloud segmentation and weighted ICP registration. 

 

 

Figure 3. An excerpt of the green orthophoto in the overlapping 

area; a significant planimetric displacement is evident 

 

Figure 4. East-West profile in the overlapping area 

 

Figure 5. East-West profiles, 1 m thick, for Blocks 3 (blue line) 

and 4 (red line); significant z-shift and rotation are evident 

 

4.1 Eigenfeatures extraction and selection 

First step of our procedure is the extraction of the eight 

eigenfeatures for each point of the two clouds (Section 2.1). A 

constant search radius is fixed inside which neighbours are 

identified; radius is set equal to 1 m, according to area 

characteristics and point clouds density, obtaining an average of 

51 neighbours per point. Covariance matrix and eigenvalues are 

then determined, and eigenfeatures are calculated using the 

formulas reported in Table 1. Eigenfeatures are then normalized 

to the interval [0,1] and stored in a matrix having as many rows 

as the number of points, and eight columns. 

Laplacian rank method (He et al., 2005) is then applied to select 

main relevant features. As the final choice must be suitable for 

both point clouds, the feature rank is estimated three times: for 

the first cloud (block 3), for the second one (block 4) and for the 

join of the two datasets (block 3-4). The so-obtained 

classifications are then averaged to draw up a global ranking, as 

shown in Figure 6; the bars represent the mean of the ranking 

positions, so the lower values indicate high positions in the 

meaningfulness rank. Two features, scattering and change in 

curvature, stand out to be more relevant than others, such as 

linearity or anisotropy. The outcome is substantially coherent 

with the characteristics of the test-site which is mainly a flat 

terrain with homogenous density and highlights those 

eigenfeatures that can help to find shapes useful to ICP 

convergence. Moreover, the distance between the top two 

eigenfeatures and others is large enough to assume that they 

contain all the information needed for the next stages; for this 

reason, only scattering and change of curvature are selected for 

k-means clustering. 

 

Figure 6. Mean rank of the eight eigenfeatures 

 

4.2 K-means clustering 

K-means clustering uses an iterative algorithm that assigns 

observations to clusters so that the sum of distances from each of 

them to the centroid is a minimum; the procedure returns the 

cluster index for each observation. For our dataset, observations 

are constituted by the two eigenfeatures, scattering and change of 

curvature, selected at the previous stage; this information is then 

used to cluster the point cloud in groups suitable for clouds 

registration. Even if, theoretically, 𝑘 should be set equal to 2 in 

order to separate flat areas from terrain having shape 

characteristics useful for ICP registration, such as ditches or 

escarpments, a preliminary silhouette coefficient analysis is 

performed. This method determines how well each observation 

lies within its cluster providing a value for each of them. These 

values range from -1 to 1; a high silhouette value indicates that a 

point is well matched to its own cluster, and poorly matched to 

other clusters. The optimal number of clusters 𝑘 is the one that 

maximizes the average silhouette over a range of possible values 

for 𝑘. Figure 7 shows the results obtained up to 10 clusters where 

best value is reached for 𝑘 =  2. Besides, the curve also shows 

as silhouette coefficient has a sudden decrease from two to three 

clusters and descends constantly from that point on. This 

behaviour supports our initially hypothesis of using two clusters.    

 

Figure 7. Average silhouette coefficients for a number of 

clusters ranging from 2 to 10 
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Once established the clusters number, K-means clustering is run 

for both point clouds using the two metrics, Euclidean and City 

Block. The next figures show the results of the clustering: red 

dots represent cluster #1 identify as the flat terrain; blue dots are 

instead points belonging to discontinuities such as ditches or dirt 

roads embankments (cluster #2). Figure 8 and Figure 9 report 

results obtained using Euclidean metric for Blocks 3 and 4, 

respectively; Figure 10 and Figure 11, those found for City Block 

distance. 

 

 

Figure 8. K-means clustering using Euclidean metric; results 

obtained for Block 3 

 

Figure 9. K-means clustering using Euclidean metric; results 

obtained for Block 4 

 

Figure 10. K-means clustering using City Block metric; results 

obtained for Block 3 

 

Figure 11. K-means clustering using City Block metric; results 

obtained for Block 4 

 

Figure 12. Orthophoto produced using the Parrot Sequoia green 

band (Block3) 

Figure 12 shows instead the orthophoto produced using only the 

green band imagery for Block 3. In the figure it is possible to 

identify the location of the elements of interest: the dirt roads (the 

cars used for surveying are also distinguishable) and the 

irrigation canals. From a first visual comparison, it is evident that 

there is a good correspondence between these elements and 

cluster #2. However, the two tested metrics have a different 

capability to detect them: City Block shows a larger uniformity 

along these linear discontinuities while Euclidean distance seems 

to identify them more irregularly. Moreover, both metrics 

classify some points lying inside cultivated fields as belonging to 

cluster #2; this happens especially for City Block distance. This 

behaviour could be related to the presence of weeds inside the 

planted crops; indeed, this vegetation, taller, could be identified 

as element of interest and then classified in the second cluster; 

the result must not be necessarily considered like a mistake, if it 

contributes to ICP convergence. Nevertheless, in this case, it 

seems to be more connected to the presence of noise in the point 

clouds. If we compare, for instance, the upper left corner of 

Figure 10 and Figure 11, it will be evident as the two images, 

even if referred to the same area, presents a different clustering. 

Remembering that the two blocks have been independently 

processed, using the positions coming from the camera on-board 

GPS receiver, this disparity could due to a different quality of the 

external solutions which would cause, for Block 3, a noisier point 

cloud. Even if less manifest, the same phenomenon is also present 

in Figure 8 and Figure 9, obtained with Euclidean distance. 

The best result obtained by City Block metric could be explained 

considering that the researched elements (dirt roads and canals) 

have a structured quite similar to urban streets; both features are 

characterized by linear elements, orthogonal to each other. In the 

next step, only the results obtain by k-means clustering, based on 

City Block distance metric, will be used as starting point to create 

the double density structure needed to ICP registration. 

 

4.3 Point cloud segmentation 

A 2 meters width grid is superimposed on the dense clouds to 

perform segmentation. Each cell is down-sampled according to 

clustering results: the cells lying on flat terrain, cluster#1, is set 

to a density of 1 pt/m2, while, the others, which lie where there 

are ditches and escarpments (cluster #2), is set to 64 pt/m2. The 

two classes are established by imposing a threshold on the 

presence of the two clusters in each cell; if at least the 25% of 

points lying in a cell are classify as cluster #2, the cell owns to 

the high-density class otherwise to the lower one. The threshold 

is chosen is favour of high-density class in order to be sure not to 

disregard any possible area useful for ICP convergence. 

Figure 13 and Figure 14 the so obtained results for Block 3 and 

Block 4, respectively. Light grey represents 1 pt/m2 density cells 

whereas the dark grey the 64 pt/m2 ones. Dirt roads and canals 

are well represented in both cases even if the presence of noise in 

some flat areas of Block 3 is still present, as already discussed in 

Section 4.2. 

 

 

Figure 13. Skeleton structure for Block 3 obtained by point 

cloud segmentation 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-217-2020 | © Authors 2020. CC BY 4.0 License.

 
222



 

  

 
Figure 14. Skeleton structure for Block 4 obtained by point 

cloud segmentation 

This asymmetry in the skeleton structures for the two blocks 

could lead to an instability on the ICP algorithm and, for this 

reason, a combined analysis of the two segmentations is made. 

A cell comparison is then performed between the two skeletons 

in order to reach comparable structures. This operation could be 

considered like that one performed in photogrammetry for image 

alignment: after the extraction of points of interest, only the key 

ones (those connecting the different images) are considered for 

next processing stage. In the same way, after the creation of the 

skeletons of the two clouds separately, only the common cells are 

considered for ICP registration. This strategy allows to remove 

the noise present in Block 3, as show in Figure 15: the skeleton 

is now cleaner, and the researched shapes (roads and canals) are 

more manifest. 

 

 
Figure 15. The skeleton for Block 3 obtained after the combined 

analysis of the two segmentations 

 

 
Figure 16. The skeleton for Block 3 obtained thanks to manual 

segmentation  

 

To evaluate the quality of the automatic procedure proposed so 

far, a comparison with the segmentation achieved thanks to 

human interaction (Franzini et al., 2019) is performed. Figure 16 

reports the skeleton obtained with manual segmentation; the 

shapes are regular, and no black spots are present in the flat areas. 

The visual comparison between Figure 15 and Figure 16, for 

instance, shows a significant accordance between them; 

automatic procedure seems to bring to results substantially 

comparable to the manual ones. 

To quantify the accordance, the confusion matrix is also 

calculated: each cell of the manual segmentation (true value) is 

compared to the corresponding cell of the automatic 

segmentation (predicted value). Both blocks are considered, and 

a unique confusion chart is produced summarizing the results 

(Figure 17). In the main diagonal of the matrix it is possible to 

visualize how many cells are identified in the same way by both 

the manual and automatic approach. There is a good accordance 

in the low-density areas: more than 95% of them are correctly 

classify considering both user and product accuracy. The quality 

decreases around 75-77% considering the high-density cells. 

This difference in the results must be ascribed more to a 

misclassification of the human operator than to an error of the 

automatic algorithm. Comparing Figure 15 and Figure 16, 

especially where the dirt roads intersect to each other, it is evident 

as the two classifications, automatic and manual, have obtained 

different results: low density for former and high for the latter. 

Logically speaking, the upper part of a road is flat, so the 

algorithm has worked well. Human operator has simplified the 

reality introducing in this way an error source. Nevertheless, the 

result confirms the good agreement between manual-automatic 

segmentation and the overall accuracy is 92.5%. 

 

 

Figure 17. Confusion chart for manual/automatic segmentation; 

HD stands for High Density whereas LD for Low Density 

 

4.4 Weighted ICP registration 

The skeletons produced at the previous stage are then used to 

estimate 3D rigid-body transformation to register the two point 

clouds through ICP algorithm. It is known that ICP in not always 

reliable, especially when it is used to register almost flat clouds, 

as in our case. The registration can be performed in two 

directions, moving the first cloud toward the second one and vice 

versa, and the parameters of these transformations should 

coincide, aside from uncertainties. We use the comparison 

between the estimated and calculated inverse transformation to 

infer the precision of our estimation. 

Table 2 shows the results, where T is the transformation to align 

Block 3 to Block 4 (column 3), inv(T) is its inverse (column 4) 

and T’ is the transformation to register Block 4 to Block 3 

(column 5). Last column shows the difference between the two 

previous ones. 

  

  T inv(T) T’ Diff. 

T
ra

n
sl

at
io

n
 

C
o

m
p

o
n

en
ts

 

(m
) 

Delta E -1.586 1.571 1.534 0.037 

Delta N 0.481 -0.460 -0.562 0.102 

Delta H -2.285 2.298 2.264 0.034 

R
o

ta
ti

o
n

 

A
n

g
le

s 
 

(d
eg

) 

Delta ω 0.4814 -0.4810 -0.5150 0.0340 

Delta φ 0.3916 -0.3921 -0.3915 0.0006 

Delta κ -0.1054 0.1021 0.1467 -0.0446 

Table 2. Reliability of the ICP estimated transformation: T is 

the transformation that moves Block 3 towards Block 4; T’ 

moves Block 4 towards Block 3   
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There is a good accordance between the parameters: the worst 

residual for translation component is 10 cm while for orientation 

angle is 0.04 deg. A distance-equivalent error (𝑒) can be 

computed for the resulting angular residual (𝛼) by assuming a 

distance (𝑑) of 200 m, corresponding to the half-width of the 

considered test area. By applying the simple formula 𝑒 = 𝑑 ∙ 𝛼, 

where the angle is expressed in radiants, it can be found that 𝑒 =
 14 𝑐𝑚. Now, we must consider the granularity of the datasets 

(i.e., the points’ linear spacing). For the skeleton, the spacing is 

12.5 cm for dense parts and 100 cm elsewhere. As residuals of 

the transformation substantially equal the discretization size, we 

consider the estimated transformations reliable and precise. 

Moreover, to evaluate the quality of the ICP transformation the 

distance between the two point clouds are evaluated before and 

after the transformation. All the results are shown in Table 3 in 

which the columns report: the identifier of the scenario, before 

and after ICP, the statistical figures considered, the differences 

for the horizontal and vertical components. The initial distance 

between the two clouds presents large values, as expected, while 

ICP produces a good alignment between them with a 3D rmse 

residual of about 16 cm. 

 

  
delta E 

(m) 

delta N 

(m) 

delta H 

(m) 

delta 3D 

(m) 

B
ef

o
re

 I
C

P
 min 1.230 -0.872 0.349 1.424 

max 2.076 0.183 4.903 5.219 

mean 1.657 -0.334 2.529 3.110 

std 0.091 0.149 1.081 0.882 

rmse 1.659 0.366 2.750 3.232 

A
ft

er
 I

C
P

 min -0.345 -0.360 -0.357 0.003 

max 0.334 0.355 0.363 0.364 

mean 0.001 0.001 0.041 0.145 

std 0.080 0.084 0.101 0.058 

rmse 0.080 0.084 0.110 0.159 

Table 3. Summary statistics of the distance between overlapping 

point clouds  

 

 
Figure 18. The cloud 3D distance maps before the ICP 

registration, between Blocks 3 and 4 in the overlapping area, 

expressed in meters 

 

 
Figure 19. The cloud 3D distance maps after the ICP 

registration, between Blocks 3 and 4 in the overlapping area, 

expressed in meters 

 

Maps of the 3D distances between the overlapping point clouds 

are meaningful. Figure 18 and Figure 19 shows them before and 

after ICP, respectively; remarkably, the figures shown adopt the 

same colour map. Figure 18 highlights that the original clouds 

are quite far; the map of the distances is a sort of a ramp, meaning 

that the two clouds are not simply displaced but are also affected 

by a significant rotation (already reported in Figure 4). Figure 19 

reports the distance between datasets after ICP registration; the 

two clouds are now close to each other and their distance is 15 

cm, in the average. The result has the same order of magnitude 

of the clouds density (Section 3). 

In the alignment step, Block 4 is moved toward Block 3 and a 

new profile can be then extracted for the former. Figure 20 shows 

once again the extracted longitudinal profiles: blue line 

represents the profile for Block 3, red line the profile extracted 

for Block4 before the ICP registration and green line that one 

obtained just after the alignment. The two clouds are now 

correctly positioned; nevertheless, it is present a slight 

deformation in the left side of the profile that cannot be reduced 

with a simply rigid-body transformation. The same phenomenon 

is also visible in the North-East area of Figure 19. In this case, 

only a more careful inner calibration could decrease this 

misalignment due probably to original cloud deformation. 

 

 

Figure 20. East-West profiles, 1 m thick, for Blocks 3 (blue 

line), Block 4 before ICP registration (red line) and after that 

(green line) in the overlapping area 

 

5. RESULTS AND FURTHER ACTIVITIES 

The paper concerns the evaluation of an automatic procedure for 

point clouds registration. The procedure can be suitable to align 

datasets acquired by several surveying techniques such as UAV 

or laser scanners, terrestrial or aerial. In the paper two 

overlapping datasets, acquired with a multispectral Parrot 

Sequoia camera above some rice fields, are analysed in a single 

block approach. Since the sensors is equipped with a navigation-

grade receiver, the georeferencing information is affected by 

large errors and the so obtained dense point clouds are 

significantly far apart.  

An innovative procedure, based on ICP algorithm, is then 

proposed for their registration. Eigenfeatures are extracted for all 

points and the most significant are then selected; they contain the 

geometric information needed to identify the terrain 

discontinuities useful for ICP convergence.  Eigenfeature are 

then used to clusterize the clouds in two groups: flat area and 

variable terrain (dirt roads embankments and ditches). As the 

point clouds used in this paper derive from a multispectral 

camera, only the green band has contributed to their generation. 

For this reason, no information about colour has been inserted 

into k-means clustering. In the further activities new datasets will 

be tested considering also images acquired by optical cameras in 

order to understand if these additional descriptors (red, green and 

blue channels) can influence and improve the results. 
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Two metrics are tested for clustering, Euclidean and City Block, 

but only the second one has shown results suitable for the next 

steps. This could be explained considering the characteristics of 

the researched elements that are mainly linear and orthogonal to 

each other like the streets of a big city. This hypothesis will be 

further evaluated in next activities taking into consideration other 

dataset having different terrain morphology. 

The clouds are then segmented into 2 meters width cells having 

two different point densities: 1 pt/m2 and 64 pt/m2. The choice 

between the two classes is based on the clustering results: lower 

density for areas characterized by points belonging to flat terrain 

cluster, higher density elsewhere (cluster containing 

discontinuities). Finally, the so obtained structures are inserted as 

input in ICP algorithm and used to determine the transformation 

parameters capable to align the two clouds. The final alignment 

between the two clouds is good proving that the proposed 

procedure is reliable also to register datasets having challenging 

morphologies such as flat terrain. In the present work, the average 

3D distance between the two clouds passes from more than 3 m 

to approximately 15 cm (equal to the discretization size). 

At the moment, the process is fully automatic except for radius 

search of eigenfeatures, sets manually equal to 1 m in the present 

paper. Further activities will also focus on this aspect evaluating 

different automatic strategies such as variable search radiuses or 

eigen-entropy. Finally, the described process is composed 

basically by four steps (the same used to identify the various 

subparts of Section 2 and 3): eigenfeature extraction and 

selection, k-means clustering, point cloud segmentation and ICP 

registration. The procedure, although has worked well, could be 

in our opinion furthered improved by simplifying the workflow. 

A new procedure will be tested in which the clouds are firstly 

subdivided into cells and eigenfeatures are then extracted 

according to them. This approach would allow to clusterize 

directly the cells avoiding the segmentation stage. 
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